
OpenDDS
Release 3.20.0

Object Computing, Inc.

Mar 25, 2022

CONTENTS

1 Common Terms 3
1.1 Environment Variables . 3

2 Internal Documentation 5
2.1 OpenDDS Development Guidelines . 5
2.2 Documentation Guidelines . 15
2.3 Unit Tests . 18
2.4 GitHub Actions Summary and FAQ . 21
2.5 Running Tests . 27
2.6 Bench 2 Performance & Scalability Test Framework . 29

3 Indices and tables 45

Index 47

i

ii

OpenDDS, Release 3.20.0

Welcome to the documentation for OpenDDS 3.20.0!

It is available for download on GitHub.

CONTENTS 1

https://github.com/objectcomputing/OpenDDS/releases/tag/DDS-3.20

OpenDDS, Release 3.20.0

2 CONTENTS

CHAPTER

ONE

COMMON TERMS

1.1 Environment Variables

ACE_ROOT
Root of the ACE source tree or installation prefix being used.

DDS_ROOT
Root of the OpenDDS source tree or installation prefix being used.

TAO_ROOT
Root of the TAO source tree or installation prefix being used.

3

OpenDDS, Release 3.20.0

4 Chapter 1. Common Terms

CHAPTER

TWO

INTERNAL DOCUMENTATION

This documentation are for those who want to contribute to OpenDDS and those who are just curious!

2.1 OpenDDS Development Guidelines

This document organizes our current thoughts around development guidelines in a place that’s readable and editable
by the overall user and maintainer community. It’s expected to evolve as different maintainers get a chance to review
and contribute to it.

Although ideally all code in the repository would already follow these guidelines, in reality the code has evolved
over many years by a diverse group of developers. At one point an automated re-formatter was run on the codebase,
migrating from the GNU C style to the current, more conventional style, but automated tools can only cover a subset
of the guidelines.

2.1.1 Repository

The repository is hosted on Github at objectcomputing/OpenDDS and is open for pull requests.

2.1.2 Automated Build Systems

Pull requests will be tested automatically and full CI builds of the master branch can be found at http://scoreboard.
ociweb.com/oci-dds.html.

See Running Tests for how tests are run in general. See GitHub Actions Summary and FAQ for how building and testing
is done with GitHub Actions.

2.1.3 Doxygen

Doxygen is run on OpenDDS regularly. There are two hosted versions of this:

• Latest Release

– Based on the current release of OpenDDS.

• Master

– Based on the master branch in the repository. To access it, go to the scoreboard and click the green “Doxy-
gen” link near the top.

– Depending on the activity in the repository this might be unstable because of the time it takes to get the
updated Doxygen on to the web sever. Prefer latest release unless working with newer code.

5

https://www.gnu.org/prep/standards/html_node/Writing-C.html
https://github.com/objectcomputing/OpenDDS
http://scoreboard.ociweb.com/oci-dds.html
http://scoreboard.ociweb.com/oci-dds.html
http://download.opendds.org/doxygen
http://scoreboard.ociweb.com/oci-dds.html

OpenDDS, Release 3.20.0

See Documenting Code for Doxygen to see how to take advantage of Doxygen when writing code in OpenDDS.

2.1.4 Dependencies

• MPC is the build system, used to configure the build and generate platform specific build files (Makefiles, VS
solution files, etc.).

• ACE is a library used for cross-platform compatibility, especially networking and event loops. It is used both
directly and through TAO.

• TAO is a C++ CORBA implementation built on ACE used extensively in the traditional OpenDDS operating
mode which uses the DCPSInfoRepo. TAO types are also used in the End User DDS API. The TAO IDL compiler
is used internally and by the end user to allow OpenDDS to use user defined IDL types as topic data.

• Perl is an interpreted language used in the configure script, the tests, and any other scripting in OpenDDS code-
base.

• Google Test is required for OpenDDS tests. By default, CMake will be used to build a specific version of Google
Test that we have as a submodule. An appropriate prebuilt or system Google Test can also be used.

See docs/dependencies.md for all dependencies and details on how these are used in OpenDDS.

2.1.5 Text File Formatting

All text files in the source code repository follow a few basic rules. These apply to C++ source code, Perl scripts, MPC
files, and any other plaintext file.

• A text file is a sequence of lines, each ending in the “end-of-line” character (AKA Unix line endings).

• Based on this rule, all files end with the end-of-line character.

• The character before end-of-line is a non-whitespace character (no trailing whitespace).

• Tabs are not used.

– One exception, MPC files may contain literal text that’s inserted into Makefiles which could require tabs.

– In place of a tab, use a set number of spaces (depending on what type of file it is, C++ uses 2 spaces).

• Keep line length reasonable. I don’t think it makes sense to strictly enforce an 80-column limit, but overly long
lines are harder to read. Try to keep lines to roughly 80 characters.

2.1.6 C++ Standard

The C++ standard used in OpenDDS is C++03. There are some caveats to this but the OpenDDS must be able to be
compiled with C++ 2003 compilers.

Use the C++ standard library as much as possible. The standard library should be preferred over ACE, which in turn
should be preferred over system specific libraries. The C++ standard library includes the C standard library by reference,
making those identifiers available in namespace std. Not all supported platforms have standard library support for wide
characters (wchar_t) but this is rarely needed. Preprocessor macro DDS_HAS_WCHAR can be used to detect those
platforms.

6 Chapter 2. Internal Documentation

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/docs/dependencies.md

OpenDDS, Release 3.20.0

2.1.7 C++ Coding Style

• C++ code in OpenDDS must compile under the compilers listed in the README.md file.

• Commit code in the proper style from the start, so follow-on commits to adjust style don’t clutter history.

• C++ source code is a plaintext file, so the guidelines in “Text File Formatting” apply.

• A modified Stroustrup style is used (see tools/scripts/style).

– Warning: not everything in tools/scripts/style represents the current guidelines.

• Sometimes the punctuation characters are given different names, this document will use:

– Parentheses ()

– Braces { }

– Brackets []

Example

template<typename T>
class MyClass : public Base1, public Base2 {
public:
bool method(const OtherClass& parameter, int idx = 0) const;

};

template<typename T>
bool MyClass<T>::method(const OtherClass& parameter, int) const
{
if (parameter.foo() > 42) {
return member_data_;

} else {
for (int i = 0; i < some_member_; ++i) {
other_method(i);

}
return false;

}
}

Punctuation

The punctuation placement rules can be summarized as:

• Open brace appears as the first non-whitespace character on the line to start function definitions.

• Otherwise the open brace shares the line with the preceding text.

• Parentheses used for control-flow keywords (if, while, for, switch) are separated from the keyword by a
single space.

• Otherwise parentheses and brackets are not preceded by spaces.

2.1. OpenDDS Development Guidelines 7

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/README.md#compilers
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tools/scripts/style
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tools/scripts/style

OpenDDS, Release 3.20.0

Whitespace

• Each “tab stop” is two spaces.

• Namespace scopes that span most or all of a file do not cause indentation of their contents.

• Otherwise lines ending in { indicate that subsequent lines should be indented one more level until }.

• Continuation lines (when a statement spans more than one line) can either be indented one more level, or indented
to nest “under” an (or similar punctuation.

• Add space around binary operators and after commas: a + b

• Do not add space around parentheses for function calls, a properly formatted function call looks like func(arg1,
arg2, arg3);

• Do not add space around brackets for indexing, instead it should look like: mymap[key]

• In general, do not add space :) Do not add extra spaces to make syntax elements (that span lines/statements) line
up. This only causes unnecessary changes in adjacent lines as the code evolves.

Language Usage

• Add braces following control-flow keywords even when they are optional.

• this-> is not used unless required for disambiguation or to access members of a template-dependent base class.

• Declare local variables at the latest point possible.

• const is a powerful tool that enables the compiler to help the programmer find bugs. Use const everywhere
possible, including local variables.

• Modifiers like const appear left of the types they modify, like: const char* cstring = char const*
is equivalent but not conventional.

• For function arguments that are not modified by the callee, pass by value for small objects (8 bytes?) and pass
by const-reference for everything else.

• Arguments unused by the implementation have no names (in the definition that is, the declarations still have
names), or a /*commented-out*/ name.

• Use explicit constructors unless implicit conversions are intended and desirable.

• Use the constructor initializer list and make sure its order matches the declaration order.

• Prefer pre-increment/decrement (++x) to post-increment/decrement (x++) for both objects and non-objects.

• All currently supported compilers use the template inclusion mechanism. Thus function/method template defi-
nitions may not be placed in normal *.cpp files, instead they can go in _T.cpp (which are #included and not
separately compiled), or directly in the *.h. In this case, *_T.cpp takes the place of *.inl (except it is always
inlined). See ACE for a description of *.inl files.

8 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

Pointers and References

Pointers and references go along with the type, not the identifier. For example:

int* intPtr = &someInt;

Watch out for multiple declarations in one statement. int* c, b; does not declare two pointers! It’s best just to break
these into separate statements:

int* c;
int* b;

In code targeting C++03, 0 should be used as the null pointer. For C++11 and later, nullptr should be used instead.
NULL should never be used.

Naming

(For library code that the user may link to)

• Preprocessor macros visible to user code must begin with OPENDDS_

• C++ identifiers are either in top-level namespace DDS (OMG spec defined) or OpenDDS (otherwise)

• Within the OpenDDS namespace there are some nested namespaces:

– DCPS: anything relating to the implementation of the DCPS portion of the DDS spec

– RTPS: types directly tied to the RTPS spec

– Federator: DCPSInfoRepo federation

– FileSystemStorage: reusable component for persistent storage

• Naming conventions

– ClassesAreCamelCaseWithInitialCapital

– methodsAreCamelCaseWithInitialLower OR methods_are_lower_case_with_underscores

– member_data_use_underscores_and_end_with_an_underscore_

– ThisIsANamespaceScopedOrStaticClassMemberConstant

Comments

• Add comments only when they will provide MORE information to the reader.

• Describing the code verbatim in comments doesn’t add any additional information.

• If you start out implementation with comments describing what the code will do (or pseudocode), review all
comments after implementation is done to make sure they are not redundant.

• Do not add a comment before the constructor that says // Constructor. We know it’s a constructor. The same
note applies to any redundant comment.

2.1. OpenDDS Development Guidelines 9

OpenDDS, Release 3.20.0

Documenting Code for Doxygen

Doxygen is run on the codebase with each change in master and each release. This is a simple guide showing the way
of documenting in OpenDDS.

Doxygen supports multiple styles of documenting comments but this style should be used in non-trivial situations:

/**
* This sentence is the brief description.
*
* Everything else is the details.
*/
class DoesStuff {
// ...
};

For simple things, a single line documenting comment can be made like:

/// Number of bugs in the code
unsigned bug_count = -1; // Woops

The extra * on the multiline comment and / on the single line comment are important. They inform Doxygen that
comment is the documentation for the following declaration.

If referring to something that happens to be a namespace or other global object (like DDS, OpenDDS, or RTPS), you
should precede it with a %. If not it will turn into a link to that object.

For more information, see the Doxygen manual.

Preprocessor

• If possible, use other language features things like inlining and constants instead of the preprocessor.

• Prefer #ifdef and #ifndef to #if defined and #if !defined when testing if a single macro is defined.

• Leave parentheses off preprocessor operators. For example, use #if defined X && defined Y instead of
#if defined(X) && defined(Y).

• As stated before, preprocessor macros visible to user code must begin with OPENDDS_.

• Ignoring the header guard if there is one, preprocessor statements should be indented using two spaces starting
at the pound symbol, like so:

#if defined X && defined Y
if X > Y
define Z 1
else
define Z 0
endif
#else
define Z -1
#endif

10 Chapter 2. Internal Documentation

http://www.doxygen.nl/manual/

OpenDDS, Release 3.20.0

Includes

Order

As a safeguard against headers being dependant on a particular order, includes should be ordered based on a hierarchy
going from local headers to system headers, with spaces between groups of includes. Generated headers from the same
directory should be placed last within these groups. This order can be generalized as the following:

1. Pre-compiled header if it is required for a .cpp file by Visual Studio.

2. The corresponding header to the source file (Foo.h if we were in Foo.cpp).

3. Headers from the local project.

4. Headers from external OpenDDS-based libraries.

5. Headers from dds/DCPS.

6. dds/*C.h Headers

7. Headers from external TAO-based libraries.

8. Headers from TAO.

9. Headers from external ACE-based libraries.

10. Headers from ACE.

11. Headers from external non-ACE-based libraries.

12. Headers from system and C++ standard libraries.

There can be exceptions to this list. For example if a header from ACE or the system library was needed to decide if
another header should be included.

Path

Headers should only use local includes (#include "foo/Foo.h") if the header is relative to the file. Otherwise system
includes (#include <foo/Foo.h>) should be used to make it clear that the header is on the system include path.

In addition to this, includes for a file that will always be relative to the including file should have a relative include path.
For example, a dds/DCPS/bar.cpp should include dds/DCPS/bar.h using #include "bar.h", not #include
<dds/DCPS/bar.h> and especially not #include "dds/DCPS/bar.h".

Example

For a Doodad.cpp file in dds/DCPS, the includes could look like:

#include <DCPS/DdsDcps_pch.h>

#include "Doodad.h"

#include <ace/config-lite.h>
#ifndef ACE_CPP11
include "ConditionVariable.h"
#endif
#include "ReactorTask.h"
#include "transport/framework/DataLink.h"

(continues on next page)

2.1. OpenDDS Development Guidelines 11

https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/dds/DCPS
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/dds/DCPS

OpenDDS, Release 3.20.0

(continued from previous page)

#include <dds/DdsDcpsCoreC.h>

#include <tao/Version.h>

#include <ace/Version.h>

#include <openssl/opensslv.h>

#include <unistd.h>
#include <stdlib.h>

2.1.8 Time

Measurements of time can be broken down into two basic classes: A specific point in time (Ex: 00:00 January 1, 1970)
and a length or duration of time without context (Ex: 134 Seconds). In addition, a computer can change its clock while
a program is running, which could mess up any time lapses being measured. To solve this problem, operating systems
provide what’s called a monotonic clock that runs independently of the normal system clock.

ACE can provide monotonic clock time and has a class for handling time measurements, ACE_Time_Value, but it
doesn’t differentiate between specific points in time and durations of time. It can differentiate between the system
clock and the monotonic clock, but it does so poorly. OpenDDS provides three classes that wrap ACE_Time_Value
to fill these roles: TimeDuration, MonotonicTimePoint, and SystemTimePoint. All three can be included using
dds/DCPS/TimeTypes.h. Using ACE_Time_Value is discouraged unless directly dealing with ACE code which requires
it and using ACE_OS::gettimeofday() or ACE_Time_Value().now() in C++ code in dds/DCPS treated as an error
by the lint.pl linter script.

MonotonicTimePoint should be used when tracking time elapsed internally and when dealing with
ACE_Time_Values being given by the ACE_Reactor in OpenDDS. ACE_Conditions, like all ACE code, will
default to using system time. Therefore the Condition class wraps it and makes it so it always uses monotonic time
like it should. Like ACE_OS::gettimeofday(), referencing ACE_Condition in dds/DCPS will be treated as an
error by lint.pl.

More information on using monotonic time with ACE can be found here.

SystemTimePoint should be used when dealing with the DDS API and timestamps on incoming and outgoing mes-
sages.

2.1.9 Logging

ACE Logging

Logging is done via ACE’s logging macro functions, ACE_DEBUG and ACE_ERROR, defined in ace/Log_Msg.h. The
logging macros arguments to both are:

• A ACE_Log_Priority value

– This is an enum defined in ace/Log_Priority.h to say what the priority or severity of the message is.

• The format string

– This is similar to the format string for the standard printf, where it substitutes sequences starting with %,
but the format of theses sequences is different. For example char* values are substituted using %C instead

12 Chapter 2. Internal Documentation

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/dds/DCPS/TimeTypes.h
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/dds/DCPS
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/dds/DCPS
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/docs/ACE-monotonic-timer.html

OpenDDS, Release 3.20.0

of %s. See the documenting comment for ACE_Log_Msg::log in ace/Log_Msg.h for what the format of
the string is.

• The variable number of arguments

– Like printf the variable arguments can’t be whole objects, like a std::string value. In the case of
std::string, the format and arguments would look like: "%C", a_string.c_str().

Note that all the ACE_DEBUG and ACE_ERROR arguments must be surrounded by two sets of parentheses.

ACE_DEBUG((LM_DEBUG, "Hello, %C!\n", "world"));

ACE logs to stderr by default on conventional platforms, but can log to other places.

Usage in OpenDDS

Logging Conditions and Priority

In OpenDDS ACE_DEBUG and ACE_ERROR are used directly most of the time, but sometimes they are used indirectly,
like with the transport framework’s VDBG and VDBG_LVL. They also should be conditional on one of the logging control
systems in OpenDDS. See section 7.6 of the OpenDDS Developer’s Guide for user perspective.

The logging conditions are as follows:

Message Kind Macro Priority Condition
Unrecoverable error ACE_ERROR LM_ERROR log_level >= LogLevel::Error
Unreportable recover-
able error

ACE_ERROR LM_WARNINGlog_level >= LogLevel::Warning

Reportable recoverable
error

ACE_ERROR LM_NOTICE log_level >= LogLevel::Notice

Informational message ACE_DEBUG LM_INFO log_level >= LogLevel::Info
Debug message ACE_DEBUG LM_DEBUG Based on DCPS_debug_level or one of the other debug sys-

tems listed below1

An unrecoverable error indicates that OpenDDS is in a state where it cannot function as intended. This may be the
result of a defect, misconfiguration, or interference.

A recoverable error indicates that OpenDDS could not perform a desired action but remains in a state where it can
function as intended.

A reportable error indicates that OpenDDS can report the error via the API through something like an exception or
return value.

An informational message gives high level information mostly at startup, like the version of OpenDDS being used.

A debug message gives lower level information, such as if a message is being sent. These are directly controlled by
one of a few debug logging control systems.

• DCPS_debug_level should be used for all debug logging that doesn’t fall under the other systems. It is an
unsigned integer value which ranges from 0 to 10. See dds/DCPS/debug.h for details.

• Transport_debug_level should be used in the transport layer. It is an unsigned integer value which ranges
from 0 to 6. See dds/DCPS/transport/framework/TransportDebug.h for details.

• security_debug should be used for logging in related to DDS Security. It is an object with bool members that
make up categories of logging messages that allow fine control. See dds/DCPS/debug.h for details.

1 Debug messages don’t rely on both LogLevel::Debug and a debug control system. The reason is that it results in a simpler check and the log
level already loosely controls all the debug control systems. See the LogLevel::set function in dds/DCPS/debug.cpp for exactly what it does.

2.1. OpenDDS Development Guidelines 13

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/dds/DCPS/debug.h
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/dds/DCPS/transport/framework/TransportDebug.h
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/dds/DCPS/debug.h
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/dds/DCPS/debug.cpp

OpenDDS, Release 3.20.0

For number-based conditions like DCPS_debug_level and Transport_debug_level, the number used should be the
log level the message starts to become active at. For example for DCPS_debug_level >= 6 should be used instead
of DCPS_debug_level > 5.

Message Content

• Log messages should take the form:

(%P|%t) [ERROR:|WARNING:|NOTICE:] FUNCTION_NAME: MESSAGE\n

– Use ERROR:, WARNING:, and NOTICE: if using the corresponding log priorities.

– CLASS_NAME::METHOD_NAME should be used instead of just the function name if it’s part of a class. It’s
at the developer’s discretion to come up with a meaningful name for members of overload sets, templates,
and other more complex cases.

– security_debug and transport_debug log messages should indicate the category name, for example:

if (security_debug.access_error) {
ACE_ERROR((LM_ERROR, "(%P|%t) ERROR: {access_error} example_function: Hello,␣

→˓World!\n"));
}

• Format strings should not be wrapped in ACE_TEXT. We shouldn’t go out of our way to replace it in existing
logging points, but it should be avoided it in new ones.

– ACE_TEXT’s purpose is to wrap strings and characters in L on builds where uses_wchar=1, so they become
the wide versions.

– While not doing it might result in a performance hit for character encoding conversion at runtime, the builds
where this happens are rare, so the it’s outweighed by the added visual noise to the code and the possibility
of bugs introduced by improper use of ACE_TEXT.

• Avoid new usage of ACE_ERROR_RETURN in order to not hide the return statement within a macro.

Examples

if (log_level >= LogLevel::Error) {
ACE_ERROR((LM_DEBUG, "(%P|%t) ERROR: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Warning) {
ACE_ERROR((LM_WARNING, "(%P|%t) WARNING: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Notice) {
ACE_ERROR((LM_NOTICE, "(%P|%t) NOTICE: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Info) {
ACE_DEBUG((LM_INFO, "(%P|%t) example_function: Hello, World!\n"));

}

if (DCPS_debug_level >= 1) {
(continues on next page)

14 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

(continued from previous page)

ACE_DEBUG((LM_DEBUG, "(%P|%t) example_function: Hello, World!\n"));
}

2.2 Documentation Guidelines

This Sphinx-based documentation is hosted on Read the Docs and can be located here. It can also be built locally. To
do this follow the steps in the following section.

2.2.1 Building

Run docs/build.py, passing the kinds of documentation desired. Multiple kinds can be passed, and they are documented
in the following sections.

Requirements

The script requires Python 3.6 or later and an internet connection if the script needs to download dependencies or check
the validity of external links.

You might receive a message like this when running for the first time:

build.py: Creating venv...
The virtual environment was not created successfully because ensurepip is not
available. On Debian/Ubuntu systems, you need to install the python3-venv
package using the following command.

apt install python3.9-venv

If you do, then follow the directions it gives, remove the docs/.venv directory, and try again.

HTML

HTML documentation can be built and viewed using docs/build.py -o html. If it was built successfully, then the
front page will be at docs/_build/html/index.html.

PDF

Note: This has additional dependencies on LaTeX that are documented here.

PDF documentation can be built and viewed using docs/build.py -o pdf. If it was built successfully, then the PDF
file will be at docs/_build/latex/opendds.pdf.

2.2. Documentation Guidelines 15

https://www.sphinx-doc.org/en/master/
https://readthedocs.org
https://opendds.readthedocs.io/en/latest/
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/docs/build.py
https://www.sphinx-doc.org/en/master/usage/builders/index.html#sphinx.builders.latex.LaTeXBuilder

OpenDDS, Release 3.20.0

Dash

Documentation can be built for Dash, Zeal, and other Dash-compatible applications using doc2dash. The command for
this is docs/build.py dash. This will create a docs/_build/OpenDDS.docset directory that must be manually
moved to where other docsets are stored.

Strict Checks

docs/build.py strict will promote Sphinx warnings to errors and check to see if links resolve to a valid web page.

Note: The documenation includes dynamic links to files in the GitHub repo created by ghfile. These links will be
invalid until the git commit they were built under is pushed to a Github fork of OpenDDS. This also means running
will cause those links to marked as broken. A workaround for this is to pass -c master or another commit, branch,
or tag that is desired.

Building Manually

It is recommended to use build.py to build the documentation as it will handle dependencies automatically. If nec-
essary though, Sphinx can be ran directly.

To build the documentation the dependencies need to be installed first. Run this from the docs directory to do this:

pip3 install -r requirements.txt

Then sphinx-build can be ran. For example to build the HTML documentation:

sphinx-build -M html . _build

2.2.2 RST/Sphinx Usage

• See Sphinx reStructuredText Primer for basic RST usage.

• Inline code such as class names like DataReader and other symbolic text such as commands like ls should use
double backticks: ``TEXT``. This distinguishes it as code, makes it easier to distinguish characters, and reduces
the chance of needing to escape characters if they happen to be special for RST.

• One sentence per line should be perfered. This makes it easier to see what changed in a git diff or GitHub
PR and easier to move sentences around in editors like Vim. It also avoids inconsistencies involving what the
maximum line length is. This might make it more annoying to read the documentation raw, but that’s not the
indented way to do so anyway.

GitHub Links

There are a few shortcuts for linking to the GitHub repository that are custom to OpenDDS. These come of the form
of RST roles and are implemented in docs/sphinx_extensions/github_links.py.

16 Chapter 2. Internal Documentation

https://kapeli.com/dash
https://zealdocs.org/
https://github.com/hynek/doc2dash
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://rhodesmill.org/brandon/2012/one-sentence-per-line/
https://docutils.sourceforge.io/docs/ref/rst/roles.html
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/docs/sphinx_extensions/github_links.py

OpenDDS, Release 3.20.0

ghfile

:ghfile:`README.md`

:ghfile:`the \`\`README.md\`\` File <README.md>`

:ghfile:`the support section of the \`\`README.md\`\` File <README.md#support>`

:ghfile:`check out the available support <README.md#support>`

Turns into:

README.md#support

README.md

the README.md File

the support section of the README.md File

check out the available support

The path passed must exist, be relative to the root of the repository, and will have to be committed, if it’s not already.
If there is a URL fragment in the path, like README.md#support, then it will appear in the link URL.

It will try to point to the most specific version of the file:

• If -c or --gh-links-commit was passed to build.py, then it will use the commit, branch, or tag that was
passed along with it.

• Else if the OpenDDS is a release it will calculate the release tag and use that.

• Else if the OpenDDS is in a git repository it will use the commit hash.

• Else it will use master.

ghissue

:ghissue:`213`

:ghissue:`this is the issue <213>`

:ghissue:`this is **the issue** <213>`

Turns into:

Issue #213 on GitHub

this is the issue

this is the issue

2.2. Documentation Guidelines 17

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/README.md#support
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/README.md
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/README.md
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/README.md#support
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/README.md#support
https://github.com/objectcomputing/OpenDDS/issues/213
https://github.com/objectcomputing/OpenDDS/issues/213
https://github.com/objectcomputing/OpenDDS/issues/213

OpenDDS, Release 3.20.0

ghpr

:ghpr:`1`

:ghpr:`this is the PR <1>`

:ghpr:`this is **the PR** <1>`

Turns into:

Pull Request #1 on GitHub

this is the PR

this is the PR

2.3 Unit Tests

2.3.1 The Goals of Unit Testing

The primary goal of a unit test is to provide informal evidence that a piece of code performs correctly. An alternative
to unit testing is writing formal proofs. However, formal proofs are difficult, expensive, and unmaintainable given the
changing nature of software. Unit tests, while necessarily incomplete, are a practical alternative.

Unit tests document how to use various algorithms and data structures and serve as an informal set of requirements. As
such, a unit test should be developed with the idea that it will serve as a reference for future developers. Clarity in unit
tests serve to accomplish their primary goal of establishing correctness. That is, a unit test that is difficult to understand
casts doubt that the code being tested is correct. Consequently, unit tests should be clear and concise.

The confidence one has in a piece of code is often related to the number of code paths explored in it. This is often
approximated by “code coverage.” That is, one can run the unit test with a coverage tool to see which code paths were
exercised by the unit test. Code with higher coverage tends to have fewer bugs because the tester has often considered
various corner-cases. Consequently, unit tests should aim for high code coverage.

Unit tests should be executed frequently to provide developers with instant feedback. This applies to the feature under
development and the system as a whole. That is, developers should frequently execute all of the unit tests to make
sure they haven’t broken functionality elsewhere in the system. The more frequently the tests are run, the smaller the
increment of development and the easier it is to identify a breaking change. Thus, unit tests should execute quickly.

Code that is difficult to test will most likely be difficult to use. Code that is difficult to use correctly will lead to bugs
in code that uses it. Consequently, unit tests are vital to the design of useful software as developing a unit test provides
feedback on the design of the code under test. Often, when developing a unit test, one will find parts of the design that
can be improved.

Unit tests should promote and not inhibit development. A robust set of unit tests allows a developer to aggressively
refactor since the correctness of the system can be checked after the refactoring. However, unit tests do produce drag on
development since they must be maintained as the code evolves. Thus, it is important that the unit test code be properly
maintained so that they are an asset and not a liability.

Some of the goals mentioned above are in conflict. Adding code to increase coverage may make the tests less main-
tainable, slower, and more difficult to understand. The following metrics can be generated to measure the utility of the
unit tests:

• Code coverage

• Test compilation time

18 Chapter 2. Internal Documentation

https://github.com/objectcomputing/OpenDDS/pull/1
https://github.com/objectcomputing/OpenDDS/pull/1
https://github.com/objectcomputing/OpenDDS/pull/1

OpenDDS, Release 3.20.0

• Test execution time

• Test code size vs. code size

• Defect rate vs. code coverage (Are bugs appearing in code that is not tested as well?)

2.3.2 Unit Test Organization

The most basic unit when testing is the test case. A test case typically has four phases.

1. Setup - The system is initialized to a known state.

2. Exercise - The code under test is invoked.

3. Check - The resulting state of the system and outputs are checked.

4. Teardown - Any resources allocated in the test are deallocated.

Test cases are grouped into a test suite.

Test suites are organized into a test plan.

We adopt file boundaries for organizing the unit tests for OpenDDS. That is, the unit tests for a file group dds/
DCPS/SomeFile.(h|cpp) will be located in tests/unit-tests/dds/DCPS/SomeFile.cpp. The file tests/
unit-tests/dds/DCPS/SomeFile.cpp is a test suite containing all of the test cases for dds/DCPS/SomeFile.
(h|cpp). The test plan for OpenDDS will execute all of the test suites under tests/unit-tests. When the complete test
plan takes too much time to execute, it will be sub-divided along module boundaries.

In regards to coverage, the coverage of dds/DCPS/SomeFile.(h|cpp) is measured by executing the tests in its test
suite tests/unit-tests/dds/DCPS/SomeFile.cpp. The purpose of this is to avoid indirect testing where a piece
of code may get full coverage without ever being intentionally tested.

2.3.3 Unit Test Scope

A unit test should be completely deterministic with respect to the code paths that it exercises. This means the test
code must have control over all relevant inputs, i.e., inputs that influence the code paths. To illustrate, the current time
is relevant when testing algorithms that perform date related functions, e.g., code that is conditioned on a certificate
being expired, while it is not relevant if it is only used when printing log messages. Sources of non-determinism include
time, random numbers, schedulers, and the network. A dependency on the time is typically mitigated by mocking the
service that return the time. Random numbers can be handled the same way. A unit test should never sleep. Avoiding
schedulers means a unit test should not have multiple processes and should not have multiple threads unless they cannot
impact the code paths being tested. The network can be avoided by defining a suitable abstraction and mocking.

Code that relies on event dispatching may use a mock dispatcher to control the sequence of events. One design that
makes it possible to unit test in this way is to organize a module as a set of atomic event handlers around a plain old
data structure core. The core should be easy to test. Event handlers are called for timers, I/O readiness, and method
calls into the module. Event handlers update the core and can perform I/O and call into other modules. Inter-module
calls are problematic in that they create the possibility for deadlock and other hazards. In the simplest designs, each
module has a single lock that is acquired at the beginning of each event handler. The non-deterministic part of the
module can be tested by isolating its dependencies on the operating system and other modules; typically by providing
mock objects.

To illustrate the other side of determinism, consider other kinds of tests. Integration tests often use operating system
services, e.g., threads and networking, to test partial or whole system functionality. A stress test executes the same
code over and over hoping that non-determism results in a different outcome. Performance tests may or may not admit
non-determinism and focuses on aggregate behavior as opposed to code-level correctness. Unit tests should focus on
code-level correctness.

2.3. Unit Tests 19

https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tests/unit-tests

OpenDDS, Release 3.20.0

2.3.4 Isolating Dependencies

More often than not, the code under test will have dependencies on other objects. For each dependency, the test can
either pass in a real object or a stand-in. Test stand-ins have a variety of names including mocks, spies, dummies, etc.
depending on their function. Some take the position that everything should be mocked. The author takes the position
that real objects should be preferred for the following reasons:

• Less code to maintain

• The design of the real objects improves to accommodate testing

• Tests break in a more meaningful way when dependencies change, i.e., over time, a test stand-in may no longer
behave in a realistic way

However, there are cases when a test stand-in is justified:

• It is difficult to configure the real object

• The real object lacks the necessary API for testing and adding it cannot be justified

The use of a mock assumes that an interface exists for the stand-in.

2.3.5 Writing a New Unit Test

1. Add the test to the appropriate file under tests/unit-tests.

2. Name the test after the code it is meant to cover. For example, the tests/unit-tests/dds/
DCPS/security/AccessControlBuiltInImpl.cpp unit test covers the dds/DCPS/security/
AccessControlBuiltInImpl.(h|cpp) files.

3. Update the tests/unit-tests/UnitTests.mpc file if necessary.

2.3.6 Using GTest

The main unit test driver is based on GTest. GTest provides you with many helpful tools to simplify the writing of unit
tests. To use GTest in a test, add #include <gtest/gtest.h> to the unit test source file. A basic unit test has the
following form

TEST(TestModule, TestSubmodule)
{
}

All tests in a unit test source file must have the same TestModule which is name of the unit under test with underscores,
e.g., dds_DCPS_security_AccessControlBuiltInImpl. This naming convention is required for intentional unit
test coverage. The TestSubmodule can be any identifier, however, it should typical describe the class, function, or
scenario being tested.

Each test contains evaluators. The most common evaluators are EXPECT_EQ, EXPECT_TRUE, EXPECT_FALSE.

EXPECT_EQ(X, 2)
EXPECT_EQ(Y, 3)

This will mark the test as a failure if either X does not equal 2, or Y does not equal 3.

EXPECT_TRUE and EXPECT_FALSE are equivalence checks to a boolean value. In the following examples we pass X to
a function is_even that returns true if the passed value is an even number and returns false otherwise.

20 Chapter 2. Internal Documentation

https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tests/unit-tests
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/unit-tests/UnitTests.mpc

OpenDDS, Release 3.20.0

EXPECT_TRUE(is_even(X));

This will mark the test as a failure if is_even(X) returns false.

EXPECT_FALSE(is_even(X));

This will mark the test as a failure if is_even(X) returns true.

There are more EXPECT_* and ASSERT_*, but these are the most common ones. The difference between EXPECT
and ASSERT is that an ASSERT will cease the test upon failure, whereas EXPECTS continue to run. For example if
you have multiple EXPECT_EQ, they will all always run.

For more information, visit the google test documentation: https://github.com/google/googletest/blob/master/docs/
primer.md.

2.3.7 Code Coverage

To enable code coverage, one needs to disable the dds_non_coverage feature, e.g., ./configure ...
--features=dds_non_coverage=0.

The script $DDS_ROOT/tools/scripts/unit_test_coverage.sh will execute unit tests and generate an inten-
tional unit test coverage report. It can be called with no arguments to generate a report for all of the units or it can be
called with a list of units to test. For example, $DDS_ROOT/tools/scripts/unit_test_coverage.sh dds/DCPS/
Serializer.

2.3.8 Final Word

Ignore anything in this document that prevents you from writing unit tests.

2.4 GitHub Actions Summary and FAQ

2.4.1 Overview

GitHub Actions is the continuous integration solution currently being used to evaluate the readiness of pull requests.
It builds OpenDDS and runs the test suite across a wide variety of operation systems and build configurations.

2.4.2 Legend for GitHub Actions Build Names

Operating System

• u18/u20 - Ubuntu 18.04/Ubuntu 20.04

• w19/w22 - Windows Server 2019 (Visual Studio 2019)/Windows Server 2022 (Visual Studio 2022)

• m10 - MacOS 10.15

See also:

GitHub Virtual Environments

2.4. GitHub Actions Summary and FAQ 21

https://github.com/google/googletest/blob/master/docs/primer.md
https://github.com/google/googletest/blob/master/docs/primer.md
https://github.com/actions/virtual-environments

OpenDDS, Release 3.20.0

Build Configuration

• x86 - Windows 32 bit. If not specified, x64 is implied.

• re - Release build. If not specified, Debug is implied.

• clang5/clang10/gcc6/gcc8/gcc10 - compiler used to build OpenDDS. If not specified, the default system compiler
is used.

Build Type

• stat - Static build

• bsafe/esafe - Base Safety/Extended Safety build

• sec - Security build

• asan - Address Sanitizer build

Build Options

• o1 - enables --optimize

• d0 - enables --no-debug

• i0 - enables --no-inline

• p1 - enables --ipv6

• w1 - enables wide characters

• v1 - enables versioned namespace

• cpp03 - --std=c++03

• j/j8/j12 - Default System Java/Java8/Java12

• ace7 - uses ace7tao3 rather than ace6tao2

• xer0 - disables xerces

• qt - enables --qt

• ws - enables --wireshark

• js0 - enables --no-rapidjson

Feature Mask

This is a mask in an attempt to keep names shorter.

• FM-08

– --no-built-in-topics

– --no-content-subscription

– --no-ownership-profile

– --no-object-model-profile

– --no-persistence-profile

• FM-1f

22 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

– --no-built-in-topics

• FM-2c

– --no-content-subscription

– --no-object-model-profile

– --no-persistence-profile

• FM-2f

– --no-content-subscription

• FM-37

– --no-content-filtered-topics

2.4.3 build_and_test.yml Workflow

Our main workflow which dictates our GitHub Actions run is .github/workflows/build_and_test.yml. It defines jobs,
which are the tasks that are run by the CI.

Triggering the Build And Test Workflow

There are a couple ways in which a run of build and test workflow can be started.

Any pull request targeting master will automatically run the OpenDDS workflows. This form of workflow run will
simulate a merge between the branch and master.

Push events on branches prefixed gh_wf_ will trigger workflow runs on the fork in which the branch resides. These
fork runs of GitHub Actions can be viewed in the “Actions” tab. Runs of the workflow on forks will not simulate a
merge between the branch and master.

Job Types

There are a number of job types that are contained in the file build_and_test.yml. Where possible, a configuration will
contain 3 jobs. The first job that is run is ACE_TAO_. This will create an artifact which is used later by the OpenDDS
build. The second job is build_, which uses the previous ACE_TAO_ job to configure and build OpenDDS. This job
will then export an artifact to be used in the third step. The third step is the test_ job, which runs the appropriate tests
for the associated OpenDDS configuration.

Certain builds do not follow this 3 step model. Static and Release builds have a large footprint and therefore cannot fit
the entire test suite onto a GitHub Actions runner. As a result, they only build and run a subset of the tests in their final
jobs, but then have multiple final jobs to increase test coverage. These jobs are prefixed by:

• compiler_ (and for some build configurations, compiler2_) which runs the tests/DCPS/Compiler tests.

• unit_ which runs the unit tests located in tests/unit-tests.

• messenger_ which runs the tests in tests/DCPS/Messenger and tests/DCPS/C++11/Messenger.

To shorten the runtime of the continuous integration, some other builds will not run the test suite.

All builds with safety profile disabled and ownership profile enabled, will run the tests/cmake tests. Test runs which
only contain CMake tests are prefixed by cmake_.

2.4. GitHub Actions Summary and FAQ 23

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/.github/workflows/build_and_test.yml
https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tests/DCPS/Compiler
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tests/unit-tests
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tests/DCPS/Messenger
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tests/DCPS/C++11/Messenger
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/tests/cmake

OpenDDS, Release 3.20.0

.lst Files

.lst files contain a list of tests with configuration options that will turn tests on or off. The test_ jobs pass in
tests/dcps_tests.lst. Static and Release builds instead use tests/static_ci_tests.lst. The Thread Sanatizer build uses
tests/tsan_tests.lst. This separation of .lst files is due to how excluding all but a few tests in the dcps_tests.lst
would require adding a new config option to every test we didn’t want to run. There is a separate security test
list, tests/security/security_tests.lst, which governs the security tests which are run when --security is passed to
auto_run_tests.pl. The last list file used by build_and_test.yml is tools/modeling/tests/modeling_tests.lst,
which is included by passing --modeling to auto_run_tests.pl.

To disable a test in GitHub Actions, !GH_ACTIONS must be added next to the test in the .lst file. There are similar test
blockers which only block for specific GitHub Actions configurations from running marked tests:

• !GH_ACTIONS_OPENDDS_SAFETY_PROFILE blocks Safety Profile builds

• !GH_ACTIONS_M10 blocks the MacOS10 runners

• !GH_ACTIONS_ASAN blocks the Address Sanitizer builds

• !GH_ACTIONS_W22 blocks the Windows Server 2022 runner

These blocks are necessary because certain tests cannot properly run on GitHub Actions due to how the runners are
configured. -Config GH_ACTIONS is assumed by auto_run_tests.pl when running on GitHub Actions, but the
other test configurations must be passed using -Config.

See also:

Running Tests For how auto_run_tests.pl and the lst files work in general.

Workflow Checks

The .github/workflows/lint.yml workflow runs .github/workflows/lint_build_and_test.pl, which checks that the
.github/workflows/build_and_test.yml workflow has gcc-problem-matcher and msvc-problem-matcher in the correct
places.

Running this script requires the YAML CPAN module. As a safety measure, it has some picky rules about how steps
are named and ordered. In simplified terms, these rules include:

• If used, the problem matcher must be appropriate for the platform the job is running on.

• The problem matcher must not be declared before steps that are named “setup gtest” or named like “build
ACE/TAO”. This should reduce any warnings from Google Test or ACE/TAO.

• A problem matcher should be declared before steps that start with “build” or contain “make”. These steps should
also contain cmake --build, make, or msbuild in their run string.

Blocked Tests

Certain tests are blocked from GitHub actions because their failures are either unfixable, or are not represented on the
scoreboard. If this is the case, we have to assume that the failure is due to some sort of limitation caused by the GitHub
Actions runners.

24 Chapter 2. Internal Documentation

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/dcps_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/static_ci_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/tsan_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/security/security_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tools/modeling/tests/modeling_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/.github/workflows/lint.yml
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/.github/workflows/lint_build_and_test.pl
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/.github/workflows/build_and_test.yml
https://github.com/ammaraskar/gcc-problem-matcher
https://github.com/ammaraskar/msvc-problem-matcher
https://metacpan.org/pod/YAML

OpenDDS, Release 3.20.0

Only Failing on CI

• tests/DCPS/SharedTransport/run_test.pl multicast

– Multicast times out waiting for remote peer. Fails on test_u20_p1_j8_FM-1f and test_u20_p1_sec.

• tests/DCPS/StringKey/run_test.pl

– A timeout occurs during the writer writing. Fails on test_u18_bsafe_js0_FM-1f.

• tests/DCPS/Thrasher/run_test.pl high/aggressive/medium XXXX XXXX

– The more intense thrasher tests cause consistent failures due to the increased load from ASAN. GitHub
Actions fails these tests very consistently compared to the scoreboard which is more intermittent. Fails on
test_u20_p1_asan_sec.

• tests/stress-tests/dds/DCPS/run_test.pl

– This test fails due to only getting 17 of the expected >=19 total_count. Fails on
test_m10_i0_j_FM-1f and test_m10_o1d0_sec.

• tests/DCPS/StaticDiscoveryReconnect/run_test.pl

– This test fails due to <StaticDiscoveryTest> failed: No such file or directory. Fails on
test_m10_i0_j_FM-1f and test_m10_o1d0_sec.

Failing Both CI and scoreboard

These tests fail on the CI as well as the scoreboard, but will remain blocked on the CI until fixed. Each test has a list of
the builds it was failing on before being blocked.

• tests/DCPS/BuiltInTopicTest/run_test.pl

– test_u18_esafe_js0

• tests/DCPS/CompatibilityTest/run_test.pl rtps_disc

– test_m10_o1d0_sec

• tests/DCPS/Federation/run_test.pl

– test_u18_w1_sec

– test_u18_j_cft0_FM-37

– test_u18_w1_j_FM-2f

– test_u20_ace7_j_qt_ws_sec

– test_u20_p1_asan_sec

– test_u20_p1_asan_sec

• tests/DCPS/MultiDPTest/run_test.pl

– test_u18_bsafe_js0_FM-1f

– test_u18_esafe_js0

• tests/DCPS/NotifyTest/run_test.pl

– test_u18_esafe_js0

• tests/DCPS/Reconnect/run_test.pl restart_pub

– test_w22_x86_i0_sec

2.4. GitHub Actions Summary and FAQ 25

OpenDDS, Release 3.20.0

• tests/DCPS/Reconnect/run_test.pl restart_sub

– test_w22_x86_i0_sec

• tests/DCPS/TimeBasedFilter/run_test.pl -reliable

– test_u18_bsafe_js0_FM-1f

– test_u18_esafe_js0

Test Results

The tests are run using autobuild which creates a number of output files that are turned into a GitHub artifact. This
artifact is processed by the “check results” step which uses the script tools/scripts/autobuild_brief_html_to_text.pl to
catch failures and print them in an organized manner. Due to this being a part of the “test” jobs, the results of each run
will appear as soon as the job is finished.

Artifacts

Artifacts from the continuous integration run can be downloaded by clicking details on one of the Build & Test runs.
Once all jobs are completed, a dropdown will appear on the bar next to “Re-run jobs”, called “Artifacts” which lists
each artifact that can be downloaded.

Alternatively, clicking the “Summary” button at the top of the list of jobs will list all the available artifacts at the bottom
of the page.

Using Artifacts to Replicate Builds

You can download the ACE_TAO_ and build_ artifacts then use them for a local build, so long as your operating system
is the same as the one on the runner.

1. git clone the ACE_TAO branch which is targeted by the build. This is usually going to be ace6tao2.

2. git clone --recursive the OpenDDS branch on which the CI was run.

3. Merge OpenDDS master into your cloned branch.

4. run tar xvfJ from inside the cloned ACE_TAO, targeting the ACE_TAO_*.tar.xz file.

5. run tar xvfJ from inside the cloned OpenDDS, targeting the build_*.tar.xz file.

6. Adjust the setenv.sh located inside OpenDDS to match the new locations for your ACE_TAO, and OpenDDS.
The word “runner” should not appear within the setenv.sh once you are finished.

You should now have a working duplicate of the build that was run on GitHub Actions. This can be used for debugging
as a way to quickly set up a problematic build.

Using Artifacts to View More Test Information

Tests failures which are recorded on GitHub only contain a brief capture of output surrounding a failure. This is useful
for some tests, but it can often be helpful to view more of a test run. This can be done by downloading the artifact for
a test step you are viewing. This test step artifact contains a number of files including output.log_Full.html. This
is the full log of all output from all test runs done for the corresponding job. It should be opened in either a text editor
or Firefox, as Chrome will have issues due to the length of the file.

26 Chapter 2. Internal Documentation

https://github.com/DOCGroup/autobuild
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tools/scripts/autobuild_brief_html_to_text.pl

OpenDDS, Release 3.20.0

Caching

The OpenDDS workflows create .tar.xz archives of certain build artifacts which can then be up uploaded and shared
between jobs (and the user) as part of GitHub Actions’ “artifact” API. A cache key comparison made using the relevant
git commit SHA will determine whether to rebuild the artifact, or to use the cached artifact.

2.5 Running Tests

2.5.1 Main Test Suite

Building

Tests are not built by default, --tests must be passed to the configure script. This will build all the tests. There are
a few ways to only have specific tests built:

• If using Make, specify the targets instead of leaving it default to the all target.

• Run MPC on the test directory and build separately. Make sure to also build the test’s dependencies.

• Create a custom workspace with the tests and pass it to the configure script using the --workspace option.
Also make sure to include the test’s dependencies.

Running

Note: Make sure ACE_ROOT and DDS_ROOT are set, which can be done by running source setenv.sh on Linux and
macOS or call setenv.cmd on Windows.

OpenDDS’ main suite of tests is ran by the tests/auto_run_tests.pl Perl script that reads lists of tests from files and
selectively runs based on how the script has been configured.

For Unixes (Linux, macOS, BSDs, etc)

Run this in DDS_ROOT:

./bin/auto_run_tests.pl

For Windows

Run this in DDS_ROOT:

bin\auto_run_tests.pl

If OpenDDS was built in Release mode add -ExeSubDir Release. If it was built as static libraries add -ExeSubDir
Static_Debug or -ExeSubDir Static_Release.

2.5. Running Tests 27

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/auto_run_tests.pl

OpenDDS, Release 3.20.0

Manual Configuration

Manual configuration is done by passing -Config, -Exclude, and test list files arguments to the script.

To manually configure what tests to run:

• See the --list-all-configs or --show-all-configs options to see the existing configurations used by all
test list files.

• See the --list-configs or --show-configs options to see the existing configurations used by specific test
list files.

• See the test list files for the tests themselves:

– tests/dcps_tests.lst

∗ This is included by default. Use --no-dcps to exclude this list.

∗ If --no-auto-config was passed, then --dcps will have to be passed to include this.

– tests/security/security_tests.lst

∗ Use --security to include this list.

– java/tests/dcps_java_tests.lst

∗ Use --java to include this list.

– tools/modeling/tests/modeling_tests.lst

∗ Use --modeling to include this list.

• In a test list file each of the-space delimited words after the colon determines when the test is ran.

• Passing -Config RTPS will run tests that have RTPS and leave out tests with !RTPS.

• Passing -Exclude RTPS will exclude all tests that have RTPS in the entry. This option matches using RegEx, so
a test with SUPER_DUPER_RTPS will also be excluded. It also ignores inverse entries, so it will not exclude a test
with !SUPER_DUPER_RTPS.

• There are -Config options that are added automatically if --no-auto-config wasn’t passed:

– -Config RTPS

– -Config GH_ACTIONS if running on GitHub Actions

– These are based on the OS auto_run_tests.pl is running under:

∗ -Config Win32

∗ -Config macOS

∗ -Config Linux

• Assuming they were built, CMake tests are ran if --cmake is passed. This uses CTest, which is a system that is
separate from the one previously described.

• See --help for all the available options.

28 Chapter 2. Internal Documentation

https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/dcps_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tests/security/security_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/java/tests/dcps_java_tests.lst
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/tools/modeling/tests/modeling_tests.lst

OpenDDS, Release 3.20.0

2.6 Bench 2 Performance & Scalability Test Framework

2.6.1 Motivation

The Bench 2 framework grew out of a desire to be able to test the performance and scalability of OpenDDS in large and
heterogeneous deployments, along with the ability to quickly develop and deploy new test scenarios across a potentially-
unspecified number of machines.

2.6.2 Overview

The resulting design of the Bench 2 framework depends on three primary test applications: worker processes, one or
more node controllers, and a test controller.

Fig. 2.1: Bench 2 Overview

Worker

The worker application, true to its name, performs most of the work associated with any given test scenario. It creates
and exercises the DDS entities specified in its configuration file and gathers performance statistics related to discov-
ery, data integrity, and performance. The worker’s configuration file contains regions that may be used to represent
OpenDDS’s configuration sections as well as individual DDS entities and the QoS policies to be for their creation.
In addition, the worker configuration contains test timing values and descriptions of test actions to be taken (e.g.
publishing and forwarding data read from subscriptions). Upon test completion, the worker can write out a report file
containing the performance statistics gathered during its run.

2.6. Bench 2 Performance & Scalability Test Framework 29

OpenDDS, Release 3.20.0

Node Controller

Each machine in the test environment will run (at least) one node_controller application which acts as a daemon
and, upon request from a test_controller, will spawn one or more worker processes. Each request will contain
the configuration to use for the spawned workers and, upon successful exit, the workers’ report files will be read and
sent back to the test_controller which requested it. Failed workers processes (aborts, crashes) will be noted and
have their output logs sent back to the requesting test_controller. In addition to collecting worker reports, the
node controller also gathers general system resource statistics during test execution (CPU and memory utilization) to
be returned to the test controller at the end of the test.

Test Controller

Each execution of the test framework will use a test_controller to read in a scenario configuration file (an anno-
tated collection of worker configuration file names) before listening for available node_controller’s and parceling
out the scenario’s worker configurations to the individual node_controller’s. The test_controller may also
optionally adjust certain worker configuration values for the sake of the test (assigning a unique DDS partition to avoid
collisions, coordinating worker test times, etc.). After sending the allocated scenario to each of the available node
controllers, the test controller waits to receive reports from each of the node controllers. After receiving all the reports,
the test_controller coalesces the performance statistics from each of the workers and presents the final results to
the user (both on screen & in a results file).

2.6.3 Building Bench 2

Required Features

The primary requirements for building OpenDDS such that Bench 2 also gets built:

• C++11 Support (--std=c++11)

• RapidJSON present and enabled (--rapidjson)

• Tests are being built (--tests)

Required Targets

If these elements are present, you can either build the entire test suite (slow) or use these 3 targets (faster), which also
cover all the required libraries:

• Bench_Worker

• node_controller

• test_controller

2.6.4 Running Bench 2

Environment Variables

To run Bench 2 executables with dynamically linked or shared libraries, you’ll want to make sure the Bench 2 libraries
are in your library path.

30 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

Linux/Unix

Add ${DDS_ROOT}/performance-tests/bench/lib to your LD_LIBRARY_PATH

Windows

Add %DDS_ROOT%\performance-tests\bench\lib to your PATH

Assuming DDS_ROOT is already set on your system (from the configure script or from sourcing setenv.sh), there
are convenience scripts to do this for you in the performance-tests/bench directory (set_bench_env[.sh/.cmd])

Running a Bench 2 CI Test

In the event that you’re debugging a failing Bench 2 CI test, you can use performance-tests/bench/run_test.pl to execute
the full scenario without first setting the environment as listed above. This is because the perl script sets it automatically
before launching a single node_controller in the background and executing the test controller with the requested
scenario. The perl script can be inspected in order to determine which scenarios have been made available in this way.
It can be modified to easily run other scenarios against a single node controller with relative ease.

Running Scenarios Manually

Assuming you already have scenario and worker configuration files defined, the general approach to running a scenario
is to start one or more node_controllers (across one or more hosts) and then execute the test_controller with the
desired scenario configuration.

2.6.5 Configuration Files

As a rule, Bench 2 uses JSON configuration files that directly map onto the C++ Platform Specific Model (PSM) of the
IDL found in performance-tests/bench/idl and the IDL used in the DDS specification. This allows the test applications
to easily convert between configuration files and C++ structures useful for the configuration of DDS entities.

Scenario Configuration Files

Scenario configuration files are used by the test controller to determine the number and type (configuration) of worker
processes required for a particular test scenario. In addition, the scenario file may specify certain sets of workers to be
run on the same node by placing them together in a node “prototype” (see below).

IDL Definition

struct WorkerPrototype {
// Filename of the JSON Serialized Bench::WorkerConfig
string config;
// Number of workers to spawn using this prototype (Must be >=1)
unsigned long count;

};

typedef sequence<WorkerPrototype> WorkerPrototypes;

(continues on next page)

2.6. Bench 2 Performance & Scalability Test Framework 31

https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/performance-tests/bench
https://github.com/objectcomputing/OpenDDS/blob/DDS-3.20/performance-tests/bench/run_test.pl
https://github.com/objectcomputing/OpenDDS/tree/DDS-3.20/performance-tests/bench/idl
https://www.omg.org/spec/DDS/About-DDS/

OpenDDS, Release 3.20.0

(continued from previous page)

struct NodePrototype {
// Assign to a node controller with a name that matches this wildcard
string name_wildcard;
WorkerPrototypes workers;
// Number of Nodes to spawn using this prototype (Must be >=1)
unsigned long count;
// This NodePrototype must have a Node to itself
boolean exclusive;

};

typedef sequence<NodePrototype> NodePrototypes;

// This is the root type of the scenario configuration file
struct ScenarioPrototype {
string name;
string desc;
// Workers that must be deployed in sets
NodePrototypes nodes;
// Workers that can be assigned to any node
WorkerPrototypes any_node;
/*
* Number of seconds to wait for the scenario to end.
* 0 means never timeout.
*/
unsigned long timeout;

};

Annotated Example

{
"name": "An Example",
"desc": "This shows the structure of the scenario configuration",
"nodes": [
{
"name_wildcard": "example_nc_*",
"workers": [
{
"config": "daemon.json",
"count": 1

},
{
"config": "spawn.json",
"count": 1

}
],
"count": 2,
"exclusive": false

}
],
"any_node": [

(continues on next page)

32 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

(continued from previous page)

{
"config": "master.json",
"count": 1

}
],
"timeout": 120

}

This scenario configuration will launch 5 worker processes. It will launch 2 pairs of “daemon” / “spawn” processes, with
each member of each pair being kept together on the same node (i.e. same node_controller). The pairs themselves
may be split across nodes, but each “daemon” will be with at least one “spawn” and vice-versa. They may also wind
up all together on the same node, depending on the number of available nodes. And finally, one “master” process will
be started wherever there is room available.

The “name_wildcard” field is used to filter the node_controller instances that can be used to host the nodes in
the current node config - only the node_controller instances with names matching the wildcard can be used. If
the “name_wildcard” is omitted or its value is empty, any node_controller can be used. If node “prototypes” are
marked exclusive, the test controller will attempt to allocate them exclusively to their own node controllers. If not
enough node controllers exist to honor all the exclusive nodes, the test controller will fail with an error message.

Worker Configuration Files

QoS Masking

In a typical DDS application, default QoS objects are often supplied by the entity factory so that the application devel-
oper can make required changes locally and not impact larger system configuration choices. As such, the QoS objects
found within the JSON configuration file should be treated as a “delta” from the default configuration object of a parent
factory class. So while the JSON “qos” element names will directly match the relevant IDL element names, there will
also be an additional “qos_mask” element that lives alongside the “qos” element in order to specify which elements
apply. For each QoS attribute “attribute” within the “qos” object, there will also be a boolean “has_attribute” within
the “qos_mask” which informs the builder library that this attribute should indeed be applied against the default QoS
object supplied by the parent factory class before the entity is created.

IDL Definition

struct TimeStamp {
long sec;
unsigned long nsec;

};

typedef sequence<string> StringSeq;
typedef sequence<double> DoubleSeq;

enum PropertyValueKind { PVK_TIME, PVK_STRING, PVK_STRING_SEQ, PVK_STRING_SEQ_SEQ, PVK_
→˓DOUBLE, PVK_DOUBLE_SEQ, PVK_ULL };
union PropertyValue switch (PropertyValueKind) {
case PVK_TIME:
TimeStamp time_prop;

case PVK_STRING:
string string_prop;

case PVK_STRING_SEQ:
StringSeq string_seq_prop;

(continues on next page)

2.6. Bench 2 Performance & Scalability Test Framework 33

OpenDDS, Release 3.20.0

(continued from previous page)

case PVK_STRING_SEQ_SEQ:
StringSeqSeq string_seq_seq_prop;

case PVK_DOUBLE:
double double_prop;

case PVK_DOUBLE_SEQ:
DoubleSeq double_seq_prop;

case PVK_ULL:
unsigned long long ull_prop;

};

struct Property {
string name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

struct ConfigProperty {
string name;
string value;

};
typedef sequence<ConfigProperty> ConfigPropertySeq;

// ConfigSection

struct ConfigSection {
string name;
ConfigPropertySeq properties;

};
typedef sequence<ConfigSection> ConfigSectionSeq;

// Writer

struct DataWriterConfig {
string name;
string topic_name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::DataWriterQos qos;
DataWriterQosMask qos_mask;

};
typedef sequence<DataWriterConfig> DataWriterConfigSeq;

// Reader

struct DataReaderConfig {
string name;
string topic_name;
string listener_type_name;
unsigned long listener_status_mask;
PropertySeq listener_properties;
string transport_config_name;

(continues on next page)

34 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

(continued from previous page)

DDS::DataReaderQos qos;
DataReaderQosMask qos_mask;
StringSeq tags;

};
typedef sequence<DataReaderConfig> DataReaderConfigSeq;

// Publisher

struct PublisherConfig {
string name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::PublisherQos qos;
PublisherQosMask qos_mask;
DataWriterConfigSeq datawriters;

};
typedef sequence<PublisherConfig> PublisherConfigSeq;

// Subscription

struct SubscriberConfig {
string name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::SubscriberQos qos;
SubscriberQosMask qos_mask;
DataReaderConfigSeq datareaders;

};
typedef sequence<SubscriberConfig> SubscriberConfigSeq;

// Topic

struct ContentFilteredTopic {
string cft_name;
string cft_expression;
DDS::StringSeq cft_parameters;

};

typedef sequence<ContentFilteredTopic> ContentFilteredTopicSeq;

struct TopicConfig {
string name;
string type_name;
DDS::TopicQos qos;
TopicQosMask qos_mask;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
ContentFilteredTopicSeq content_filtered_topics;

};

(continues on next page)

2.6. Bench 2 Performance & Scalability Test Framework 35

OpenDDS, Release 3.20.0

(continued from previous page)

typedef sequence<TopicConfig> TopicConfigSeq;

// Participant

struct ParticipantConfig {
string name;
unsigned short domain;
DDS::DomainParticipantQos qos;
DomainParticipantQosMask qos_mask;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
StringSeq type_names;
TopicConfigSeq topics;
PublisherConfigSeq publishers;
SubscriberConfigSeq subscribers;

};
typedef sequence<ParticipantConfig> ParticipantConfigSeq;

// TransportInstance

struct TransportInstanceConfig {
string name;
string type;
unsigned short domain;

};
typedef sequence<TransportInstanceConfig> TransportInstanceConfigSeq;

// Discovery

struct DiscoveryConfig {
string name;
string type; // "rtps" or "repo"
string ior; // "repo" URI (e.g. "file://repo.ior")
unsigned short domain;

};
typedef sequence<DiscoveryConfig> DiscoveryConfigSeq;

// Process

struct ProcessConfig {
ConfigSectionSeq config_sections;
DiscoveryConfigSeq discoveries;
TransportInstanceConfigSeq instances;
ParticipantConfigSeq participants;

};

// Worker

// This is the root structure of the worker configuration
// For the sake of readability, module names have been omitted
// All structures other than this one belong to the Builder module

(continues on next page)

36 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

(continued from previous page)

struct WorkerConfig {
TimeStamp create_time;
TimeStamp enable_time;
TimeStamp start_time;
TimeStamp stop_time;
TimeStamp destruction_time;
PropertySeq properties;
ProcessConfig process;
ActionConfigSeq actions;
ActionReportSeq action_reports;

};

Annotated Example

{
"create_time": { "sec": -1, "nsec": 0 },

Since the timestamp is negative, this treats the time as relative and waits one second.

"enable_time": { "sec": -1, "nsec": 0 },
"start_time": { "sec": 0, "nsec": 0 },

Since the time is zero and thus neither absolute nor relative, this treats the time as indefinite and waits for keyboard
input from the user.

"stop_time": { "sec": -10, "nsec": 0 },

Again, a relative timestamp. This time, it waits for 10 seconds for the test actions to run before stopping the test.

"destruction_time": { "sec": -1, "nsec": 0 },

"process": {

This is the primary section where all the DDS entities are described, along with configuration of OpenDDS.

"config_sections": [

The elements of this section are functionally identical to the sections of an OpenDDS .ini file with the same name.
Each config section is created programmatically within the worker process using the name provided and made avail-
able to the OpenDDS ServiceParticipant during entity creation. The example here sets the value of both the
DCPSSecurity and DCPSDebugLevel keys to 0 within the [common] section of the configuration.

{ "name": "common",
"properties": [
{ "name": "DCPSSecurity",
"value": "0"

},
{ "name": "DCPSDebugLevel",
"value": "0"

}
]

(continues on next page)

2.6. Bench 2 Performance & Scalability Test Framework 37

OpenDDS, Release 3.20.0

(continued from previous page)

}
],
"discoveries": [

Even if there is no configuration section for it (see above), this allows us to create unique discovery instances per
domain. If both are specified, this will find and use / modify the one specified in the configuration section above. Valid
types are "rtps" and "repo" (requires additional "ior" element with valid URL)

{ "name": "bench_test_rtps",
"type": "rtps",
"domain": 7

}
],
"instances": [

Even if there is no configuration section for it (see above), this allows us to create unique transport instances. If both are
specified, this will find and use / modify the one specified in the configuration section above. Valid types are rtps_udp,
tcp, udp, ip_multicast, shmem.

{ "name": "rtps_instance_01",
"type": "rtps_udp",
"domain": 7

}
],
"participants": [

The list of participants to create.

{ "name": "participant_01",
"domain": 7,
"transport_config_name": "rtps_instance_01",

The transport config that gets bound to this participant

"qos": { "entity_factory": { "autoenable_created_entities": false } },
"qos_mask": { "entity_factory": { "has_autoenable_created_entities": false } },

An example of QoS masking. Note that in this example, the boolean flag is false, so the QoS
mask is not actually applied. In this case, both lines here were added to make switching back and
forth between autoenable_created_entities easier (simply change the value of the bottom element
"has_autoenable_created_entities" to "true").

"topics": [

List of topics to register for this participant

{ "name": "topic_01",
"type_name": "Bench::Data"

Note the type name. "Bench::Data" is currently the only topic type supported by the Bench 2 framework. That said,
it contains a variably sized array of octets, allowing a configurable range of data payload sizes (see write_action below).

38 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

"content_filtered_topics": [
{
"cft_name": "cft_1",
"cft_expression": "filter_class > %0",
"cft_parameters": ["2"]

}
]

List of content filtered topics. Note "cft_name". Its value can be used in DataReader "topic_name" to use the
content filter.

}
],
"subscribers": [

List of subscribers

{ "name": "subscriber_01",
"datareaders": [

List of DataReaders

{ "name": "datareader_01",
"topic_name": "topic_01",
"listener_type_name": "bench_drl",
"listener_status_mask": 4294967295,

Note the listener type and status mask. "bench_drl" is a listener type registered by the Bench Worker application that
does most of the heavy lifting in terms of stats calculation and reporting. The mask is a fully-enabled bitmask for all
listener events (i.e. 2^32 - 1).

"qos": { "reliability": { "kind": "RELIABLE_RELIABILITY_QOS" } },
"qos_mask": { "reliability": { "has_kind": true } },

DataReaders default to best effort QoS, so here we are setting the reader to reliable QoS and flagging the qos_mask
appropriately in order to get a reliable datareader.

"tags": ["my_topic", "reliable_transport"]

The config can specify a list of tags associated with each data reader. The statistics for each tag is computed in addition
to the overall statistics and can be printed out at the end of the run by the test_controller.

}
]

}
],
"publishers": [

List of publishers within this participant

{ "name": "publisher_01",
"datawriters": [

List of DataWriters within this publisher

2.6. Bench 2 Performance & Scalability Test Framework 39

OpenDDS, Release 3.20.0

{ "name": "datawriter_01",

Note that each DDS entity is given a process-entity-unique name, which can be used below to locate / identify this
entity.

"topic_name": "topic_01",
"listener_type_name": "bench_dwl",
"listener_status_mask": 4294967295

}
]

}
]

}
]

},
"actions": [

A list of worker ‘actions’ to start once the test ‘start’ period begins.

{
"name": "write_action_01",
"type": "write",

Current valid types are "write", "forward", and "set_cft_parameters".

"writers": ["datawriter_01"],

Note the datawriter name defined above is passed into the action’s writer list. This is used to locate the writer within
the process.

"params": [
{ "name": "data_buffer_bytes",

The size of the octet array within the Bench::Data message. Note, actual messages will be slightly larger than this
value.

"value": { "$discriminator": "PVK_ULL", "ull_prop": 512 }
},
{ "name": "write_frequency",

The frequency with which the write action attempts to write a message. In this case, twice a second.

"value": { "$discriminator": "PVK_DOUBLE", "double_prop": 2.0 }
},

{ "name": "filter_class_start_value",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

},
{ "name": "filter_class_stop_value",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

},
{ "name": "filter_class_increment",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

}

40 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

Value range and increment for "filter_class" data variable, used when writing data. This variable is an unsigned
integer intended to be used for content filtered topics “set_cft_parameters” actions.

]
},

{ "name": "cft_action_01",
"type": "set_cft_parameters",
"params": [
{ "name": "content_filtered_topic_name",
"value": { "$discriminator": "PVK_STRING", "string_prop": "cft_1" }

},
{ "name": "max_count",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 3 }

},

Maximum count of “Set” actions to be taken.

{ "name": "param_count",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 1 }

},

Number of parameters to be set

{ "name": "set_frequency",
"value": { "$discriminator": "PVK_DOUBLE", "double_prop": 2.0 }

},

The frequency for set action, per second

{ "name": "acceptable_param_values",
"value": { "$discriminator": "PVK_STRING_SEQ_SEQ", "string_seq_seq_prop": [["1", "2",

→˓"3"]] }
},

Lists of allowed values to set to, for each parameter. Worker will iterate thought the list sequentially unless
"random_order" flag (below) is specified

{ "name": "random_order",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 1 }

}
]

}

]
}

2.6. Bench 2 Performance & Scalability Test Framework 41

OpenDDS, Release 3.20.0

2.6.6 Detailed Application Descriptions

test_controller

As mentioned above, the test_controller application is the application responsible for running test scenarios and, as
such, will probably wind up being the application most frequently run directly by testers. The test_controller needs
network visibility to at least one node_controller configured to run on the same domain. It expects, as arguments,
the path to a directory containing config files (both scenario & worker) and the name of a scenario configuration file
to run (without the .json extension). For historical reasons, the config directory is often simply called example.
The test_controller application also supports a number of optional configuration parameters, some of which are
described in the section below.

Usage

test_controller CONFIG_PATH SCENARIO_NAME [OPTIONS]

test_controller --help|-h

This is a subset of the options. Use --help option to see all the options.

CONFIG_PATH
Path to the directory of the test configurations and artifacts

SCENARIO_NAME
Name of the scenario file in the test context without the .json extension.

--domain N
The DDS Domain to use. The default is 89.

--wait-for-nodes N
The number of seconds to wait for nodes before broadcasting the scenario to them. The default is 10 seconds.

--timeout N
The number of seconds to wait for a scenario to complete. Overrides the value defined in the scenario. If N is 0,
there is no timeout.

--override-create-time N
Overwrite individual worker configs to create their DDS entities N seconds from now (absolute time reference)

--override-start-time N
Overwrite individual worker configs to start their test actions (writes & forwards) N seconds from now (absolute
time reference)

--tag TAG
Specify a tag for which the performance statistics will be printed out (and saved to a results file). Multiple
instances of this option can be specified, each for a single tag.

--json-result-id ID
Specify a name to store the raw JSON report under. By default, this not enabled. These results will contain the
full raw Bench::TestController report, including all node controller and worker reports (and DDS entity
reports)

42 Chapter 2. Internal Documentation

OpenDDS, Release 3.20.0

node_controller

The node controller application is best thought of as a daemon, though the application can be run both in a long-
running daemon mode and also a one-shot mode more appropriate for testing. The daemon-exit-on-error mode
additionally has the ability to exit the process every time an error is encountered, which is useful for restarting the
application when errors are detected, if run as a part of an OS system environment (systemd, supervisord, etc).

Usage

node_controller [OPTIONS] one-shot|daemon|daemon-exit-on-error

one-shot
Run a single batch of worker requests (configs > processes > reports) and report the results before exiting. Useful
for one-off and local testing.

daemon
Act as a long-running process that continually runs batches of worker requests, reporting the results. Attempts
to recover from errors.

daemon-exit-on-error
Act as a long-running process that continually runs batches of worker requests, reporting the results. Does not
attempt to recover from errors.

--domain N
The DDS Domain to use. The default is 89.

--name STRING
Human friendly name for the node. Will be used by the test controller for referring to the node. During allocation
of node controllers, the name is used to match against the “name_wildcard” fields of the node configs. Only node
controllers whose names match the “name_wildcard” of a given node config can be allocated to that node config.
Multiple nodes could have the same name.

worker

The worker application is meant to mimic the behavior of a single arbitrary OpenDDS test application. It uses the Bench
builder library along with its JSON configuration file to first configure OpenDDS (including discovery & transports)
and then create all required DDS entities using any desired DDS QoS attributes. Additionally, it allows the user to
configure several test phase timing parameters, using either absolute or relative times:

• DDS entity creation (create_time)

• DDS entity “enabling” (enable_time) (only relevant if autoenable_created_entitiesQoS setting is false)

• test actions start time (start_time)

• test actions stop time (stop_time)

• DDS entity destruction (destruction_time)

Finally, it also allows for the configuration and execution of test “actions” which take place between the “start” and
“stop” times indicated in configuration.These may make use of the created DDS entities in order to simulate application
behavior. At the time of this writing, the three actions are “write”, which will write to a datawriter using data of
a configurable size and frequency (and maximum count), “forward”, which will pass along the data read from one
datareader to a datawriter, allowing for more complex test behaviors (including round-trip latency & jitter calculations),
and "set_cft_parameters", which will change the content filtered topic parameter values dynamically. In addition
to reading a JSON configuration file, the worker is capable of writing a JSON report file that contains various test
statistics gathered from listeners attached to the created DDS entities. This report is read by the node_controller
after the worker process ends and is then sent back to the waiting test_controller.

2.6. Bench 2 Performance & Scalability Test Framework 43

OpenDDS, Release 3.20.0

Usage

worker [OPTIONS] CONFIG_FILE

--log LOG_FILE
The log file path. Will log to stdout if not passed.

--report REPORT_FILE
The report file path.

44 Chapter 2. Internal Documentation

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

45

OpenDDS, Release 3.20.0

46 Chapter 3. Indices and tables

INDEX

Symbols
--domain

node_controller command line option, 43
test_controller command line option, 42

--json-result-id
test_controller command line option, 42

--log
worker command line option, 44

--name
node_controller command line option, 43

--override-create-time
test_controller command line option, 42

--override-start-time
test_controller command line option, 42

--report
worker command line option, 44

--tag
test_controller command line option, 42

--timeout
test_controller command line option, 42

--wait-for-nodes
test_controller command line option, 42

A
ACE_ROOT, 27

C
CONFIG_PATH

test_controller command line option, 42

D
daemon

node_controller command line option, 43
daemon-exit-on-error

node_controller command line option, 43
DDS_ROOT, 27, 31

E
environment variable

ACE_ROOT, 3, 27
DDS_ROOT, 3, 27, 31

TAO_ROOT, 3

N
node_controller command line option

--domain, 43
--name, 43
daemon, 43
daemon-exit-on-error, 43
one-shot, 43

O
one-shot

node_controller command line option, 43

S
SCENARIO_NAME

test_controller command line option, 42

T
test_controller command line option

--domain, 42
--json-result-id, 42
--override-create-time, 42
--override-start-time, 42
--tag, 42
--timeout, 42
--wait-for-nodes, 42
CONFIG_PATH, 42
SCENARIO_NAME, 42

W
worker command line option

--log, 44
--report, 44

47

	Common Terms
	Environment Variables

	Internal Documentation
	OpenDDS Development Guidelines
	Repository
	Automated Build Systems
	Doxygen
	Dependencies
	Text File Formatting
	C++ Standard
	C++ Coding Style
	Example
	Punctuation
	Whitespace
	Language Usage
	Pointers and References
	Naming
	Comments
	Documenting Code for Doxygen
	Preprocessor
	Includes
	Order
	Path
	Example

	Time
	Logging
	ACE Logging
	Usage in OpenDDS
	Logging Conditions and Priority
	Message Content
	Examples

	Documentation Guidelines
	Building
	Requirements
	HTML
	PDF
	Dash
	Strict Checks
	Building Manually

	RST/Sphinx Usage
	GitHub Links
	ghfile
	ghissue
	ghpr

	Unit Tests
	The Goals of Unit Testing
	Unit Test Organization
	Unit Test Scope
	Isolating Dependencies
	Writing a New Unit Test
	Using GTest
	Code Coverage
	Final Word

	GitHub Actions Summary and FAQ
	Overview
	Legend for GitHub Actions Build Names
	Operating System
	Build Configuration
	Build Type
	Build Options
	Feature Mask

	build_and_test.yml Workflow
	Triggering the Build And Test Workflow
	Job Types
	.lst Files
	Workflow Checks
	Blocked Tests
	Only Failing on CI
	Failing Both CI and scoreboard

	Test Results
	Artifacts
	Using Artifacts to Replicate Builds
	Using Artifacts to View More Test Information

	Caching

	Running Tests
	Main Test Suite
	Building
	Running
	For Unixes (Linux, macOS, BSDs, etc)
	For Windows

	Manual Configuration

	Bench 2 Performance & Scalability Test Framework
	Motivation
	Overview
	Worker
	Node Controller
	Test Controller

	Building Bench 2
	Required Features
	Required Targets

	Running Bench 2
	Environment Variables
	Linux/Unix
	Windows

	Running a Bench 2 CI Test
	Running Scenarios Manually

	Configuration Files
	Scenario Configuration Files
	IDL Definition
	Annotated Example

	Worker Configuration Files
	QoS Masking
	Annotated Example

	Detailed Application Descriptions
	test_controller
	Usage

	node_controller
	Usage

	worker
	Usage

	Indices and tables
	Index

