
OpenDDS
Release 3.24.0

OpenDDS Foundation

Apr 11, 2023

CONTENTS

1 Developer’s Guide 3
1.1 Introduction . 3
1.2 Getting Started . 18
1.3 Quality of Service . 35
1.4 Conditions and Listeners . 53
1.5 Content-Subscription Profile . 62
1.6 Built-In Topics . 71
1.7 Run-time Configuration . 75
1.8 opendds_idl . 120
1.9 The DCPS Information Repository . 124
1.10 Java Bindings . 129
1.11 Modeling SDK . 137
1.12 Alternate Interfaces to Data . 150
1.13 Safety Profile . 155
1.14 DDS Security . 157
1.15 Internet-Enabled RTPS . 171
1.16 XTypes . 178
1.17 Common Terms . 197

2 Internal Documentation 199
2.1 OpenDDS Development Guidelines . 199
2.2 Documentation Guidelines . 209
2.3 Unit Tests . 213
2.4 GitHub Actions Summary and FAQ . 216
2.5 Running Tests . 222
2.6 Bench Performance & Scalability Test Framework . 224

3 Indices and tables 241

Index 243

i

ii

OpenDDS, Release 3.24.0

Welcome to the documentation for OpenDDS 3.24.0!

It is available for download on GitHub.

CONTENTS 1

https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.24

OpenDDS, Release 3.24.0

2 CONTENTS

CHAPTER

ONE

DEVELOPER’S GUIDE

1.1 Introduction

1.1.1 What is OpenDDS?

OpenDDS is an open source implementation of a group of related Object Management Group (OMG) specifications.

1. Data Distribution Service (DDS) for Real-Time Systems v1.4 (OMG document formal/2015-04-10). DDS
defines a service for efficiently distributing application data between participants in a distributed application.
This specification details the core functionality implemented by OpenDDS for real-time publish and subscribe
applications and is described throughout this document. Users are encouraged to read the DDS Specification as
it contains in-depth coverage of all the service’s features.

2. The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification (DDSI-
RTPS) v2.3 (OMG document formal/2019-04-03). Although the document number is v2.3, it specifies proto-
col version 2.4. This specification describes the requirements for interoperability between DDS implementations.

3. DDS Security v1.1 (OMG document formal/2018-04-01) extends DDS with capabilities for authentication
and encryption. OpenDDS’s support for the DDS Security specification is described in DDS Security.

4. Extensible and Dynamic Topic Types for DDS (XTypes) v1.3 (OMG document formal/2020-02-04) defines
details of the type system used for the data exchanged on DDS Topics, including how schema and data are encoded
for network transmission. OpenDDS’s support for DDS-XTypes is described in XTypes.

OpenDDS is implemented in C++ and contains support for Java. Users in the OpenDDS community have contributed
and maintain bindings for other languages include C#, nodejs, and Python.

OpenDDS is sponsored by the OpenDDS Foundation and is available via https://opendds.org and https://github.com/
OpenDDS/OpenDDS.

1.1.2 Licensing Terms

OpenDDS is open source software. The source code may be freely downloaded and is open for inspection, review,
comment, and improvement. Copies may be freely installed across all your systems and those of your customers. There
is no charge for development or run-time licenses. The source code is designed to be compiled, and used, across a wide
variety of hardware and operating systems architectures. You may modify it for your own needs, within the terms of the
license agreements. You must not copyright OpenDDS software. For details of the licensing terms, see the file named
LICENSE that is included in the OpenDDS source code distribution or visit https://opendds.org/about/license.html.

OpenDDS also utilizes other open source software products including MPC (Make Project Creator), ACE (the ADAP-
TIVE Communication Environment), and TAO (The ACE ORB).

OpenDDS is open source and the development team welcomes contributions of code, tests, documentation, and ideas.
Active participation by users ensures a robust implementation. Contact the OpenDDS Foundation if you are interested

3

https://opendds.org
https://github.com/OpenDDS/OpenDDS
https://github.com/OpenDDS/OpenDDS
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/LICENSE
https://opendds.org/about/license.html

OpenDDS, Release 3.24.0

in contributing to the development of OpenDDS. Please note that any code or documentation that is contributed to and
becomes part of the OpenDDS open source code base is subject to the same licensing terms as the rest of the OpenDDS
code base.

1.1.3 About This Guide

This Developer’s Guide corresponds to OpenDDS version 3.23. This guide is primarily focused on the specifics of
using and configuring OpenDDS to build distributed publish-subscribe applications. While it does give a general
overview of the OMG Data Distribution Service, this guide is not intended to provide comprehensive coverage of the
specification. The intent of this guide is to help you become proficient with OpenDDS as quickly as possible. Readers
are encouraged to submit corrections to this guide using a GitHub pull request. The source for this guide can be found
at docs/devguide and Documentation Guidelines contains guidance for editing and building it.

1.1.4 Highlights of the 3.23 Release

NOTE: Numbers in parenthesis are GitHub pull requests

Additions:

• DataRepresentationQosPolicy and TypeConsistencyEnforcementQosPolicy can be set through XML (#3763)

• RTPS send queue performance improvements (#3794)

• Cross-compiling improvements (#3853)

• New support for DynamicDataWriter and enhanced support for DynamicDataReader (#3827, #3727, #3871,
#3718, #3830, #3893, #3904, #3885, #3933, #3935)

• New config option for RtpsDiscovery SpdpRequestRandomPort (#3903)

• New opendds_mwc.pl Wrapper Script (#3821, #3913)

• Improve support for loading signed documents (#3864)

Fixes:

• Unauthenticated participant leads to invalid iterator (#3748)

• Shmem Association race (#3549)

• Shmem and tcp null pointer (#3779)

• Submodule checkout on Windows (#3812)

Notes:

• Docker images are built for release tags https://github.com/OpenDDS/OpenDDS/pkgs/container/opendds
(#3776)

ACE/TAO Version Compatibility

OpenDDS 3.23 is compatible with the current DOC Group micro release in the ACE 6.x / TAO 2.x series. See the
README.md file for details.

4 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/docs/devguide
https://github.com/OpenDDS/OpenDDS/pull/3763
https://github.com/OpenDDS/OpenDDS/pull/3794
https://github.com/OpenDDS/OpenDDS/pull/3853
https://github.com/OpenDDS/OpenDDS/pull/3827
https://github.com/OpenDDS/OpenDDS/pull/3727
https://github.com/OpenDDS/OpenDDS/pull/3871
https://github.com/OpenDDS/OpenDDS/pull/3718
https://github.com/OpenDDS/OpenDDS/pull/3830
https://github.com/OpenDDS/OpenDDS/pull/3893
https://github.com/OpenDDS/OpenDDS/pull/3904
https://github.com/OpenDDS/OpenDDS/pull/3885
https://github.com/OpenDDS/OpenDDS/pull/3933
https://github.com/OpenDDS/OpenDDS/pull/3935
https://github.com/OpenDDS/OpenDDS/pull/3903
https://github.com/OpenDDS/OpenDDS/pull/3821
https://github.com/OpenDDS/OpenDDS/pull/3913
https://github.com/OpenDDS/OpenDDS/pull/3864
https://github.com/OpenDDS/OpenDDS/pull/3748
https://github.com/OpenDDS/OpenDDS/pull/3549
https://github.com/OpenDDS/OpenDDS/pull/3779
https://github.com/OpenDDS/OpenDDS/pull/3812
https://github.com/OpenDDS/OpenDDS/pkgs/container/opendds
https://github.com/OpenDDS/OpenDDS/pull/3776
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md

OpenDDS, Release 3.24.0

Conventions

This guide uses the following conventions:

Fixed pitch text Indicates example code or information a user would enter using a keyboard.
Italic text Indicates a point of emphasis.
. . . An ellipsis indicates a section of omitted text.

1.1.5 Examples

The examples in this guide are intended for the learning of the reader and should not be considered to be “production-
ready” code. In particular, error handling is sometimes kept to a minimum to help the reader focus on the particular
feature or technique that is being presented in the example. The source code for all these examples is available as part of
the OpenDDS source code distribution in the DevGuideExamples directory. MPC files are provided with the examples
for generating build-tool specific files, such as GNU Makefiles or Visual C++ project and solution files. To run an
example, execute the run_test.pl Perl script.

1.1.6 Related Documents

This guide refers to various specifications published by the Object Management Group (OMG) and from other sources.

OMG references take the form group/number where group represents the OMG working group responsible for develop-
ing the specification, or the keyword formal if the specification has been formally adopted, and number represents the
year, month, and serial number within the month the specification was released. For example, the OMG DDS version
1.4 specification is referenced as formal/2015-04-10.

OMG specifications can be downloaded directly from the OMG web site by prepending http://www.omg.org/
cgi-bin/doc? to the specification’s reference. Thus, the specification formal/07-01-01 can be downloaded from
http://www.omg.org/cgi-bin/doc?formal/07-01-01. Providing this destination to a web browser should take you to a
site from which you can download the referenced specification document.

Additional documentation for OpenDDS is produced and maintained by the OpenDDS Foundation and is available
from the OpenDDS Website at https://opendds.org.

Here are some documents of interest and their locations:

Document Location
Data Distribution Service (DDS) for Real-Time Systems v1.4 (OMG Document
formal/2015-04-10)

http://www.omg.org/spec/
DDS/1.4/PDF

The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol
Specification (DDSI-RTPS) v2.3 (OMG Document formal/2019-04-03)

https://www.omg.org/
spec/DDSI-RTPS/2.3/
PDF

OMG Data Distribution Portal http://portals.omg.org/
dds/

OpenDDS Build Instructions, Architecture, and Doxygen Documentation https://opendds.org/
documentation.html

OpenDDS Frequently Asked Questions https://opendds.org/faq.
html

1.1. Introduction 5

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/DevGuideExamples
http://www.omg.org/cgi-bin/doc?formal/07-01-01
https://opendds.org
http://www.omg.org/spec/DDS/1.4/PDF
http://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF
http://portals.omg.org/dds/
http://portals.omg.org/dds/
https://opendds.org/documentation.html
https://opendds.org/documentation.html
https://opendds.org/faq.html
https://opendds.org/faq.html

OpenDDS, Release 3.24.0

1.1.7 Supported Platforms

The OpenDDS Foundation regularly builds and tests OpenDDS on a wide variety of platforms, operating systems,
and compilers. The OpenDDS Foundation continually updates OpenDDS to support additional platforms. See the
README.md file in the distribution for the most recent platform support information.

1.1.8 Data-Centric Publish-Subscribe (DCPS) Overview

Data-Centric Publish-Subscribe (DCPS) is the application model defined by the DDS specification. This section de-
scribes the main concepts and entities of the DCPS API and discuss how they interact and work together.

Basic Concepts

Figure 1-1 shows an overview of the DDS DCPS layer. The following subsections define the concepts shown in this
diagram.

Figure DCPS Conceptual Overview

6 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md

OpenDDS, Release 3.24.0

Domain

The domain is the fundamental partitioning unit within DCPS. Each of the other entities belongs to a domain and can
only interact with other entities in that same domain. Application code is free to interact with multiple domains but
must do so via separate entities that belong to the different domains.

DomainParticipant

A domain participant is the entry-point for an application to interact within a particular domain. The domain participant
is a factory for many of the objects involved in writing or reading data.

Topic

The topic is the fundamental means of interaction between publishing and subscribing applications. Each topic has
a unique name within the domain and a specific data type that it publishes. Each topic data type can specify zero or
more fields that make up its key. When publishing data, the publishing process always specifies the topic. Subscribers
request data via the topic. In DCPS terminology you publish individual data samples for different instances on a topic.
Each instance is associated with a unique value for the key. A publishing process publishes multiple data samples on
the same instance by using the same key value for each sample.

DataWriter

The data writer is used by the publishing application code to pass values to the DDS. Each data writer is bound to a
particular topic. The application uses the data writer’s type-specific interface to publish samples on that topic. The
data writer is responsible for marshaling the data and passing it to the publisher for transmission.

Dynamic data writers (Creating and Using a DynamicDataWriter or DynamicDataReader) can be used when code
generated from IDL is not available or desired. Dynamic data writers are also type-safe, but type checking happens at
runtime.

Publisher

The publisher is responsible for taking the published data and disseminating it to all relevant subscribers in the domain.
The exact mechanism employed is left to the service implementation.

Subscriber

The subscriber receives the data from the publisher and passes it to any relevant data readers that are connected to it.

1.1. Introduction 7

OpenDDS, Release 3.24.0

DataReader

The data reader takes data from the subscriber, demarshals it into the appropriate type for that topic, and delivers
the sample to the application. Each data reader is bound to a particular topic. The application uses the data reader’s
type-specific interfaces to receive the samples.

Dynamic data readers (Creating and Using a DynamicDataWriter or DynamicDataReader) can be used when code
generated from IDL is not available or desired. Dynamic data readers are also type-safe, but type checking happens at
runtime.

Built-In Topics

The DDS specification defines a number of topics that are built-in to the DDS implementation. Subscribing to these
built-in topics gives application developers access to the state of the domain being used including which topics are
registered, which data readers and data writers are connected and disconnected, and the QoS settings of the various
entities. While subscribed, the application receives samples indicating changes in the entities within the domain.

The following table shows the built-in topics defined within the DDS specification:

Table Built-in Topics

Topic Name Description
DCPSParticipant Each instance represents a domain participant.
DCPSTopic Each instance represents a normal (not built-in) topic.
DCPSPublication Each instance represents a data writer.
DCPSSubscription Each instance represents a data reader.

Quality of Service Policies

The DDS specification defines a number of Quality of Service (QoS) policies that are used by applications to specify
their QoS requirements to the service. Participants specify what behavior they require from the service and the service
decides how to achieve these behaviors. These policies can be applied to the various DCPS entities (topic, data writer,
data reader, publisher, subscriber, domain participant) although not all policies are valid for all types of entities.

Subscribers and publishers are matched using a request-versus-offered (RxO) model. Subscribers request a set of
policies that are minimally required. Publishers offer a set of QoS policies to potential subscribers. The DDS imple-
mentation then attempts to match the requested policies with the offered policies; if these policies are compatible then
the association is formed.

The QoS policies currently implemented by OpenDDS are discussed in detail in Quality of Service.

Listeners

The DCPS layer defines a callback interface for each entity that allows an application processes to listen for certain
state changes or events pertaining to that entity. For example, a Data Reader Listener is notified when there are data
values available for reading.

8 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Conditions

Conditions and Wait Sets allow an alternative to listeners in detecting events of interest in DDS. The general pattern is

The application creates a specific kind of Condition object, such as a StatusCondition, and attaches it to a
WaitSet.

• The application waits on the WaitSet until one or more conditions become true.

• The application calls operations on the corresponding entity objects to extract the necessary information.

• The DataReader interface also has operations that take a ReadCondition argument.

• QueryCondition objects are provided as part of the implementation of the Content-Subscription Profile. The
QueryCondition interface extends the ReadCondition interface.

1.1.9 OpenDDS Implementation

Compliance

OpenDDS complies with the OMG DDS and the OMG DDSI-RTPS specifications. Details of that compliance follows
here. OpenDDS also implements the OMG DDS Security specification. Details of compliance to that specification are
in DDS Security Implementation Status. Details of XTypes compliance are in Unimplemented Features and Differences
from the specification.

DDS Compliance

Section 2 of the DDS specification defines five compliance points for a DDS implementation:

• Minimum Profile

• Content-Subscription Profile

• Persistence Profile

• Ownership Profile

• Object Model Profile

OpenDDS complies with the entire DDS specification (including all optional profiles). This includes the implementa-
tion of all Quality of Service policies with the following notes:

• RELIABILITY.kind = RELIABLE is supported by the RTPS_UDP transport, the TCP transport, or the IP Mul-
ticast transport (when configured as reliable).

• TRANSPORT_PRIORITY is not implemented as changeable.

Although version 1.5 of the DDS specification is not yet published, OpenDDS incorporates some changes planned for
that version that are required for a robust implementation:

• DDS15-257: The IDL type BuiltinTopicKey_t is a struct containing an array of 16 octets

1.1. Introduction 9

OpenDDS, Release 3.24.0

DDSI-RTPS Compliance

The OpenDDS implementation complies with the requirements of the OMG DDSI-RTPS specification.

OpenDDS RTPS Implementation Notes

The OMG DDSI-RTPS specification (formal/2019-04-03) supplies statements for implementation, but not required for
compliance. The following items should be taken into consideration when utilizing the OpenDDS RTPS functionality
for transport and/or discovery. Section numbers of the DDSI-RTPS specification are supplied with each item for further
reference.

Items not implemented in OpenDDS:

1. Writer-side content filtering (8.7.3)

OpenDDS may still drop samples that aren’t needed (due to content filtering) by any associated readers — this
is done above the transport layer

2. Coherent sets for PRESENTATION QoS (8.7.5)

3. Directed writes (8.7.6)

• OpenDDS will use the Directed Write parameter if it’s present on incoming messages (for example, mes-
sages generated by a different DDS implementation)

4. Property lists (8.7.7)

5. Original writer info for DURABLE data (8.7.8) – this would only be used for transient and persistent durability,
which are not supported by the RTPS specification (8.7.2.2.1)

6. Key Hashes (8.7.9) are not generated, but they are optional

7. nackSuppressionDuration (Table 8.47) and heartbeatSuppressionDuration (Table 8.62).

Note: Items 3 and 4 above are described in the DDSI-RTPS specification. However, they do not have a corresponding
concept in the DDS specification.

IDL Compliance

OMG IDL is used in a few different ways in the OpenDDS code base and downstream applications that use it:

• Files that come with OpenDDS such as dds/DdsDcpsTopic.idl define parts of the API between the middleware
libraries and the application. This is known as the OMG IDL Platform Specific Model (PSM).

• Users of OpenDDS author IDL files in addition to source code files in C++ or Java.

This section only describes the latter use.

The IDL specification (version 4.2) uses the term “building block” to define subsets of the overall IDL grammar that
may be supported by certain tools. OpenDDS supports the following building blocks, with notes/caveats listed below
each:

• Core Data Types

– Support for the “fixed” data type (fixed point decimal) is incomplete.

• Anonymous Types

10 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DdsDcpsTopic.idl

OpenDDS, Release 3.24.0

– There is limited support for anonymous types when they appear as sequence/array instantiations directly as
struct field types. Using an explicitly-named type is recommended.

• Annotations

– See Defining Data Types with IDL and IDL Annotations for details on which built-in annotations are sup-
ported.

– User-defined annotation types are also supported.

• Extended Data Types

– The integer types int8, uint8, int16, uin16, int32 uint32, int64, and uint64 are supported.

– The rest of the building block is not supported.

Extensions to the DDS Specification

Data types, interfaces, and constants in the DDS IDL module (C++ namespace, Java package) correspond directly to
the DDS specification with very few exceptions:

• DDS::SampleInfo contains an extra field starting with opendds_reserved.

• Type-specific DataReaders (including those for Built-in Topics) have additional operations
read_instance_w_condition() and take_instance_w_condition().

Additional extended behavior is provided by various classes and interfaces in the OpenDDS mod-
ule/namespace/package. Those include features like Recorder and Replayer (Alternate Interfaces to Data) and
also:

• OpenDDS::DCPS::TypeSupport adds the unregister_type() operation not found in the DDS spec.

• OpenDDS::DCPS::ALL_STATUS_MASK, NO_STATUS_MASK, and DEFAULT_STATUS_MASK are useful constants
for the DDS::StatusMask type used by DDS::Entity, DDS::StatusCondition, and the various create_*()
operations.

OpenDDS Architecture

This section gives a brief overview of the OpenDDS implementation, its features, and some of its components. The
$DDS_ROOT environment variable should point to the base directory of the OpenDDS distribution. Source code for
OpenDDS can be found under the dds/ directory. Tests can be found under tests/.

Design Philosophy

The OpenDDS implementation and API is based on a fairly strict interpretation of the OMG IDL PSM. In almost all
cases the OMG’s IDL-to-C++ Language Mapping is used to define how the IDL in the DDS specification is mapped
into the C++ APIs that OpenDDS exposes to the client.

The main deviation from the OMG IDL PSM is that local interfaces are used for the entities and various other interfaces.
These are defined as unconstrained (non-local) interfaces in the DDS specification. Defining them as local interfaces
improves performance, reduces memory usage, simplifies the client’s interaction with these interfaces, and makes it
easier for clients to build their own implementations.

1.1. Introduction 11

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/dds/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/

OpenDDS, Release 3.24.0

Extensible Transport Framework (ETF)

OpenDDS uses the IDL interfaces defined by the DDS specification to initialize and control service usage. Data
transmission is accomplished via an OpenDDS-specific transport framework that allows the service to be used with
a variety of transport protocols. This is referred to as pluggable transports and makes the extensibility of OpenDDS
an important part of its architecture. OpenDDS currently supports TCP/IP, UDP/IP, IP multicast, shared-memory, and
RTPS_UDP transport protocols as shown in Figure 1-2. Transports are typically specified via configuration files and
are attached to various entities in the publisher and subscriber processes. See Transport Configuration Options for
details on configuring ETF components.

Figure OpenDDS Extensible Transport Framework

The ETF enables application developers to implement their own customized transports. Implementing a custom trans-
port involves specializing a number of classes defined in the transport framework. The udp transport provides a good
foundation developers may use when creating their own implementation. See the dds/DCPS/transport/udp/ directory
for details.

DDS Discovery

DDS applications must discover one another via some central agent or through some distributed scheme. An important
feature of OpenDDS is that DDS applications can be configured to perform discovery using the DCPSInfoRepo or
RTPS discovery, but utilize a different transport type for data transfer between data writers and data readers. The
OMG DDS specification (formal/2015-04-10) leaves the details of discovery to the implementation. In the case of
interoperability between DDS implementations, the OMG DDSI-RTPS (formal/2014-09-01) specification provides
requirements for a peer-to-peer style of discovery.

OpenDDS provides two options for discovery.

1. Information Repository: a centralized repository style that runs as a separate process allowing publishers and
subscribers to discover one another centrally or

2. RTPS Discovery: a peer-to-peer style of discovery that utilizes the RTPS protocol to advertise availability and
location information.

12 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/dds/DCPS/transport/udp/

OpenDDS, Release 3.24.0

Interoperability with other DDS implementations must utilize the peer-to-peer method, but can be useful in OpenDDS-
only deployments.

Centralized Discovery with DCPSInfoRepo

OpenDDS implements a standalone service called the DCPS Information Repository (DCPSInfoRepo) to achieve the
centralized discovery method. It is implemented as a CORBA server. When a client requests a subscription for a
topic, the DCPS Information Repository locates the topic and notifies any existing publishers of the location of the
new subscriber. The DCPSInfoRepo process needs to be running whenever OpenDDS is being used in a non-RTPS
configuration. An RTPS configuration does not use the DCPSInfoRepo. The DCPSInfoRepo is not involved in data
propagation, its role is limited in scope to OpenDDS applications discovering one another.

Figure : Centralized Discovery with OpenDDS InfoRepo

Application developers are free to run multiple information repositories with each managing their own non-overlapping
sets of DCPS domains.

It is also possible to operate domains with more than a single repository, thus forming a distributed virtual repository.
This is known as Repository Federation. In order for individual repositories to participate in a federation, each one
must specify its own federation identifier value (a 32-bit numeric value) upon start-up. See Repository Federation for
further information about repository federations.

Peer-to-Peer Discovery with RTPS

DDS applications requiring a Peer-to-Peer discovery pattern can be accommodated by OpenDDS capabilities. This
style of discovery is accomplished only through the use of the RTPS protocol as of the current release. This simple
form of discovery is accomplished through simple configuration of DDS application data readers and data writers
running in application processes as shown in Figure 1-4. As each participating process activates the DDSI-RTPS
discovery mechanisms in OpenDDS for their data readers and writers, network endpoints are created with either default
or configured network ports such that DDS participants can begin advertising the availability of their data readers and
data writers. After a period of time, those seeking one another based on criteria will find each other and establish
a connection based on the configured pluggable transport as discussed in Extensible Transport Framework (ETF). A

1.1. Introduction 13

OpenDDS, Release 3.24.0

more detailed description of this flexible configuration approach is discussed in Transport Concepts and RTPS_UDP
Transport Configuration Options.

Figure : Peer-to-peer Discovery with RTPS

The following are additional implementation limits that developers need to take into consideration when developing
and deploying applications that use RTPS discovery:

1. Domain IDs should be between 0 and 231 (inclusive) due to the way UDP ports are assigned to domain IDs. In
each OpenDDS process, up to 120 domain participants are supported in each domain.

2. Topic names and type identifiers are limited to 256 characters.

3. OpenDDS’s native multicast transport does not work with RTPS Discovery due to the way GUIDs are assigned
(a warning will be issued if this is attempted).

For more details in how RTPS discovery occurs, a very good reference to read can be found in Section 8.5 of the Real-
time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification (DDSI-RTPS) v2.2 (OMG
Document formal/2014-09-01).

Threading

OpenDDS creates its own ORB (when one is required) as well as a separate thread upon which to run that ORB.
It also uses its own threads to process incoming and outgoing transport I/O. A separate thread is created to cleanup
resources upon unexpected connection closure. Your application may get called back from these threads via the Listener
mechanism of DCPS.

When publishing a sample via DDS, OpenDDS normally attempts to send the sample to any connected subscribers
using the calling thread. If the send call blocks, then the sample may be queued for sending on a separate service
thread. This behavior depends on the QoS policies described in Quality of Service.

All incoming data in the subscriber is read by a service thread and queued for reading by the application. DataReader
listeners are called from the service thread.

14 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Configuration

OpenDDS includes a file-based configuration framework for configuring both global items such as debug level, memory
allocation, and discovery, as well as transport implementation details for publishers and subscribers. Configuration can
also be achieved directly in code, however, it is recommended that configuration be externalized for ease of maintenance
and reduction in runtime errors. The complete set of configuration options are described in Run-time Configuration.

1.1.10 Installation

The steps on how to build OpenDDS can be found in INSTALL.md.

To build OpenDDS with DDS Security, see Building OpenDDS with Security Enabled.

To avoid compiling OpenDDS code that you will not be using, there are certain features than can be excluded from
being built. The features are discussed below.

Users requiring a small-footprint configuration or compatibility with safety-oriented platforms should consider using
the OpenDDS Safety Profile, which is described in Safety Profile of this guide.

Building With a Feature Enabled or Disabled

Most features are supported by the configure script. The configure script creates config files with the correct
content and then runs MPC. If you are using the configure script, run it with the --help command line option and
look for the feature you wish to enable/disable. If you are not using the configure script, continue reading below for
instructions on running MPC directly.

For the features described below, MPC is used for enabling (the default) a feature or disabling the feature. For a feature
named feature, the following steps are used to disable the feature from the build:

1. Use the command line features argument to MPC:

mwc.pl -type type -features feature=0 DDS.mwc

Or alternatively, add the line feature=0 to the file $ACE_ROOT/bin/MakeProjectCreator/config/
default.features and regenerate the project files using MPC.

2. If you are using the gnuace MPC project type (which is the case if you will be using GNU make as your build
system), add line feature=0 to the file $ACE_ROOT/include/makeinclude/platform_macros.GNU.

To explicitly enable the feature, use feature=1 above.

Note: You can also use the configure script to enable or disable features. To disable the feature, pass --no-feature
to the script, to enable pass --feature. In this case - is used instead of _ in the feature name. For example, to disable
feature content_subscription discussed below, pass --no-content-subscription to the configure script.

1.1. Introduction 15

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/INSTALL.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/configure

OpenDDS, Release 3.24.0

Disabling the Building of Built-In Topic Support

Feature Name: built_in_topics

You can reduce the footprint of the core DDS library by up to 30% by disabling Built-in Topic Support. See Built-In
Topics for a description of Built-In Topics.

Disabling the Building of Compliance Profile Features

The DDS specification defines compliance profiles to provide a common terminology for indicating certain feature sets
that a DDS implementation may or may not support. These profiles are given below, along with the name of the MPC
feature to use to disable support for that profile or components of that profile.

Many of the profile options involve QoS settings. If you attempt to use a QoS value that is incompatible with a disabled
profile, a runtime error will occur. If a profile involves a class, a compile time error will occur if you try to use the class
and the profile is disabled.

Content-Subscription Profile

Feature Name: content_subscription

This profile adds the classes ContentFilteredTopic, QueryCondition, and MultiTopic discussed in Content-
Subscription Profile.

In addition, individual classes can be excluded by using the features given in the table below.

Table : Content-Subscription Class Features

Class Feature
ContentFilteredTopic content_filtered_topic
QueryCondition query_condition
MultiTopic multi_topic

Persistence Profile

Feature Name: persistence_profile

This profile adds the QoS policy DURABILITY_SERVICE and the settings TRANSIENT and PERSISTENT of the
DURABILITY QoS policy kind.

Ownership Profile

Feature Name: ownership_profile

This profile adds:

• the setting EXCLUSIVE of the OWNERSHIP kind

• support for the OWNERSHIP_STRENGTH policy

• setting a depth > 1 for the HISTORY QoS policy.

Some users may wish to exclude support for the Exclusive OWNERSHIP policy and its associated OWNER-
SHIP_STRENGTH without impacting use of HISTORY. In order to support this configuration, OpenDDS also has
the MPC feature ownership_kind_exclusive (configure script option –no-ownership-kind-exclusive).

16 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Object Model Profile

Feature Name: object_model_profile

This profile includes support for the PRESENTATION access_scope setting of GROUP.

Note: Currently, the PRESENTATION access_scope of TOPIC is also excluded when object_model_profile is
disabled.

1.1.11 Building Applications that use OpenDDS

This section applies to any C++ code that directly or indirectly includes OpenDDS headers. For Java applications, see
Java Bindings.

C++ source code that includes OpenDDS headers can be built using either build system: MPC or CMake.

MPC: The Makefile, Project, and Workspace Creator

OpenDDS is itself built with MPC, so development systems that are set up to use OpenDDS already have MPC avail-
able. The OpenDDS configure script creates a “setenv” script with environment settings (setenv.cmd on Windows;
setenv.sh on Linux/macOS). This environment contains the PATH and MPC_ROOT settings necessary to use MPC.

MPC’s source tree (in MPC_ROOT) contains a “docs” directory with both HTML and plain text documentation (USAGE
and README files).

The example walk-through in Using DCPS uses MPC as its build system. The OpenDDS source tree contains many
tests and examples that are built with MPC. These can be used as starting points for application MPC files.

CMake

Applications can also be built with CMake. See the included documentation in the OpenDDS source tree:
docs/cmake.md

The OpenDDS source tree also includes examples of using CMake. They are listed in the cmake.md file.

Custom Build systems

Users of OpenDDS are strongly encouraged to select one of the two options listed above (MPC or CMake) to generate
consistent build files on any supported platform. If this is not possible, users of OpenDDS must make sure that all code
generator, compiler, and linker settings in the custom build setup result in API- and ABI-compatible code. To do this,
start with an MPC or CMake-generated project file (makefile or Visual Studio project file) and make sure all relevant
settings are represented in the custom build system. This is often done through a combination of inspecting the project
file and running the build with verbose output to see how the toolchain (code generators, compiler, linker) is invoked.

1.1. Introduction 17

https://cmake.org/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/docs/cmake.md

OpenDDS, Release 3.24.0

1.2 Getting Started

1.2.1 Using DCPS

This section focuses on an example application using DCPS to distribute data from a single publisher process to a single
subscriber process. It is based on a simple messenger application where a single publisher publishes messages and a
single subscriber subscribes to them. We use the default QoS properties and the default TCP/IP transport. Full source
code for this example may be found under the DevGuideExamples/DCPS/Messenger/ directory. Additional DDS and
DCPS features are discussed in later sections.

Defining Data Types with IDL

In this example, data types for topics will be defined using the OMG Interface Definition Language (IDL). For de-
tails on how to build OpenDDS applications that don’t use IDL for topic data types, see DynamicDataWriters and
DynamicDataReaders.

Identifying Topic Types

Each data type used by DDS is defined using OMG Interface Definition Language (IDL). OpenDDS uses IDL annota-
tions1 to identify the data types that it transmits and processes. These data types are processed by the TAO IDL compiler
and the OpenDDS IDL compiler to generate the necessary code to transmit data of these types with OpenDDS. Here
is the IDL file that defines our Message data type:

module Messenger {

@topic
struct Message {
string from;
string subject;
@key long subject_id;
string text;
long count;

};
};

The @topic annotation marks a data type that can be used as a topic’s type. This must be a structure or a union. The
structure or union may contain basic types (short, long, float, etc.), enumerations, strings, sequences, arrays, structures,
and unions. See IDL Compliance for more details on the use of IDL for OpenDDS topic types. The IDL above defines
the structure Message in the Messenger module for use in this example.

1 For backwards compatibility, OpenDDS also parses #pragma directives which were used before release 3.14. This guide will describe IDL
annotations only.

18 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/DevGuideExamples/DCPS/Messenger/

OpenDDS, Release 3.24.0

Keys

The @key annotation identifies a field that is used as a key for this topic type. A topic type may have zero or more key
fields. These keys are used to identify different DDS Instances within a topic. Keys can be of scalar type, structures or
unions containing key fields, or arrays of any of these constructs.

Multiple keys are specified with separate @key annotations. In the above example, we identify the subject_id mem-
ber of Messenger::Message as a key. Each sample published with a unique subject_id value will be defined as
belonging to a different DDS Instance within the same topic. Since we are using the default QoS policies, subsequent
samples with the same subject_id value are treated as replacement values for that DDS Instance.

@key can be applied to a structure field of the following types:

• Any primitive, such as booleans, integers, characters, and strings.

• Other structures that have a defined key or set of keys. For example:

struct StructA {
@key long key;

};

struct StructB {
@key StructA main_info;
long other_info;

};

@topic
struct StructC {
@key StructA keya; // keya.key is one key
@key StructB keyb; // keyb.main_info.key is another
DDS::OctetSeq data;

};

In this example, every type from the key marked on the topic type down to what primitive data types to use as the key
is annotated with @key. That isn’t strictly necessary though, as the next section shows.

• Other structures that don’t have any defined keys. In the following example, it’s implied that all the fields in
InnerStruct are keys.

struct InnerStruct {
long a;
short b;
char c;

};

@topic
struct OuterStruct {
@key InnerStruct value;
// value.a, value.b, and value.c are all keys

};

If none of the fields in a struct are marked with @key or @key(TRUE), then when the struct is used in another struct and
marked as a key, all the fields in the struct are assumed to keys. Fields marked with @key(FALSE) are always excluded
from being a key, such as in this example:

1.2. Getting Started 19

OpenDDS, Release 3.24.0

struct InnerStruct {
long a;
short b;
@key(FALSE) char c;

};

@topic
struct OuterStruct {
@key InnerStruct value;
// Now just value.a and value.b are the keys

};

• Unions can also be used as keys if their discriminator is marked as a key. There is an example of a keyed union
topic type in the next section, but keep in mind a union being used as a key doesn’t have to be a topic type.

• Arrays of any of the previous data types. @key can’t be applied to sequences, even if the base type would be valid
in an array. Also @key, when applied to arrays, it makes every element in the array part of the key. They can’t
be applied to individual array elements.

Union Topic Types

Unions can be used as topic types. Here is an example:

enum TypeKind {
STRING_TYPE,
LONG_TYPE,
FLOAT_TYPE

};

@topic
union MyUnionType switch (@key TypeKind) {
case STRING_TYPE:
string string_value;

case LONG_TYPE:
long long_value;

case FLOAT_TYPE:
float float_value;

};

Unions can be keyed like structures, but only the union discriminator can be a key, so the set of possible DDS Instances
of topics using keyed unions are values of the discriminator. Designating a key for a union topic type is done by putting
@key before the discriminator type like in the example above. Like structures, it is also possible to have no key fields,
in which case @key would be omitted and there would be only one DDS Instance.

20 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Topic Types vs. Nested Types

In addition to @topic, the set of IDL types OpenDDS can use can also be controlled using @nested and
@default_nested. Types that are “nested” are the opposite of topic types; they can’t be used for the top-level type
of a topic, but they can be nested inside the top-level type (at any level of nesting). All types are nested by default in
OpenDDS to reduce the code generated for type support, but there a number of ways to change this:

• The type can be annotated with @topic (see Identifying Topic Types), or with @nested(FALSE), which is equiv-
alent to @topic.

• The enclosing module can be annotated with @default_nested(FALSE).

• The global default for opendds_idl can be changed by adding --no-default-nested, in which case it would
be as if all valid types were marked with @topic. If desired for IDL compatibility with other DDS implementa-
tions or based on preference, this can be done through the build system:

– When using MPC, add dcps_ts_flags += --no-default-nested to the project.

– When using CMake, this can be done by setting either the OPENDDS_DEFAULT_NESTED global
variable to FALSE or adding --no-default-nested to the OPENDDS_IDL_OPTIONS parameter for
OPENDDS_TARGET_SOURCES. See $DDS_ROOT/docs/cmake.md in the source for more information about
using OpenDDS with CMake.

In cases where the module default is not nested, you can reverse this by using @nested or @nested(TRUE) for
structures/unions and @default_nested or @default_nested(TRUE) for modules. NOTE: the @topic annotation
doesn’t take a boolean argument, so @topic(FALSE) would cause an error in the OpenDDS IDL Compiler.

Processing the IDL

This section uses the OMG IDL-to-C++ mapping (“C++ classic”) as part of the walk-through. OpenDDS also supports
the OMG IDL-to-C++11 mapping, see Using the IDL-to-C++11 Mapping for details.

The OpenDDS IDL is first processed by the TAO IDL compiler.

tao_idl Messenger.idl

In addition, we need to process the IDL file with the OpenDDS IDL compiler to generate the serialization and key
support code that OpenDDS requires to marshal and demarshal the Message, as well as the type support code for the
data readers and writers. This IDL compiler is located in bin and generates three files for each IDL file processed. The
three files all begin with the original IDL file name and would appear as follows:

• <filename>TypeSupport.idl

• <filename>TypeSupportImpl.h

• <filename>TypeSupportImpl.cpp

For example, running opendds_idl as follows

opendds_idl Messenger.idl

generates MessengerTypeSupport.idl, MessengerTypeSupportImpl.h, and MessengerTypeSupportImpl.
cpp. The IDL file contains the MessageTypeSupport, MessageDataWriter, and MessageDataReader interface
definitions. These are type-specific DDS interfaces that we use later to register our data type with the domain, publish
samples of that data type, and receive published samples. The implementation files contain implementations for these
interfaces. The generated IDL file should itself be compiled with the TAO IDL compiler to generate stubs and skele-
tons. These and the implementation file should be linked with your OpenDDS applications that use the Message type.
The OpenDDS IDL compiler has a number of options that specialize the generated code. These options are described
in opendds_idl.

1.2. Getting Started 21

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/bin

OpenDDS, Release 3.24.0

Typically, you do not directly invoke the TAO or OpenDDS IDL compilers as above, but let your build system do it for
you. Two different build systems are supported for projects that use OpenDDS:

• MPC, the “Make Project Creator” which is used to build OpenDDS itself and the majority of its included tests
and examples

• CMake, a build system that’s commonly used across the industry (cmake.org)

Even if you will eventually use some custom build system that’s not one of the two listed above, start by building an
example OpenDDS application using one of the supported build systems and then migrate the code generator command
lines, compiler options, etc., to the custom build system.

The remainder of this section will assume MPC. For more details on using CMake, see the included documentation in
the OpenDDS repository: docs/cmake.md

The code generation process is simplified when using MPC, by inheriting from the dcps base project. Here is the MPC
file section common to both the publisher and subscriber

project(*idl): dcps {
// This project ensures the common components get built first.

TypeSupport_Files {
Messenger.idl

}
custom_only = 1

}

The dcps parent project adds the Type Support custom build rules. The TypeSupport_Files section above tells MPC to
generate the Message type support files from Messenger.idl using the OpenDDS IDL complier. Here is the publisher
section:

project(*Publisher): dcpsexe_with_tcp {
exename = publisher
after += *idl

TypeSupport_Files {
Messenger.idl

}

Source_Files {
Publisher.cpp

}
}

The dcpsexe_with_tcp project links in the DCPS library.

For completeness, here is the subscriber section of the MPC file:

project(*Subscriber): dcpsexe_with_tcp {

exename = subscriber
after += *idl

TypeSupport_Files {
Messenger.idl

}

(continues on next page)

22 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

Source_Files {
Subscriber.cpp
DataReaderListenerImpl.cpp

}
}

A Simple Message Publisher

In this section we describe the steps involved in setting up a simple OpenDDS publication process. The code is broken
into logical sections and explained as we present each section. We omit some uninteresting sections of the code (such
as #include directives, error handling, and cross-process synchronization). The full source code for this sample
publisher is found in the Publisher.cpp and Writer.cpp files in DevGuideExamples/DCPS/Messenger/.

Initializing the Participant

The first section of main() initializes the current process as an OpenDDS participant.

int main (int argc, char *argv[]) {
try {
DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

DDS::DomainParticipant_var participant =
dpf->create_participant(42, // domain ID

PARTICIPANT_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!participant) {
std::cerr << "create_participant failed." << std::endl;
return 1;

}
// ...

}
}

The TheParticipantFactoryWithArgs macro is defined in Service_Participant.h and initializes the Domain
Participant Factory with the command line arguments. These command line arguments are used to initialize the ORB
that the OpenDDS service uses as well as the service itself. This allows us to pass ORB_init() options on the command
line as well as OpenDDS configuration options of the form -DCPS*. Available OpenDDS options are fully described
in Run-time Configuration.

The create_participant() operation uses the domain participant factory to register this process as a participant
in the domain specified by the ID of 42. The participant uses the default QoS policies and no listeners. Use of the
OpenDDS default status mask ensures all relevant communication status changes (e.g., data available, liveliness lost)
in the middleware are communicated to the application (e.g., via callbacks on listeners).

Users may define any number of domains using IDs in the range (0x0 ~ 0x7FFFFFFF). All other values are reserved
for internal use by the implementation.

The Domain Participant object reference returned is then used to register our Message data type.

1.2. Getting Started 23

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/DevGuideExamples/DCPS/Messenger/

OpenDDS, Release 3.24.0

Registering the Data Type and Creating a Topic

First, we create a MessageTypeSupportImpl object, then register the type with a type name using the
register_type() operation. In this example, we register the type with a nil string type name, which causes the
MessageTypeSupport interface repository identifier to be used as the type name. A specific type name such as “Mes-
sage” can be used as well.

Messenger::MessageTypeSupport_var mts =
new Messenger::MessageTypeSupportImpl();

if (DDS::RETCODE_OK != mts->register_type(participant, "")) {
std::cerr << "register_type failed." << std::endl;
return 1;

}

Next, we obtain the registered type name from the type support object and create the topic by passing the type name to
the participant in the create_topic() operation.

CORBA::String_var type_name = mts->get_type_name ();

DDS::Topic_var topic =
participant->create_topic ("Movie Discussion List",

type_name,
TOPIC_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!topic) {
std::cerr << "create_topic failed." << std::endl;
return 1;

}

We have created a topic named “Movie Discussion List” with the registered type and the default QoS policies.

Creating a Publisher

Now, we are ready to create the publisher with the default publisher QoS.

DDS::Publisher_var pub =
participant->create_publisher(PUBLISHER_QOS_DEFAULT,

0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!pub) {
std::cerr << "create_publisher failed." << std::endl;
return 1;

}

24 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Creating a DataWriter and Waiting for the Subscriber

With the publisher in place, we create the data writer.

// Create the datawriter
DDS::DataWriter_var writer =
pub->create_datawriter(topic,

DATAWRITER_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!writer) {
std::cerr << "create_datawriter failed." << std::endl;
return 1;

}

When we create the data writer we pass the topic object reference, the default QoS policies, and a null listener reference.
We now narrow the data writer reference to a MessageDataWriter object reference so we can use the type-specific
publication operations.

Messenger::MessageDataWriter_var message_writer =
Messenger::MessageDataWriter::_narrow(writer);

The example code uses conditions and wait sets so the publisher waits for the subscriber to become connected and
fully initialized. In a simple example like this, failure to wait for the subscriber may cause the publisher to publish its
samples before the subscriber is connected.

The basic steps involved in waiting for the subscriber are:

• Get the status condition from the data writer we created

• Enable the Publication Matched status in the condition

• Create a wait set

• Attach the status condition to the wait set

• Get the publication matched status

• If the current count of matches is one or more, detach the condition from the wait set and proceed to publication

• Wait on the wait set (can be bounded by a specified period of time)

• Loop back around to step 5)

Here is the corresponding code:

// Block until Subscriber is available
DDS::StatusCondition_var condition = writer->get_statuscondition();
condition->set_enabled_statuses(DDS::PUBLICATION_MATCHED_STATUS);

DDS::WaitSet_var ws = new DDS::WaitSet;
ws->attach_condition(condition);

while (true) {
DDS::PublicationMatchedStatus matches;
if (writer->get_publication_matched_status(matches) != DDS::RETCODE_OK) {
std::cerr << "get_publication_matched_status failed!"

<< std::endl;
(continues on next page)

1.2. Getting Started 25

OpenDDS, Release 3.24.0

(continued from previous page)

return 1;
}

if (matches.current_count >= 1) {
break;

}

DDS::ConditionSeq conditions;
DDS::Duration_t timeout = { 60, 0 };
if (ws->wait(conditions, timeout) != DDS::RETCODE_OK) {
std::cerr << "wait failed!" << std::endl;
return 1;

}

}

ws->detach_condition(condition);

For more details about status, conditions, and wait sets, see Conditions and Listeners.

Sample Publication

The message publication is quite straightforward:

// Write samples
Messenger::Message message;
message.subject_id = 99;
message.from = "Comic Book Guy";
message.subject = "Review";
message.text = "Worst. Movie. Ever.";
message.count = 0;
for (int i = 0; i < 10; ++i) {
DDS::ReturnCode_t error = message_writer->write(message, DDS::HANDLE_NIL);
++message.count;
++message.subject_id;
if (error != DDS::RETCODE_OK) {
// Log or otherwise handle the error condition
return 1;

}
}

For each loop iteration, calling write() causes a message to be distributed to all connected subscribers that are regis-
tered for our topic. Since the subject_id is the key for Message, each time subject_id is incremented and write() is
called, a new instance is created (see Topic). The second argument to write() specifies the instance on which we are
publishing the sample. It should be passed either a handle returned by register_instance() or DDS::HANDLE_NIL.
Passing a DDS::HANDLE_NIL value indicates that the data writer should determine the instance by inspecting the key
of the sample. See Registering and Using Instances in the Publisher for details on using instance handles during
publication.

26 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Setting up the Subscriber

Much of the subscriber’s code is identical or analogous to the publisher that we just finished exploring. We will
progress quickly through the similar parts and refer you to the discussion above for details. The full source code for
this sample subscriber is found in the Subscriber.cpp and DataReaderListener.cpp files in DevGuideExam-
ples/DCPS/Messenger/.

Initializing the Participant

The beginning of the subscriber is identical to the publisher as we initialize the service and join our domain:

int main (int argc, char *argv[])
{
try {

DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

DDS::DomainParticipant_var participant =
dpf->create_participant(42, // Domain ID

PARTICIPANT_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!participant) {
std::cerr << "create_participant failed." << std::endl;
return 1;

}

Registering the Data Type and Creating a Topic

Next, we initialize the message type and topic. Note that if the topic has already been initialized in this domain with the
same data type and compatible QoS, the create_topic() invocation returns a reference corresponding to the existing
topic. If the type or QoS specified in our create_topic() invocation do not match that of the existing topic then the
invocation fails. There is also a find_topic() operation our subscriber could use to simply retrieve an existing topic.

Messenger::MessageTypeSupport_var mts =
new Messenger::MessageTypeSupportImpl();

if (DDS::RETCODE_OK != mts->register_type(participant, "")) {
std::cerr << "Failed to register the MessageTypeSupport." << std::endl;
return 1;

}

CORBA::String_var type_name = mts->get_type_name();

DDS::Topic_var topic =
participant->create_topic("Movie Discussion List",

type_name,
TOPIC_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!topic) {
std::cerr << "Failed to create_topic." << std::endl;

(continues on next page)

1.2. Getting Started 27

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/DevGuideExamples/DCPS/Messenger/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/DevGuideExamples/DCPS/Messenger/

OpenDDS, Release 3.24.0

(continued from previous page)

return 1;
}

Creating the subscriber

Next, we create the subscriber with the default QoS.

// Create the subscriber
DDS::Subscriber_var sub =
participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT,

0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!sub) {
std::cerr << "Failed to create_subscriber." << std::endl;
return 1;

}

Creating a DataReader and Listener

We need to associate a listener object with the data reader we create, so we can use it to detect when data is available.
The code below constructs the listener object. The DataReaderListenerImpl class is shown in the next subsection.

DDS::DataReaderListener_var listener(new DataReaderListenerImpl);

The listener is allocated on the heap and assigned to a DataReaderListener_var object. This type provides reference
counting behavior so the listener is automatically cleaned up when the last reference to it is removed. This usage is
typical for heap allocations in OpenDDS application code and frees the application developer from having to actively
manage the lifespan of the allocated objects.

Now we can create the data reader and associate it with our topic, the default QoS properties, and the listener object
we just created.

// Create the Datareader
DDS::DataReader_var dr =
sub->create_datareader(topic,

DATAREADER_QOS_DEFAULT,
listener,
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!dr) {
std::cerr << "create_datareader failed." << std::endl;
return 1;

}

This thread is now free to perform other application work. Our listener object will be called on an OpenDDS thread
when a sample is available.

28 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

The Data Reader Listener Implementation

Our listener class implements the DDS::DataReaderListener interface defined by the DDS specification. The
DataReaderListener is wrapped within a DCPS::LocalObject which resolves ambiguously-inherited members
such as _narrow and _ptr_type. The interface defines a number of operations we must implement, each of which
is invoked to inform us of different events. The OpenDDS::DCPS::DataReaderListener defines operations for
OpenDDS’s special needs such as disconnecting and reconnected event updates. Here is the interface definition:

module DDS {
local interface DataReaderListener : Listener {
void on_requested_deadline_missed(in DataReader reader,

in RequestedDeadlineMissedStatus status);
void on_requested_incompatible_qos(in DataReader reader,

in RequestedIncompatibleQosStatus status);
void on_sample_rejected(in DataReader reader,

in SampleRejectedStatus status);
void on_liveliness_changed(in DataReader reader,

in LivelinessChangedStatus status);
void on_data_available(in DataReader reader);
void on_subscription_matched(in DataReader reader,

in SubscriptionMatchedStatus status);
void on_sample_lost(in DataReader reader, in SampleLostStatus status);

};
};

Our example listener class stubs out most of these listener operations with simple print statements. The only operation
that is really needed for this example is on_data_available() and it is the only member function of this class we
need to explore.

void DataReaderListenerImpl::on_data_available(DDS::DataReader_ptr reader)
{
++num_reads_;

try {
Messenger::MessageDataReader_var reader_i =
Messenger::MessageDataReader::_narrow(reader);

if (!reader_i) {
std::cerr << "read: _narrow failed." << std::endl;
return;

}

The code above narrows the generic data reader passed into the listener to the type-specific MessageDataReader
interface. The following code takes the next sample from the message reader. If the take is successful and returns valid
data, we print out each of the message’s fields.

Messenger::Message message;
DDS::SampleInfo si;
DDS::ReturnCode_t status = reader_i->take_next_sample(message, si);

if (status == DDS::RETCODE_OK) {

if (si.valid_data == 1) {
std::cout << "Message: subject = " << message.subject.in() << std::endl
<< " subject_id = " << message.subject_id << std::endl

(continues on next page)

1.2. Getting Started 29

OpenDDS, Release 3.24.0

(continued from previous page)

<< " from = " << message.from.in() << std::endl
<< " count = " << message.count << std::endl
<< " text = " << message.text.in() << std::endl;

}
else if (si.instance_state == DDS::NOT_ALIVE_DISPOSED_INSTANCE_STATE)
{
std::cout << "instance is disposed" << std::endl;

}
else if (si.instance_state == DDS::NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)
{
std::cout << "instance is unregistered" << std::endl;

}
else
{
std::cerr << "ERROR: received unknown instance state "

<< si.instance_state << std::endl;
}

} else if (status == DDS::RETCODE_NO_DATA) {
cerr << "ERROR: reader received DDS::RETCODE_NO_DATA!" << std::endl;

} else {
cerr << "ERROR: read Message: Error: " << status << std::endl;

}

Note the sample read may contain invalid data. The valid_data flag indicates if the sample has valid data. There are two
samples with invalid data delivered to the listener callback for notification purposes. One is the dispose notification,
which is received when the DataWriter calls dispose() explicitly. The other is the unregistered notification, which is
received when the DataWriter calls unregister() explicitly. The dispose notification is delivered with the instance
state set to NOT_ALIVE_DISPOSED_INSTANCE_STATE and the unregister notification is delivered with the instance
state set to NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.

If additional samples are available, the service calls this function again. However, reading values a single sample
at a time is not the most efficient way to process incoming data. The Data Reader interface provides a number of
different options for processing data in a more efficient manner. We discuss some of these operations in Data Handling
Optimizations.

Cleaning up in OpenDDS Clients

After we are finished in the publisher and subscriber, we can use the following code to clean up the OpenDDS-related
objects:

participant->delete_contained_entities();
dpf->delete_participant(participant);
TheServiceParticipant->shutdown();

The domain participant’s delete_contained_entities() operation deletes all the topics, subscribers, and publish-
ers created with that participant. Once this is done, we can use the domain participant factory to delete our domain
participant.

Since the publication and subscription of data within DDS is decoupled, data is not guaranteed to be delivered if a
publication is disassociated (shutdown) prior to all data that has been sent having been received by the subscriptions. If
the application requires that all published data be received, the wait_for_acknowledgments() operation is available
to allow the publication to wait until all written data has been received. Data readers must have a RELIABLE setting for
the RELIABILITY QoS (which is the default) in order for wait_for_acknowledgments() to work. This operation is

30 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

called on individual DataWriters and includes a timeout value to bound the time to wait. The following code illustrates
the use of wait_for_acknowledgments() to block for up to 15 seconds to wait for subscriptions to acknowledge
receipt of all written data:

DDS::Duration_t shutdown_delay = {15, 0};
DDS::ReturnCode_t result;
result = writer->wait_for_acknowledgments(shutdown_delay);
if(result != DDS::RETCODE_OK) {
std::cerr << "Failed while waiting for acknowledgment of "

<< "data being received by subscriptions, some data "
<< "may not have been delivered." << std::endl;

}

Running the Example

We are now ready to run our simple example. Running each of these commands in its own window should enable you
to most easily understand the output.

First we will start a DCPSInfoRepo service so our publishers and subscribers can find one another.

Note: This step is not necessary if you are using peer-to-peer discovery by configuring your environment to use RTPS
discovery.

The DCPSInfoRepo executable is found in bin/DCPSInfoRepo. When we start the DCPSInfoRepo we need to ensure
that publisher and subscriber application processes can also find the started DCPSInfoRepo. This information can be
provided in one of three ways: a.) parameters on the command line , b.) generated and placed in a shared file for
applications to use, or c.) parameters placed in a configuration file for other processes to use. For our simple example
here we will use option ‘b’ by generating the location properties of the DCPSInfoRepo into a file so that our simple
publisher and subscriber can read it in and connect to it.

From your current directory type:

Windows:

%DDS_ROOT%\bin\DCPSInfoRepo -o simple.ior

Unix:

$DDS_ROOT/bin/DCPSInfoRepo -o simple.ior

The -o parameter instructs the DCPSInfoRepo to generate its connection information to the file simple.ior for use
by the publisher and subscriber. In a separate window navigate to the same directory that contains the simple.ior
file and start the subscriber application in our example by typing:

Windows:

subscriber -DCPSInfoRepo file://simple.ior

Unix:

./subscriber -DCPSInfoRepo file://simple.ior

The command line parameters direct the application to use the specified file to locate the DCPSInfoRepo. Our sub-
scriber is now waiting for messages to be sent, so we will now start the publisher in a separate window with the same
parameters:

1.2. Getting Started 31

OpenDDS, Release 3.24.0

Windows:

publisher -DCPSInfoRepo file://simple.ior

Unix

./publisher -DCPSInfoRepo file://simple.ior

The publisher connects to the DCPSInfoRepo to find the location of any subscribers and begins to publish messages
as well as write them to the console. In the subscriber window, you should also now be seeing console output from the
subscriber that is reading messages from the topic demonstrating a simple publish and subscribe application.

You can read more about configuring your application for RTPS and other more advanced configuration options in
Configuring for DDSI-RTPS Discovery and RTPS_UDP Transport Configuration Options . See Discovery Configura-
tion and The DCPS Information Repository for configuring and using the DCPSInfoRepo . See Quality of Service for
setting and using QoS features that modify the behavior of your application.

Running Our Example with RTPS

The prior OpenDDS example has demonstrated how to build and execute an OpenDDS application using basic
OpenDDS configurations and centralized discovery using the DCPSInfoRepo service. The following details what
is needed to run the same example using RTPS for discovery and with an interoperable transport. This is important
in scenarios when your OpenDDS application needs to interoperate with a non-OpenDDS implementation of the DDS
specification or if you do not want to use centralized discovery in your deployment of OpenDDS.

The coding and building of the Messenger example above is not changed for using RTPS, so you will not need to modify
or rebuild your publisher and subscriber services. This is a strength of the OpenDDS architecture in that to enable the
RTPS capabilities, it is an exercise in configuration. For this exercise, we will enable RTPS for the Messenger example
using a configuration file that the publisher and subscriber will share. More details concerning the configuration of all
the available transports including RTPS are described in Run-time Configuration.

Navigate to the directory where your publisher and subscriber have been built. Create a new text file named rtps.ini
and populate it with the following content:

[common]
DCPSGlobalTransportConfig=$file
DCPSDefaultDiscovery=DEFAULT_RTPS

[transport/the_rtps_transport]
transport_type=rtps_udp

The two lines of interest are the one that sets the discovery method and the one that sets the data transport protocol to
RTPS.

Now lets re-run our example with RTPS enabled by starting the subscriber process first and then the publisher to begin
sending data. It is best to start them in separate windows to see the two working separately.

Start the subscriber with the -DCPSConfigFile command line parameter to point to the newly created configuration
file. . .

Windows:

subscriber -DCPSConfigFile rtps.ini

Unix:

32 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

./subscriber -DCPSConfigFile rtps.ini

Now start the publisher with the same parameter. . .

Windows:

publisher -DCPSConfigFile rtps.ini

Unix:

./publisher -DCPSConfigFile rtps.ini

Since there is no centralized discovery in the RTPS specification, there are provisions to allow for wait times to allow
discovery to occur. The specification sets the default to 30 seconds. When the two above processes are started there
may be up to a 30 second delay depending on how far apart they are started from each other. This time can be adjusted
in OpenDDS configuration files and is discussed in Configuring for DDSI-RTPS Discovery.

Because the architecture of OpenDDS allows for pluggable discovery and pluggable transports the two configuration
entries called out in the rtps.ini file above can be changed independently with one using RTPS and the other not
using RTPS (e.g. centralized discovery using DCPSInfoRepo). Setting them both to RTPS in our example makes this
application fully interoperable with other non-OpenDDS implementations.

1.2.2 Data Handling Optimizations

Registering and Using Instances in the Publisher

The previous example implicitly specifies the instance it is publishing via the sample’s data fields. When write() is
called, the data writer queries the sample’s key fields to determine the instance. The publisher also has the option to
explicitly register the instance by calling register_instance() on the data writer:

Messenger::Message message;
message.subject_id = 99;
DDS::InstanceHandle_t handle = message_writer->register_instance(message);

After we populate the Message structure we called the register_instance() function to register the instance. The instance
is identified by the subject_id value of 99 (because we earlier specified that field as the key).

We can later use the returned instance handle when we publish a sample:

DDS::ReturnCode_t ret = data_writer->write(message, handle);

Publishing samples using the instance handle may be slightly more efficient than forcing the writer to query for the
instance and is much more efficient when publishing the first sample on an instance. Without explicit registration, the
first write causes resource allocation by OpenDDS for that instance.

Because resource limitations can cause instance registration to fail, many applications consider registration as part of
setting up the publisher and always do it when initializing the data writer.

1.2. Getting Started 33

OpenDDS, Release 3.24.0

Reading Multiple Samples

The DDS specification provides a number of operations for reading and writing data samples. In the examples above
we used the take_next_sample() operation, to read the next sample and “take” ownership of it from the reader. The
Message Data Reader also has the following take operations.

• take()—Take a sequence of up to max_samples values from the reader

• take_instance()—Take a sequence of values for a specified instance

• take_next_instance()—Take a sequence of samples belonging to the same instance, without specifying the
instance.

There are also “read” operations corresponding to each of these “take” operations that obtain the same values, but leave
the samples in the reader and simply mark them as read in the SampleInfo.

Since these other operations read a sequence of values, they are more efficient when samples are arriving quickly. Here
is a sample call to take() that reads up to 5 samples at a time.

MessageSeq messages(5);
DDS::SampleInfoSeq sampleInfos(5);
DDS::ReturnCode_t status = message_dr->take(messages,

sampleInfos,
5,
DDS::ANY_SAMPLE_STATE,
DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

The three state parameters potentially specialize which samples are returned from the reader. See the DDS specification
for details on their usage.

Zero-Copy Read

The read and take operations that return a sequence of samples provide the user with the option of obtaining a copy of
the samples (single-copy read) or a reference to the samples (zero-copy read). The zero-copy read can have significant
performance improvements over the single-copy read for large sample types. Testing has shown that samples of 8KB
or less do not gain much by using zero-copy reads but there is little performance penalty for using zero-copy on small
samples.

The application developer can specify the use of the zero-copy read optimization by calling take() or read() with a
sample sequence constructed with a max_len of zero. The message sequence and sample info sequence constructors
both take max_len as their first parameter and specify a default value of zero. The following example code is taken
from DevGuideExamples/DCPS/Messenger_ZeroCopy/DataReaderListenerImpl.cpp:

Messenger::MessageSeq messages;
DDS::SampleInfoSeq info;

// get references to the samples (zero-copy read of the samples)
DDS::ReturnCode_t status = dr->take(messages,

info,
DDS::LENGTH_UNLIMITED,
DDS::ANY_SAMPLE_STATE,
DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

After both zero-copy takes/reads and single-copy takes/reads, the sample and info sequences’ length are set to the
number of samples read. For the zero-copy reads, the max_len is set to a value >= length.

34 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Since the application code has asked for a zero-copy loan of the data, it must return that loan when it is finished with
the data:

dr->return_loan(messages, info);

Calling return_loan() results in the sequences’ max_len being set to 0 and its owns member set to false, allowing
the same sequences to be used for another zero-copy read.

If the first parameter of the data sample sequence constructor and info sequence constructor were changed to a value
greater than zero, then the sample values returned would be copies. When values are copied, the application developer
has the option of calling return_loan(), but is not required to do so.

If the max_len (the first) parameter of the sequence constructor is not specified, it defaults to 0; hence using zero-copy
reads. Because of this default, a sequence will automatically call return_loan() on itself when it is destroyed. To
conform with the DDS specification and be portable to other implementations of DDS, applications should not rely on
this automatic return_loan() feature.

The second parameter to the sample and info sequences is the maximum slots available in the sequence. If the read() or
take() operation’s max_samples parameter is larger than this value, then the maximum samples returned by read()
or take() will be limited by this parameter of the sequence constructor.

Although the application can change the length of a zero-copy sequence, by calling the length(len) operation, you
are advised against doing so because this call results in copying the data and creating a single-copy sequence of samples.

1.3 Quality of Service

1.3.1 Introduction

The previous examples use default QoS policies for the various entities. This section discusses the QoS policies which
are implemented in OpenDDS and the details of their usage. See the DDS specification for further information about
the policies discussed in this section.

1.3.2 QoS Policies

Each policy defines a structure to specify its data. Each entity supports a subset of the policies and defines a QoS
structure that is composed of the supported policy structures. The set of allowable policies for a given entity is con-
strained by the policy structures nested in its QoS structure. For example, the Publisher’s QoS structure is defined in
the specification’s IDL as follows:

module DDS {
struct PublisherQos {
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

};
};

Setting policies is as simple as obtaining a structure with the default values already set, modifying the individual policy
structures as necessary, and then applying the QoS structure to an entity (usually when it is created). See Default QoS
Policy Values for examples of how to obtain the default QoS policies for various entity types.

1.3. Quality of Service 35

OpenDDS, Release 3.24.0

Applications can change the QoS of any entity by calling the set_qos() operation on the entity. If the QoS is changeable,
existing associations are removed if they are no longer compatible and new associations are added if they become com-
patible. The DCPSInfoRepo re-evaluates the QoS compatibility and associations according to the QoS specification.
If the compatibility checking fails, the call to set_qos() will return an error. The association re-evaluation may result
in removal of existing associations or addition of new associations.

If the user attempts to change a QoS policy that is immutable (not changeable), then set_qos() returns
DDS::RETCODE_IMMUTABLE_POLICY.

A subset of the QoS policies are changeable. Some changeable QoS policies, such as USER_DATA,
TOPIC_DATA, GROUP_DATA, LIFESPAN, OWNERSHIP_STRENGTH, TIME_BASED_FILTER, ENTITY_FACTORY,
WRITER_DATA_LIFECYCLE, and READER_DATA_LIFECYCLE, do not require compatibility and association re-
evaluation. The DEADLINE and LATENCY_BUDGET QoS policies require compatibility re-evaluation, but not for
association. The PARTITION QoS policy does not require compatibility re-evaluation, but does require association
re-evaluation. The DDS specification lists TRANSPORT_PRIORITY as changeable, but the OpenDDS implementation
does not support dynamically modifying this policy.

Default QoS Policy Values

Applications obtain the default QoS policies for an entity by instantiating a QoS structure of the appropriate type for
the entity and passing it by reference to the appropriate get_default_entity_qos() operation on the appropriate
factory entity. (For example, you would use a domain participant to obtain the default QoS for a publisher or subscriber.)
The following examples illustrate how to obtain the default policies for publisher, subscriber, topic, domain participant,
data writer, and data reader.

// Get default Publisher QoS from a DomainParticipant:
DDS::PublisherQos pub_qos;
DDS::ReturnCode_t ret;
ret = domain_participant->get_default_publisher_qos(pub_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default publisher QoS" << std::endl;

}

// Get default Subscriber QoS from a DomainParticipant:
DDS::SubscriberQos sub_qos;
ret = domain_participant->get_default_subscriber_qos(sub_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default subscriber QoS" << std::endl;

}

// Get default Topic QoS from a DomainParticipant:
DDS::TopicQos topic_qos;
ret = domain_participant->get_default_topic_qos(topic_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default topic QoS" << std::endl;

}

// Get default DomainParticipant QoS from a DomainParticipantFactory:
DDS::DomainParticipantQos dp_qos;
ret = domain_participant_factory->get_default_participant_qos(dp_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default participant QoS" << std::endl;

}

(continues on next page)

36 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

// Get default DataWriter QoS from a Publisher:
DDS::DataWriterQos dw_qos;
ret = pub->get_default_datawriter_qos(dw_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default data writer QoS" << std::endl;

}

// Get default DataReader QoS from a Subscriber:
DDS::DataReaderQos dr_qos;
ret = sub->get_default_datareader_qos(dr_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default data reader QoS" << std::endl;

}

The following tables summarize the default QoS policies for each entity type in OpenDDS to which policies can be
applied.

Table Default DomainParticipant QoS Policies

Policy Member Default Value
USER_DATA value (empty sequence)
ENTITY_FACTORY autoenable_created_entities true

Table Default Topic QoS Policies

1.3. Quality of Service 37

OpenDDS, Release 3.24.0

Policy Member Default Value
TOPIC_DATAvalue (empty sequence)
DURABILITYkind

service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DURABILITY_SERVICEservice_cleanup_delay.sec
service_cleanup_delay.nanosec
history_kind
history_depth
max_samples
max_instances
max_samples_per_instance

DURATION_ZERO_SEC
DURATION_ZERO_NSEC
KEEP_LAST_HISTORY_QOS
1
LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

DEADLINEperiod.sec
period.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

LATENCY_BUDGETduration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

LIVELINESSkind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

RELIABILITYkind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

DESTINATION_ORDERkind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITSmax_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

TRANSPORT_PRIORITYvalue 0
LIFESPANduration.sec

duration.nanosec
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

OWNERSHIPkind SHARED_OWNERSHIP_QOS

Table Default Publisher QoS Policies

Policy Member Default Value
PRESENTATION access_scope

coherent_access
ordered_access

INSTANCE_PRESENTATION_QOS
0
0

PARTITION name (empty sequence)
GROUP_DATA value (empty sequence)
ENTITY_FACTORY autoenable_created_entities true

Table Default Subscriber QoS Policies

38 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Policy Member Default Value
PRESENTATION access_scope

coherent_access
ordered_access

INSTANCE_PRESENTATION_QOS
0
0

PARTITION name (empty sequence)
GROUP_DATA value (empty sequence)
ENTITY_FACTORY autoenable_created_entities true

Table Default DataWriter QoS Policies

Policy Member Default Value
DURABILITYkind

service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DURABILITY_SERVICEservice_cleanup_delay.sec
service_cleanup_delay.nanosec
history_kind
history_depth
max_samples
max_instances
max_samples_per_instance

DURATION_ZERO_SEC
DURATION_ZERO_NSEC
KEEP_LAST_HISTORY_QOS
1
LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

DEADLINE period.sec
period.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

LATENCY_BUDGETduration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

LIVELINESSkind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

RELIABILITYkind
max_blocking_time.sec
max_blocking_time.nanosec

RELIABLE_RELIABILITY_QOS1

0
100000000 (100 ms)

DESTINATION_ORDERkind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITSmax_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

TRANSPORT_PRIORITYvalue 0
LIFESPAN duration.sec

duration.nanosec
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

USER_DATAvalue (empty sequence)
OWNERSHIPkind SHARED_OWNERSHIP_QOS
OWNERSHIP_STRENGTHvalue 0
WRITER_DATA_LIFECYCLEautodispose_unregistered_instances 1

Table Default DataReader QoS Policies
1 For OpenDDS versions, up to 2.0, the default reliability kind for data writers is best effort. For versions 2.0.1 and later, this is changed to

reliable (to conform to the DDS specification).

1.3. Quality of Service 39

OpenDDS, Release 3.24.0

Policy Member Default Value
DURABILITYkind

service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DEADLINE period.sec
period.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

LATENCY_BUDGETduration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

LIVELINESSkind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

RELIABILITYkind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

DESTINATION_ORDERkind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITSmax_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

USER_DATAvalue (empty sequence)
OWNERSHIPkind SHARED_OWNERSHIP_QOS
TIME_BASED_FILTERminimum_separation.sec

minimum_separation.nanosec
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

READER_DATA_LIFECYCLEautopurge_nowriter_samples_delay.sec
autopurge_nowriter_samples_delay.nanosec
autopurge_disposed_samples_delay.sec
autopurge_disposed_samples_delay.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

LIVELINESS

The LIVELINESS policy applies to the topic, data reader, and data writer entities via the liveliness member of their
respective QoS structures. Setting this policy on a topic means it is in effect for all data readers and data writers on that
topic. Below is the IDL related to the liveliness QoS policy:

enum LivelinessQosPolicyKind {
AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS

};

struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;

};

The LIVELINESS policy controls when and how the service determines whether participants are alive, meaning
they are still reachable and active. The kind member setting indicates whether liveliness is asserted automatically
by the service or manually by the specified entity. A setting of AUTOMATIC_LIVELINESS_QOS means that the ser-
vice will send a liveliness indication if the participant has not sent any network traffic for the lease_duration. The
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or MANUAL_BY_TOPIC_LIVELINESS_QOS setting means the specified

40 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

entity (data writer for the “by topic” setting or domain participant for the “by participant” setting) must either write a
sample or manually assert its liveliness within a specified heartbeat interval. The desired heartbeat interval is specified
by the lease_duration member. The default lease duration is a pre-defined infinite value, which disables any liveliness
testing.

To manually assert liveliness without publishing a sample, the application must call the assert_liveliness() oper-
ation on the data writer (for the “by topic” setting) or on the domain participant (for the “by participant” setting) within
the specified heartbeat interval.

Data writers specify (offer) their own liveliness criteria and data readers specify (request) the desired liveliness of their
writers. Writers that are not heard from within the lease duration (either by writing a sample or by asserting liveliness)
cause a change in the LIVELINESS_CHANGED_STATUS communication status and notification to the application (e.g.,
by calling the data reader listener’s on_liveliness_changed() callback operation or by signaling any related wait
sets).

This policy is considered during the establishment of associations between data writers and data readers. The value
of both sides of the association must be compatible in order for an association to be established. Compatibility is
determined by comparing the data reader’s requested liveliness with the data writer’s offered liveliness. Both the kind
of liveliness (automatic, manual by topic, manual by participant) and the value of the lease duration are considered in
determining compatibility. The writer’s offered kind of liveliness must be greater than or equal to the reader’s requested
kind of liveliness. The liveliness kind values are ordered as follows:

MANUAL_BY_TOPIC_LIVELINESS_QOS >
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS >
AUTOMATIC_LIVELINESS_QOS

In addition, the writer’s offered lease duration must be less than or equal to the reader’s requested lease duration. Both
of these conditions must be met for the offered and requested liveliness policy settings to be considered compatible and
the association established.

RELIABILITY

The RELIABILITY policy applies to the topic, data reader, and data writer entities via the reliability member of their
respective QoS structures. Below is the IDL related to the reliability QoS policy:

enum ReliabilityQosPolicyKind {
BEST_EFFORT_RELIABILITY_QOS,
RELIABLE_RELIABILITY_QOS

};

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time;

};

This policy controls how data readers and writers treat the data samples they process. The “best effort” value
(BEST_EFFORT_RELIABILITY_QOS) makes no promises as to the reliability of the samples and could be expected
to drop samples under some circumstances. The “reliable” value (RELIABLE_RELIABILITY_QOS) indicates that the
service should eventually deliver all values to eligible data readers.

The max_blocking_time member of this policy is used when the history QoS policy is set to “keep all” and the writer
is unable to proceed because of resource limits. When this situation occurs and the writer blocks for more than the
specified time, then the write fails with a timeout return code. The default for this policy for data readers and topics is
“best effort,” while the default value for data writers is “reliable.”

1.3. Quality of Service 41

OpenDDS, Release 3.24.0

This policy is considered during the creation of associations between data writers and data readers. The value of both
sides of the association must be compatible in order for an association to be created. The reliability kind of data writer
must be greater than or equal to the value of data reader.

HISTORY

The HISTORY policy determines how samples are held in the data writer and data reader for a particular instance.
For data writers these values are held until the publisher retrieves them and successfully sends them to all connected
subscribers. For data readers these values are held until “taken” by the application. This policy applies to the topic,
data reader, and data writer entities via the history member of their respective QoS structures. Below is the IDL related
to the history QoS policy:

enum HistoryQosPolicyKind {
KEEP_LAST_HISTORY_QOS,
KEEP_ALL_HISTORY_QOS

};

struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

};

The “keep all” value (KEEP_ALL_HISTORY_QOS) specifies that all possible samples for that instance should be
kept. When “keep all” is specified and the number of unread samples is equal to the “resource limits” field of
max_samples_per_instance then any incoming samples are rejected.

The “keep last” value (KEEP_LAST_HISTORY_QOS) specifies that only the last depth values should be kept. When a
data writer contains depth samples of a given instance, a write of new samples for that instance are queued for delivery
and the oldest unsent samples are discarded. When a data reader contains depth samples of a given instance, any
incoming samples for that instance are kept and the oldest samples are discarded.

This policy defaults to a “keep last” with a depth of one.

DURABILITY

The DURABILITY policy controls whether data writers should maintain samples after they have been sent to known
subscribers. This policy applies to the topic, data reader, and data writer entities via the durability member of their
respective QoS structures. Below is the IDL related to the durability QoS policy:

enum DurabilityQosPolicyKind {
VOLATILE_DURABILITY_QOS, // Least Durability
TRANSIENT_LOCAL_DURABILITY_QOS,
TRANSIENT_DURABILITY_QOS,
PERSISTENT_DURABILITY_QOS // Greatest Durability

};

struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;

};

By default the kind is VOLATILE_DURABILITY_QOS.

A durability kind of VOLATILE_DURABILITY_QOS means samples are discarded after being sent to all known sub-
scribers. As a side effect, subscribers cannot recover samples sent before they connect.

42 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

A durability kind of TRANSIENT_LOCAL_DURABILITY_QOSmeans that data readers that are associated/connected with
a data writer will be sent all of the samples in the data writer’s history.

A durability kind of TRANSIENT_DURABILITY_QOS means that samples outlive a data writer and last as long as the
process is alive. The samples are kept in memory, but are not persisted to permanent storage. A data reader subscribed
to the same topic and partition within the same domain will be sent all of the cached samples that belong to the same
topic/partition.

A durability kind of PERSISTENT_DURABILITY_QOS provides basically the same functionality as transient durability
except the cached samples are persisted and will survive process destruction.

When transient or persistent durability is specified, the DURABILITY_SERVICE QoS policy specifies additional tuning
parameters for the durability cache.

The durability policy is considered during the creation of associations between data writers and data readers. The value
of both sides of the association must be compatible in order for an association to be created. The durability kind value
of the data writer must be greater than or equal to the corresponding value of the data reader. The durability kind values
are ordered as follows:

PERSISTENT_DURABILITY_QOS >
TRANSIENT_DURABILITY_QOS >
TRANSIENT_LOCAL_DURABILITY_QOS >
VOLATILE_DURABILITY_QOS

DURABILITY_SERVICE

The DURABILITY_SERVICE policy controls deletion of samples in TRANSIENT or PERSISTENT durability cache. This
policy applies to the topic and data writer entities via the durability_service member of their respective QoS structures
and provides a way to specify HISTORY and RESOURCE_LIMITS for the sample cache. Below is the IDL related to the
durability service QoS policy:

struct DurabilityServiceQosPolicy {
Duration_t service_cleanup_delay;
HistoryQosPolicyKind history_kind;
long history_depth;
long max_samples;
long max_instances;
long max_samples_per_instance;

};

The history and resource limits members are analogous to, although independent of, those found in the HISTORY and
RESOURCE_LIMITS policies. The service_cleanup_delay can be set to a desired value. By default, it is set to zero,
which means never clean up cached samples.

RESOURCE_LIMITS

The RESOURCE_LIMITS policy determines the amount of resources the service can consume in order to meet the
requested QoS. This policy applies to the topic, data reader, and data writer entities via the resource_limits member of
their respective QoS structures. Below is the IDL related to the resource limits QoS policy.

struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;

(continues on next page)

1.3. Quality of Service 43

OpenDDS, Release 3.24.0

(continued from previous page)

long max_samples_per_instance;
};

The max_samples member specifies the maximum number of samples a single data writer or data reader can manage
across all of its instances. The max_instances member specifies the maximum number of instances that a data writer
or data reader can manage. The max_samples_per_instance member specifies the maximum number of samples
that can be managed for an individual instance in a single data writer or data reader. The values of all these members
default to unlimited (DDS::LENGTH_UNLIMITED).

Resources are used by the data writer to queue samples written to the data writer but not yet sent to all data readers
because of backpressure from the transport. Resources are used by the data reader to queue samples that have been
received, but not yet read/taken from the data reader.

PARTITION

The PARTITION QoS policy allows the creation of logical partitions within a domain. It only allows data readers and
data writers to be associated if they have matched partition strings. This policy applies to the publisher and subscriber
entities via the partition member of their respective QoS structures. Below is the IDL related to the partition QoS
policy.

struct PartitionQosPolicy {
StringSeq name;

};

The name member defaults to an empty sequence of strings. The default partition name is an empty string and causes
the entity to participate in the default partition. The partition names may contain wildcard characters as defined by the
POSIX fnmatch function (POSIX 1003.2-1992 section B.6).

The establishment of data reader and data writer associations depends on matching partition strings on the publication
and subscription ends. Failure to match partitions is not considered a failure and does not trigger any callbacks or set
any status values.

The value of this policy may be changed at any time. Changes to this policy may cause associations to be removed or
added.

DEADLINE

The DEADLINE QoS policy allows the application to detect when data is not written or read within a specified amount
of time. This policy applies to the topic, data writer, and data reader entities via the deadline member of their respective
QoS structures. Below is the IDL related to the deadline QoS policy.

struct DeadlineQosPolicy {
Duration_t period;

};

The default value of the period member is infinite, which requires no behavior. When this policy is set to a finite
value, then the data writer monitors the changes to data made by the application and indicates failure to honor the
policy by setting the corresponding status condition and triggering the on_offered_deadline_missed() listener
callback. A data reader that detects that the data has not changed before the period has expired sets the corresponding
status condition and triggers the on_requested_deadline_missed() listener callback.

This policy is considered during the creation of associations between data writers and data readers. The value of both
sides of the association must be compatible in order for an association to be created. The deadline period of the data
reader must be greater than or equal to the corresponding value of data writer.

44 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

The value of this policy may change after the associated entity is enabled. In the case where the policy of a data reader
or data writer is made, the change is successfully applied only if the change remains consistent with the remote end of
all associations in which the reader or writer is participating. If the policy of a topic is changed, it will affect only data
readers and writers that are created after the change has been made. Any existing readers or writers, and any existing
associations between them, will not be affected by the topic policy value change.

LIFESPAN

The LIFESPAN QoS policy allows the application to specify when a sample expires. Expired samples will not be
delivered to subscribers. This policy applies to the topic and data writer entities via the lifespan member of their
respective QoS structures. Below is the IDL related to the lifespan QoS policy.

struct LifespanQosPolicy {
Duration_t duration;

}

The default value of the durationmember is infinite, which means samples never expire. OpenDDS currently supports
expired sample detection on the publisher side when using a DURABILITY kind other than VOLATILE. The current
OpenDDS implementation may not remove samples from the data writer and data reader caches when they expire after
being placed in the cache.

The value of this policy may be changed at any time. Changes to this policy affect only data written after the change.

USER_DATA

The USER_DATA policy applies to the domain participant, data reader, and data writer entities via the user_data member
of their respective QoS structures. Below is the IDL related to the user data QoS policy:

struct UserDataQosPolicy {
sequence<octet> value;

};

By default, the value member is not set. It can be set to any sequence of octets which can be used to attach information
to the created entity. The value of the USER_DATA policy is available in respective built-in topic data. The remote
application can obtain the information via the built-in topic and use it for its own purposes. For example, the application
could attach security credentials via the USER_DATA policy that can be used by the remote application to authenticate
the source.

TOPIC_DATA

The TOPIC_DATA policy applies to topic entities via the topic_data member of TopicQoS structures. Below is the IDL
related to the topic data QoS policy:

struct TopicDataQosPolicy {
sequence<octet> value;

};

By default, the value is not set. It can be set to attach additional information to the created topic. The value of the
TOPIC_DATA policy is available in data writer, data reader, and topic built-in topic data. The remote application can
obtain the information via the built-in topic and use it in an application-defined way.

1.3. Quality of Service 45

OpenDDS, Release 3.24.0

GROUP_DATA

The GROUP_DATA policy applies to the publisher and subscriber entities via the group_data member of their respective
QoS structures. Below is the IDL related to the group data QoS policy:

struct GroupDataQosPolicy {
sequence<octet> value;

};

By default, the value member is not set. It can be set to attach additional information to the created entities. The
value of the GROUP_DATA policy is propagated via built-in topics. The data writer built-in topic data contains the
GROUP_DATA from the publisher and the data reader built-in topic data contains the GROUP_DATA from the subscriber.
The GROUP_DATA policy could be used to implement matching mechanisms similar to those of the PARTITION policy
described in 1.1.6 except the decision could be made based on an application-defined policy.

TRANSPORT_PRIORITY

The TRANSPORT_PRIORITY policy applies to topic and data writer entities via the transport_priority member of their
respective QoS policy structures. Below is the IDL related to the TransportPriority QoS policy:

struct TransportPriorityQosPolicy {
long value;

};

The default value member of transport_priority is zero. This policy is considered a hint to the transport layer
to indicate at what priority to send messages. Higher values indicate higher priority. OpenDDS maps the priority
value directly onto thread and DiffServ codepoint values. A default priority of zero will not modify either threads or
codepoints in messages.

OpenDDS will attempt to set the thread priority of the sending transport as well as any associated receiving trans-
port. Transport priority values are mapped from zero (default) through the maximum thread priority linearly without
scaling. If the lowest thread priority is different from zero, then it is mapped to the transport priority value of zero.
Where priority values on a system are inverted (higher numeric values are lower priority), OpenDDS maps these to an
increasing priority value starting at zero. Priority values lower than the minimum (lowest) thread priority on a system
are mapped to that lowest priority. Priority values greater than the maximum (highest) thread priority on a system
are mapped to that highest priority. On most systems, thread priorities can only be set when the process scheduler
has been set to allow these operations. Setting the process scheduler is generally a privileged operation and will re-
quire system privileges to perform. On POSIX based systems, the system calls of sched_get_priority_min() and
sched_get_priority_max() are used to determine the system range of thread priorities.

OpenDDS will attempt to set the DiffServ codepoint on the socket used to send data for the data writer if it is supported
by the transport implementation. If the network hardware honors the codepoint values, higher codepoint values will
result in better (faster) transport for higher priority samples. The default value of zero will be mapped to the (default)
codepoint of zero. Priority values from 1 through 63 are then mapped to the corresponding codepoint values, and
higher priority values are mapped to the highest codepoint value (63).

OpenDDS does not currently support modifications of the transport_priority policy values after creation of the data
writer. This can be worked around by creating new data writers as different priority values are required.

46 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

LATENCY_BUDGET

The LATENCY_BUDGET policy applies to topic, data reader, and data writer entities via the latency_budget member of
their respective QoS policy structures. Below is the IDL related to the LatencyBudget QoS policy:

struct LatencyBudgetQosPolicy {
Duration_t duration;

};

The default value of duration is zero indicating that the delay should be minimized. This policy is considered a
hint to the transport layer to indicate the urgency of samples being sent. OpenDDS uses the value to bound a delay
interval for reporting unacceptable delay in transporting samples from publication to subscription. This policy is used
for monitoring purposes only at this time. Use the TRANSPORT_PRIORITY policy to modify the sending of samples.
The data writer policy value is used only for compatibility comparisons and if left at the default value of zero will result
in all requested duration values from data readers being matched.

An additional listener extension has been added to allow reporting delays in excess of the policy duration setting.
The OpenDDS::DCPS::DataReaderListener interface has an additional operation for notification that samples were
received with a measured transport delay greater than the latency_budget policy duration. The IDL for this method is:

struct BudgetExceededStatus {
long total_count;
long total_count_change;
DDS::InstanceHandle_t last_instance_handle;

};

void on_budget_exceeded(
in DDS::DataReader reader,
in BudgetExceededStatus status);

To use the extended listener callback you will need to derive the listener implementation from the extended interface,
as shown in the following code fragment:

class DataReaderListenerImpl
: public virtual
OpenDDS::DCPS::LocalObject<OpenDDS::DCPS::DataReaderListener>

Then you must provide a non-null implementation for the on_budget_exceeded() operation. Note that you will need
to provide empty implementations for the following extended operations as well:

on_subscription_disconnected()
on_subscription_reconnected()
on_subscription_lost()
on_connection_deleted()

OpenDDS also makes the summary latency statistics available via an extended interface of the data reader. This ex-
tended interface is located in the OpenDDS::DCPS module and the IDL is defined as:

struct LatencyStatistics {
GUID_t publication;
unsigned long n;
double maximum;
double minimum;
double mean;
double variance;

(continues on next page)

1.3. Quality of Service 47

OpenDDS, Release 3.24.0

(continued from previous page)

};

typedef sequence<LatencyStatistics> LatencyStatisticsSeq;

local interface DataReaderEx : DDS::DataReader {
/// Obtain a sequence of statistics summaries.
void get_latency_stats(inout LatencyStatisticsSeq stats);

/// Clear any intermediate statistical values.
void reset_latency_stats();

/// Statistics gathering enable state.
attribute boolean statistics_enabled;

};

To gather this statistical summary data you will need to use the extended interface. You can do so simply by dynamically
casting the OpenDDS data reader pointer and calling the operations directly. In the following example, we assume that
reader is initialized correctly by calling DDS::Subscriber::create_datareader():

DDS::DataReader_var reader;
// ...

// To start collecting new data.
dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->

reset_latency_stats();
dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
statistics_enabled(true);

// ...

// To collect data.
OpenDDS::DCPS::LatencyStatisticsSeq stats;
dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
get_latency_stats(stats);

for (unsigned long i = 0; i < stats.length(); ++i)
{
std::cout << "stats[" << i << "]:" << std::endl;
std::cout << " n = " << stats[i].n << std::endl;
std::cout << " max = " << stats[i].maximum << std::endl;
std::cout << " min = " << stats[i].minimum << std::endl;
std::cout << " mean = " << stats[i].mean << std::endl;
std::cout << " variance = " << stats[i].variance << std::endl;

}

48 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

ENTITY_FACTORY

The ENTITY_FACTORY policy controls whether entities are automatically enabled when they are created. Below is the
IDL related to the Entity Factory QoS policy:

struct EntityFactoryQosPolicy {
boolean autoenable_created_entities;

};

This policy can be applied to entities that serve as factories for other entities and controls whether or not entities cre-
ated by those factories are automatically enabled upon creation. This policy can be applied to the domain participant
factory (as a factory for domain participants), domain participant (as a factory for publishers, subscribers, and top-
ics), publisher (as a factory for data writers), or subscriber (as a factory for data readers). The default value for the
autoenable_created_entities member is true, indicating that entities are automatically enabled when they are
created. Applications that wish to explicitly enable entities some time after they are created should set the value of
the autoenable_created_entities member of this policy to false and apply the policy to the appropriate factory
entities. The application must then manually enable the entity by calling the entity’s enable() operation.

The value of this policy may be changed at any time. Changes to this policy affect only entities created after the change.

PRESENTATION

The PRESENTATIONQoS policy controls how changes to instances by publishers are presented to data readers. It affects
the relative ordering of these changes and the scope of this ordering. Additionally, this policy introduces the concept
of coherent change sets. Here is the IDL for the Presentation QoS:

enum PresentationQosPolicyAccessScopeKind {
INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS

};

struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;

};

The scope of these changes (access_scope) specifies the level in which an application may be made aware:

• INSTANCE_PRESENTATION_QOS (the default) indicates that changes occur to instances independently. Instance
access essentially acts as a no-op with respect to coherent_access and ordered_access. Setting either of these
values to true has no observable affect within the subscribing application.

• TOPIC_PRESENTATION_QOS indicates that accepted changes are limited to all instances within the same data
reader or data writer.

• GROUP_PRESENTATION_QOS indicates that accepted changes are limited to all instances within the same pub-
lisher or subscriber.

Coherent changes (coherent_access) allow one or more changes to an instance be made available to an associated
data reader as a single change. If a data reader does not receive the entire set of coherent changes made by a publisher,
then none of the changes are made available. The semantics of coherent changes are similar in nature to those found in
transactions provided by many relational databases. By default, coherent_access is false.

1.3. Quality of Service 49

OpenDDS, Release 3.24.0

Changes may also be made available to associated data readers in the order sent by the publisher (ordered_access).
This is similar in nature to the DESTINATION_ORDER QoS policy, however ordered_access permits data to be ordered
independently of instance ordering. By default, ordered_access is false.

Note: This policy controls the ordering and scope of samples made available to the subscriber, but the subscriber
application must use the proper logic in reading samples to guarantee the requested behavior. For more details, see
Section 2.2.2.5.1.9 of the Version 1.4 DDS Specification.

DESTINATION_ORDER

The DESTINATION_ORDER QoS policy controls the order in which samples within a given instance are made available
to a data reader. If a history depth of one (the default) is specified, the instance will reflect the most recent value written
by all data writers to that instance. Here is the IDL for the Destination Order Qos:

enum DestinationOrderQosPolicyKind {
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

};

struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;

};

The BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS value (the default) indicates that samples within an
instance are ordered in the order in which they were received by the data reader. Note that samples are
not necessarily received in the order sent by the same data writer. To enforce this type of ordering, the
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS value should be used.

The BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS value indicates that samples within an instance are ordered
based on a timestamp provided by the data writer. It should be noted that if multiple data writers write to the same
instance, care should be taken to ensure that clocks are synchronized to prevent incorrect ordering on the data reader.

WRITER_DATA_LIFECYCLE

The WRITER_DATA_LIFECYCLE QoS policy controls the lifecycle of data instances managed by a data writer. Here is
the IDL for the Writer Data Lifecycle QoS policy:

struct WriterDataLifecycleQosPolicy {
boolean autodispose_unregistered_instances;

};

When autodispose_unregistered_instances is set to true (the default), a data writer disposes an instance when
it is unregistered. In some cases, it may be desirable to prevent an instance from being disposed when an instance is
unregistered. This policy could, for example, allow an EXCLUSIVE data writer to gracefully defer to the next data writer
without affecting the instance state. Deleting a data writer implicitly unregisters all of its instances prior to deletion.

50 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

READER_DATA_LIFECYCLE

The READER_DATA_LIFECYCLE QoS policy controls the lifecycle of data instances managed by a data reader. Here is
the IDL for the Reader Data Lifecycle QoS policy:

struct ReaderDataLifecycleQosPolicy {
Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;

};

Normally, a data reader maintains data for all instances until there are no more associated data writers for the instance,
the instance has been disposed, or the data has been taken by the user.

In some cases, it may be desirable to constrain the reclamation of these resources. This policy could, for example,
permit a late-joining data writer to prolong the lifetime of an instance in fail-over situations.

The autopurge_nowriter_samples_delay controls how long the data reader waits before re-
claiming resources once an instance transitions to the NOT_ALIVE_NO_WRITERS state. By default,
autopurge_nowriter_samples_delay is infinite.

The autopurge_disposed_samples_delay controls how long the data reader waits before reclaiming resources
once an instance transitions to the NOT_ALIVE_DISPOSED state. By default, autopurge_disposed_samples_delay
is infinite.

TIME_BASED_FILTER

The TIME_BASED_FILTER QoS policy controls how often a data reader may be interested in changes in values to a data
instance. Here is the IDL for the Time Based Filter QoS:

struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;

};

An interval (minimum_separation) may be specified on the data reader. This interval defines a minimum delay be-
tween instance value changes; this permits the data reader to throttle changes without affecting the state of the associated
data writer. By default, minimum_separation is zero, which indicates that no data is filtered. This QoS policy does not
conserve bandwidth as instance value changes are still sent to the subscriber process. It only affects which samples are
made available via the data reader.

OWNERSHIP

The OWNERSHIP policy controls whether more than one Data Writer is able to write samples for the same data-object
instance. Ownership can be EXCLUSIVE or SHARED. Below is the IDL related to the Ownership QoS policy:

enum OwnershipQosPolicyKind {
SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS

};

struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;

};

If the kind member is set to SHARED_OWNERSHIP_QOS, more than one Data Writer is allowed to update the same data-
object instance. If the kind member is set to EXCLUSIVE_OWNERSHIP_QOS, only one Data Writer is allowed to update

1.3. Quality of Service 51

OpenDDS, Release 3.24.0

a given data-object instance (i.e., the Data Writer is considered to be the owner of the instance) and associated Data
Readers will only see samples written by that Data Writer. The owner of the instance is determined by value of the
OWNERSHIP_STRENGTH policy; the data writer with the highest value of strength is considered the owner of the data-
object instance. Other factors may also influence ownership, such as whether the data writer with the highest strength
is “alive” (as defined by the LIVELINESS policy) and has not violated its offered publication deadline constraints (as
defined by the DEADLINE policy).

OWNERSHIP_STRENGTH

The OWNERSHIP_STRENGTH policy is used in conjunction with the OWNERSHIP policy, when the OWNERSHIP kind is
set to EXCLUSIVE. Below is the IDL related to the Ownership Strength QoS policy:

struct OwnershipStrengthQosPolicy {
long value;

};

The value member is used to determine which Data Writer is the owner of the data-object instance. The default value
is zero.

1.3.3 Policy Example

The following sample code illustrates some policies being set and applied for a publisher.

DDS::DataWriterQos dw_qos;
pub->get_default_datawriter_qos (dw_qos);

dw_qos.history.kind = DDS::KEEP_ALL_HISTORY_QOS;

dw_qos.reliability.kind = DDS::RELIABLE_RELIABILITY_QOS;
dw_qos.reliability.max_blocking_time.sec = 10;
dw_qos.reliability.max_blocking_time.nanosec = 0;

dw_qos.resource_limits.max_samples_per_instance = 100;

DDS::DataWriter_var dw =
pub->create_datawriter(topic,

dw_qos,
0, // No listener
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

This code creates a publisher with the following qualities:

• HISTORY set to Keep All

• RELIABILITY set to Reliable with a maximum blocking time of 10 seconds

• The maximum samples per instance resource limit set to 100

This means that when 100 samples are waiting to be delivered, the writer can block up to 10 seconds before returning
an error code. These same QoS settings on the Data Reader side would mean that up to 100 unread samples are queued
by the framework before any are rejected. Rejected samples are dropped and the SampleRejectedStatus is updated.

52 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

1.4 Conditions and Listeners

1.4.1 Introduction

The DDS specification defines two separate mechanisms for notifying applications of DCPS communication status
changes. Most of the status types define a structure that contains information related to the change of status and can
be detected by the application using conditions or listeners. The different status types are described in Communication
Status Types.

Each entity type (domain participant, topic, publisher, subscriber, data reader, and data writer) defines its own corre-
sponding listener interface. Applications can implement this interface and then attach their listener implementation to
the entity. Each listener interface contains an operation for each status that can be reported for that entity. The listener
is asynchronously called back with the appropriate operation whenever a qualifying status change occurs. Details of
the different listener types are discussed in Listeners.

Conditions are used in conjunction with Wait Sets to let applications synchronously wait on events. The basic usage
pattern for conditions involves creating the condition objects, attaching them to a wait set, and then waiting on the wait
set until one of the conditions is triggered. The result of wait tells the application which conditions were triggered,
allowing the application to take the appropriate actions to get the corresponding status information. Conditions are
described in greater detail in Conditions.

1.4.2 Communication Status Types

Each status type is associated with a particular entity type. This section is organized by the entity types, with the
corresponding statuses described in subsections under the associated entity type.

Most of the statuses below are plain communication statuses. The exceptions are DATA_ON_READERS and
DATA_AVAILABLE which are read statuses. Plain communication statuses define an IDL data structure. Their cor-
responding section below describes this structure and its fields. The read statuses are simple notifications to the appli-
cation which then reads or takes the samples as desired.

Incremental values in the status data structure report a change since the last time the status was accessed. A status is
considered accessed when a listener is called for that status or the status is read from its entity.

Fields in the status data structure with a type of InstanceHandle_t identify an entity (topic, data reader, data writer,
etc.) by the instance handle used for that entity in the Built-In-Topics.

Topic Status Types

Inconsistent Topic Status

The INCONSISTENT_TOPIC status indicates that a topic was attempted to be registered that already exists with different
characteristics. Typically, the existing topic may have a different type associated with it. The IDL associated with the
Inconsistent Topic Status is listed below:

struct InconsistentTopicStatus {
long total_count;
long total_count_change;

};

The total_count value is the cumulative count of topics that have been reported as inconsistent. The
total_count_change value is the incremental count of inconsistent topics since the last time this status was accessed.

1.4. Conditions and Listeners 53

OpenDDS, Release 3.24.0

Subscriber Status Types

Data On Readers Status

The DATA_ON_READERS status indicates that new data is available on some of the data readers associated with the
subscriber. This status is considered a read status and does not define an IDL structure. Applications receiving this
status can call get_datareaders() on the subscriber to get the set of data readers with data available.

Data Reader Status Types

Sample Rejected Status

The SAMPLE_REJECTED status indicates that a sample received by the data reader has been rejected. The IDL associated
with the Sample Rejected Status is listed below:

enum SampleRejectedStatusKind {
NOT_REJECTED,
REJECTED_BY_INSTANCES_LIMIT,
REJECTED_BY_SAMPLES_LIMIT,
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT

};

struct SampleRejectedStatus {
long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;

};

The total_count value is the cumulative count of samples that have been reported as rejected. The
total_count_change value is the incremental count of rejected samples since the last time this status was accessed.
The last_reason value is the reason the most recently rejected sample was rejected. The last_instance_handle
value indicates the instance of the last rejected sample.

Liveliness Changed Status

The LIVELINESS_CHANGED status indicates that there have been liveliness changes for one or more data writers that
are publishing instances for this data reader. The IDL associated with the Liveliness Changed Status is listed below:

struct LivelinessChangedStatus {
long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;

};

The alive_count value is the total number of data writers currently active on the topic this data reader is reading.
The not_alive_count value is the total number of data writers writing to the data reader’s topic that are no longer
asserting their liveliness. The alive_count_change value is the change in the alive count since the last time the status
was accessed. The not_alive_count_change value is the change in the not alive count since the last time the status
was accessed. The last_publication_handle is the handle of the last data writer whose liveliness has changed.

54 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Requested Deadline Missed Status

The REQUESTED_DEADLINE_MISSED status indicates that the deadline requested via the Deadline QoS policy was not
respected for a specific instance. The IDL associated with the Requested Deadline Missed Status is listed below:

struct RequestedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

};

The total_count value is the cumulative count of missed requested deadlines that have been reported. The
total_count_change value is the incremental count of missed requested deadlines since the last time this status
was accessed. The last_instance_handle value indicates the instance of the last missed deadline.

Requested Incompatible QoS Status

The REQUESTED_INCOMPATIBLE_QOS status indicates that one or more QoS policy values that were requested were
incompatible with what was offered. The IDL associated with the Requested Incompatible QoS Status is listed below:

struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;

};

typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct RequestedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

};

The total_count value is the cumulative count of times data writers with incompatible QoS have been reported. The
total_count_change value is the incremental count of incompatible data writers since the last time this status was
accessed. The last_policy_id value identifies one of the QoS policies that was incompatible in the last incompati-
bility detected. The policies value is a sequence of values that indicates the total number of incompatibilities that have
been detected for each QoS policy.

Data Available Status

The DATA_AVAILABLE status indicates that samples are available on the data writer. This status is considered a read sta-
tus and does not define an IDL structure. Applications receiving this status can use the various take and read operations
on the data reader to retrieve the data.

1.4. Conditions and Listeners 55

OpenDDS, Release 3.24.0

Sample Lost Status

The SAMPLE_LOST status indicates that a sample has been lost and never received by the data reader. The IDL associated
with the Sample Lost Status is listed below:

struct SampleLostStatus {
long total_count;
long total_count_change;

};

The total_count value is the cumulative count of samples reported as lost. The total_count_change value is the
incremental count of lost samples since the last time this status was accessed.

Subscription Matched Status

The SUBSCRIPTION_MATCHED status indicates that either a compatible data writer has been matched or a previously
matched data writer has ceased to be matched. The IDL associated with the Subscription Matched Status is listed
below:

struct SubscriptionMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;

};

The total_count value is the cumulative count of data writers that have compatibly matched this data reader.
The total_count_change value is the incremental change in the total count since the last time this status was
accessed. The current_count value is the current number of data writers matched to this data reader. The
current_count_change value is the change in the current count since the last time this status was accessed. The
last_publication_handle value is a handle for the last data writer matched.

Data Writer Status Types

Liveliness Lost Status

The LIVELINESS_LOST status indicates that the liveliness that the data writer committed through its Liveliness QoS
has not been respected. This means that any connected data readers will consider this data writer no longer active.The
IDL associated with the Liveliness Lost Status is listed below:

struct LivelinessLostStatus {
long total_count;
long total_count_change;

};

The total_count value is the cumulative count of times that an alive data writer has become not alive. The
total_count_change value is the incremental change in the total count since the last time this status was accessed.

56 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Offered Deadline Missed Status

The OFFERED_DEADLINE_MISSED status indicates that the deadline offered by the data writer has been missed for one
or more instances. The IDL associated with the Offered Deadline Missed Status is listed below:

struct OfferedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

};

The total_count value is the cumulative count of times that deadlines have been missed for an instance. The
total_count_change value is the incremental change in the total count since the last time this status was accessed.
The last_instance_handle value indicates the last instance that has missed a deadline.

Offered Incompatible QoS Status

The OFFERED_INCOMPATIBLE_QOS status indicates that an offered QoS was incompatible with the requested QoS of
a data reader. The IDL associated with the Offered Incompatible QoS Status is listed below:

struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;

};
typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct OfferedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

};

The total_count value is the cumulative count of times that data readers with incompatible QoS have been found.
The total_count_change value is the incremental change in the total count since the last time this status was ac-
cessed. The last_policy_id value identifies one of the QoS policies that was incompatible in the last incompatibility
detected. The policies value is a sequence of values that indicates the total number of incompatibilities that have
been detected for each QoS policy.

Publication Matched Status

The PUBLICATION_MATCHED status indicates that either a compatible data reader has been matched or a previously
matched data reader has ceased to be matched. The IDL associated with the Publication Matched Status is listed
below:

struct PublicationMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_subscription_handle;

};

1.4. Conditions and Listeners 57

OpenDDS, Release 3.24.0

The total_count value is the cumulative count of data readers that have compatibly matched this data writer.
The total_count_change value is the incremental change in the total count since the last time this status was
accessed. The current_count value is the current number of data readers matched to this data writer. The
current_count_change value is the change in the current count since the last time this status was accessed. The
last_subscription_handle value is a handle for the last data reader matched.

1.4.3 Listeners

Each entity defines its own listener interface based on the statuses it can report. Any entity’s listener interface also
inherits from the listeners of its owned entities, allowing it to handle statuses for owned entities as well. For example,
a subscriber listener directly defines an operation to handle Data On Readers statuses and inherits from the data reader
listener as well.

Each status operation takes the general form of on_<status_name>(<entity>, <status_struct>), where
<status_name> is the name of the status being reported, <entity> is a reference to the entity the status is reported
for, and <status_struct> is the structure with details of the status. Read statuses omit the second parameter. For
example, here is the operation for the Sample Lost status:

void on_sample_lost(in DataReader the_reader, in SampleLostStatus status);

Listeners can either be passed to the factory function used to create their entity or explicitly set by calling
set_listener() on the entity after it is created. Both of these functions also take a status mask as a parameter.
The mask indicates which statuses are enabled in that listener. Mask bit values for each status are defined in DdsD-
cpsInfrastructure.idl:

module DDS {
typedef unsigned long StatusKind;
typedef unsigned long StatusMask; // bit-mask StatusKind

const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS= 0x0001 << 6;
const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;

};

Simply do a bit-wise “or” of the desired status bits to construct a mask for your listener. Here is an example of attaching
a listener to a data reader (for just Data Available statuses):

DDS::DataReaderListener_var listener (new DataReaderListenerImpl);
// Create the Datareader
DDS::DataReader_var dr = sub->create_datareader(
topic,
DATAREADER_QOS_DEFAULT,
listener,
DDS::DATA_AVAILABLE_STATUS);

58 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Here is an example showing how to change the listener using set_listener():

dr->set_listener(listener,
DDS::DATA_AVAILABLE_STATUS | DDS::LIVELINESS_CHANGED_STATUS);

When a plain communication status changes, OpenDDS invokes the most specific relevant listener operation. This
means, for example, that a data reader’s listener would take precedence over the subscriber’s listener for statuses related
to the data reader.

A common “gotcha” when using set_listener is that the listener is not invoked immediately. Instead, the listener will
be invoked for the next status change. Consequently, usages of set_listener should 1) invoke the listener manually
after calling set_listener and 2) ensure that the listener methods are thread safe.

The following sections define the different listener interfaces. For more details on the individual statuses, see Commu-
nication Status Types.

Topic Listener

interface TopicListener : Listener {
void on_inconsistent_topic(in Topic the_topic,

in InconsistentTopicStatus status);
};

Data Writer Listener

interface DataWriterListener : Listener {
void on_offered_deadline_missed(in DataWriter writer,

in OfferedDeadlineMissedStatus status);
void on_offered_incompatible_qos(in DataWriter writer,

in OfferedIncompatibleQosStatus status);
void on_liveliness_lost(in DataWriter writer,

in LivelinessLostStatus status);
void on_publication_matched(in DataWriter writer,

in PublicationMatchedStatus status);
};

Publisher Listener

interface PublisherListener : DataWriterListener {
};

1.4. Conditions and Listeners 59

OpenDDS, Release 3.24.0

Data Reader Listener

interface DataReaderListener : Listener {
void on_requested_deadline_missed(in DataReader the_reader,

in RequestedDeadlineMissedStatus status);
void on_requested_incompatible_qos(in DataReader the_reader,

in RequestedIncompatibleQosStatus status);
void on_sample_rejected(in DataReader the_reader,

in SampleRejectedStatus status);
void on_liveliness_changed(in DataReader the_reader,

in LivelinessChangedStatus status);
void on_data_available(in DataReader the_reader);
void on_subscription_matched(in DataReader the_reader,

in SubscriptionMatchedStatus status);
void on_sample_lost(in DataReader the_reader,

in SampleLostStatus status);
};

Subscriber Listener

interface SubscriberListener : DataReaderListener {
void on_data_on_readers(in Subscriber the_subscriber);

};

Domain Participant Listener

interface DomainParticipantListener : TopicListener,
PublisherListener,
SubscriberListener {

};

1.4.4 Conditions

The DDS specification defines four types of condition:

• Status Condition

• Read Condition

• Query Condition

• Guard Condition

60 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Status Condition

Each entity has a status condition object associated with it and a get_statuscondition() operation that lets applica-
tions access the status condition. Each condition has a set of enabled statuses that can trigger that condition. Attaching
one or more conditions to a wait set allows application developers to wait on the condition’s status set. Once an enabled
status is triggered, the wait call returns from the wait set and the developer can query the relevant status condition on
the entity. Querying the status condition resets the status.

Status Condition Example

This example enables the Offered Incompatible QoS status on a data writer, waits for it, and then queries it when it
triggers. The first step is to get the status condition from the data writer, enable the desired status, and attach it to a wait
set:

DDS::StatusCondition_var cond = data_writer->get_statuscondition();
cond->set_enabled_statuses(DDS::OFFERED_INCOMPATIBLE_QOS_STATUS);

DDS::WaitSet_var ws = new DDS::WaitSet;
ws->attach_condition(cond);

Now we can wait ten seconds for the condition:

DDS::ConditionSeq active;
DDS::Duration_t ten_seconds = {10, 0};
int result = ws->wait(active, ten_seconds);

The result of this operation is either a timeout or a set of triggered conditions in the active sequence:

if (result == DDS::RETCODE_TIMEOUT) {
cout << "Wait timed out" << std::endl;

} else if (result == DDS::RETCODE_OK) {
DDS::OfferedIncompatibleQosStatus incompatibleStatus;
data_writer->get_offered_incompatible_qos(incompatibleStatus);
// Access status fields as desired...

}

Developers have the option of attaching multiple conditions to a single wait set as well as enabling multiple statuses
per condition.

Additional Condition Types

The DDS specification also defines three other types of conditions: read conditions, query conditions, and guard condi-
tions. These conditions do not directly involve the processing of statuses but allow the integration of other activities into
the condition and wait set mechanisms. These are other conditions are briefly described here. For more information
see the DDS specification or the OpenDDS tests in tests/.

1.4. Conditions and Listeners 61

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/

OpenDDS, Release 3.24.0

Read Conditions

Read conditions are created using the data reader and the same masks that are passed to the read and take operations.
When waiting on this condition, it is triggered whenever samples match the specified masks. Those samples can then
be retrieved using the read_w_condition() and take_w_condition() operations which take the read condition as
a parameter.

Query Conditions

Query conditions are a specialized form of read conditions that are created with a limited form of an SQL-like query.
This allows applications to filter the data samples that trigger the condition and then are read use the normal read
condition mechanisms. See Query Condition for more information about query conditions.

Guard Conditions

The guard condition is a simple interface that allows the application to create its own condition object and trigger it
when application events (external to OpenDDS) occur.

1.5 Content-Subscription Profile

1.5.1 Introduction

The Content-Subscription Profile of DDS consists of three features which enable a data reader’s behavior to be influ-
enced by the content of the data samples it receives. These three features are:

• Content-Filtered Topic

• Query Condition

• Multi Topic

The content-filtered topic and multi topic interfaces inherit from the TopicDescription interface (and not from the
Topic interface, as the names may suggest).

Content-filtered topic and query condition allow filtering (selection) of data samples using a SQL-like parameterized
query string. Additionally, query condition allows sorting the result set returned from a data reader’s read() or take()
operation. Multi topic also has this selection capability as well as the ability to aggregate data from different data writers
into a single data type and data reader.

If you are not planning on using the Content-Subscription Profile features in your application, you can configure
OpenDDS to remove support for it at build time (Content-Subscription Profile).

1.5.2 Content-Filtered Topic

The domain participant interface contains operations for creating and deleting a content-filtered topic. Creating a
content-filtered topic requires the following parameters:

• Name

Assigns a name to this content-filtered topic which could later be used with the lookup_topicdescription()
operation.

62 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

• Related topic

Specifies the topic that this content-filtered topic is based on. This is the same topic that matched data writers
will use to publish data samples.

• Filter expression

An SQL-like expression (Filter Expressions) which defines the subset of samples published on the related topic
that should be received by the content-filtered topic’s data readers.

• Expression parameters

The filter expression can contain parameter placeholders. This argument provides initial values for those param-
eters. The expression parameters can be changed after the content-filtered topic is created (the filter expression
cannot be changed).

Once the content-filtered topic has been created, it is used by the subscriber’s create_datareader() operation to
obtain a content-filtering data reader. This data reader is functionally equivalent to a normal data reader except that
incoming data samples which do not meet the filter expression’s criteria are dropped.

Filter expressions are first evaluated at the publisher so that data samples which would be ignored by the subscriber can
be dropped before even getting to the transport. This feature can be turned off with -DCPSPublisherContentFilter
0 or the equivalent setting in the [common] section of the configuration file. The behavior of non-default DEADLINE or
LIVELINESS QoS policies may be affected by this policy. Special consideration must be given to how the “missing”
samples impact the QoS behavior, see the document in docs/design/CONTENT_SUBSCRIPTION.

Note: RTPS_UDP transport does not always do Writer-side filtering. It does not currently implement transport level
filtering, but may be able to filter above the transport layer.

Filter Expressions

The formal grammar for filter expressions is defined in Annex A of the DDS specification. This section provides an
informal summary of that grammar. Query expressions (Query Expressions) and topic expressions (Topic Expressions)
are also defined in Annex A.

Filter expressions are combinations of one or more predicates. Each predicate is a logical expression taking one of two
forms:

• <arg1> <RelOp><arg2>

• – arg1 and arg2 are arguments which may be either a literal value (integer, character, floating-point, string,
or enumeration), a parameter placeholder of the form %n (where n is a zero-based index into the parameter
sequence), or a field reference.

– At least one of the arguments must be a field reference, which is the name of an IDL struct field, optionally
followed by any number of ‘.’ and another field name to represent nested structures.

– RelOp is a relational operator from the list: =, >, >=, <, <=, <>, and like. like is a wildcard match using
% to match any number of characters and _ to match a single character.

– Examples of this form of predicate include: a = 'z', b <> 'str', c < d, e = 'enumerator', f >=
3.14e3, 27 > g, h <> i, j.k.l like %0

• <arg1> [NOT] BETWEEN <arg2> AND <arg3>

• – In this form, argument 1 must be a field reference and arguments 2 and 3 must each be a literal value or
parameter placeholder.

Any number of predicates can be combined through the use of parenthesis and the Boolean operators AND, OR, and NOT
to form a filter expression.

1.5. Content-Subscription Profile 63

OpenDDS, Release 3.24.0

Expression Parameters

Expression parameters allow more flexibility since the filter can effectively change at runtime. To use expression
parameters, add parameter placeholders in the filter expression wherever a literal would be used. For example, an
expression to select all samples that have a string field with a fixed value (m = ‘A’) could instead use a placeholder
which would be written as m = %0. Placeholders consist of a percent sign followed by a decimal integer between 0 and
99 inclusive.

Using a filter that contains placeholders requires values for each placeholder which is used in the expression to
be provided by the application in the corresponding index of the expression parameters sequence (placeholder
%0 is sequence[0]). The application can set the parameter sequence when the content-filtered topic is created
(create_contentfilteredtopic) or after it already exists by using set_expression_parameters. A valid value
for each used placeholder must be in the parameters sequence whenever the filter is evaluated, for example when a data
reader using the content-filtered topic is enabled.

The type used for the parameters sequence in the DDS-DCPS API is a sequence of strings. The application must format
this string based on how the parameter is used:

• For a number (integer or floating point), provide the decimal representation in the same way it would appear as
a C++ or Java literal.

• For a character or string, provide the character(s) directly without quoting

• For an enumerated type, provide one of the enumerators as if it was a string

Filtering and Dispose/Unregister Samples

DataReaders without filtering can see samples with the valid_data field of SampleInfo set to false. This happens when
the matching DataWriter disposes or unregisters the instance. Content filtering (whether achieved through Content-
Filtered Topics, Query Conditions, or Multi Topics) will filter such samples when the filter expression explicitly uses
key fields. Filter expressions that don’t meet that criteria will result in no such samples passing the filter.

Content-Filtered Topic Example

The code snippet below creates a content-filtered topic for the Message type. First, here is the IDL for Message:

module Messenger {
@topic
struct Message {
long id;

};
};

Next we have the code that creates the data reader:

CORBA::String_var type_name = message_type_support->get_type_name();
DDS::Topic_var topic = dp->create_topic("MyTopic",

type_name,
TOPIC_QOS_DEFAULT, 0, 0);

DDS::ContentFilteredTopic_var cft =
participant->create_contentfilteredtopic("MyTopic-Filtered",

topic,
"id > 1",
StringSeq());

DDS::DataReader_var dr =
(continues on next page)

64 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

subscriber->create_datareader(cft,
DATAREADER_QOS_DEFAULT, 0, 0);

The data reader ‘dr’ will only receive samples that have values of ‘id’ greater than 1.

1.5.3 Query Condition

The query condition interface inherits from the read condition interface, therefore query conditions have all of the
capabilities of read conditions along with the additional capabilities described in this section. One of those inherited
capabilities is that the query condition can be used like any other condition with a wait set (Conditions).

The DataReader interface contains operations for creating (create_querycondition) and deleting
(delete_readcondition) a query condition. Creating a query condition requires the following parameters:

• Sample, view, and instance state masks

These are the same state masks that would be passed to create_readcondition(), read(), or take().

• Query expression

An SQL-like expression (see Query Expressions) describing a subset of samples which cause the condition
to be triggered. This same expression is used to filter the data set returned from a read_w_condition() or
take_w_condition() operation. It may also impose a sort order (ORDER BY) on that data set.

• Query parameters

The query expression can contain parameter placeholders. This argument provides initial values for those pa-
rameters. The query parameters can be changed after the query condition is created (the query expression cannot
be changed).

A particular query condition can be used with a wait set (attach_condition), with a
data reader (read_w_condition, take_w_condition, read_next_instance_w_condition,
take_next_instance_w_condition), or both. When used with a wait set, the ORDER BY clause has no ef-
fect on triggering the wait set. When used with a data reader’s read*() or take*() operation, the resulting data set
will only contain samples which match the query expression and they will be ordered by the ORDER BY fields, if an
ORDER BY clause is present.

Query Expressions

Query expressions are a super set of filter expressions (Filter Expressions). Following the filter expression, the query
expression can optionally have an ORDER BY keyword followed by a comma-separated list of field references. If the
ORDER BY clause is present, the filter expression may be empty. The following strings are examples of query expres-
sions:

• m > 100 ORDER BY n

• ORDER BY p.q, r, s.t.u

• NOT v LIKE ‘z%’

Query expressions can use parameter placeholders in the same way that filter expressions (for content-filtered topics)
use them. See Expression Parameters for details.

1.5. Content-Subscription Profile 65

OpenDDS, Release 3.24.0

Query Condition Example

The following code snippet creates and uses a query condition for a type that uses struct ‘Message’ with field ‘key’ (an
integral type).

DDS::QueryCondition_var dr_qc =
dr->create_querycondition(DDS::ANY_SAMPLE_STATE,

DDS::ANY_VIEW_STATE,
DDS::ALIVE_INSTANCE_STATE,
"key > 1",
DDS::StringSeq());

DDS::WaitSet_var ws = new DDS::WaitSet;
ws->attach_condition(dr_qc);
DDS::ConditionSeq active;
DDS::Duration_t three_sec = {3, 0};
DDS::ReturnCode_t ret = ws->wait(active, three_sec);
// error handling not shown

ws->detach_condition(dr_qc);
MessageDataReader_var mdr = MessageDataReader::_narrow(dr);
MessageSeq data;
DDS::SampleInfoSeq infoseq;
ret = mdr->take_w_condition(data, infoseq, DDS::LENGTH_UNLIMITED, dr_qc);
// error handling not shown

dr->delete_readcondition(dr_qc);

Any sample received with key <= 1 would neither trigger the condition (to satisfy the wait) nor be returned in the
‘data’ sequence from take_w_condition().

1.5.4 Multi Topic

Multi topic is a more complex feature than the other two Content-Subscription features, therefore describing it requires
some new terminology.

The MultiTopic interface inherits from the TopicDescription interface, just like ContentFilteredTopic does.
A data reader created for the multi topic is known as a “multi topic data reader.” A multi topic data reader receives
samples belonging to any number of regular topics. These topics are known as its “constituent topics.” The multi topic
has a DCPS data type known as the “resulting type.” The multi topic data reader implements the type-specific data
reader interface for the resulting type. For example, if the resulting type is Message, then the multi topic data reader
can be narrowed to the MessageDataReader interface.

The multi topic’s topic expression (Topic Expressions) describes how the distinct fields of the incoming data (on the
constituent topics) are mapped to the fields of the resulting type.

The domain participant interface contains operations for creating and deleting a multi topic. Creating a multi topic
requires the following parameters:

• Name

Assigns a name to this multi topic which could later be used with the lookup_topicdescription() operation.

• Type name

Specifies the resulting type of the multi topic. This type must have its type support registered before creating the
multi topic.

• Topic expression (also known as subscription expression)

66 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

An SQL-like expression (Topic Expressions) which defines the mapping of constituent topic fields to resulting
type fields. It can also specify a filter (WHERE clause).

• Expression parameters

The topic expression can contain parameter placeholders. This argument provides initial values for those param-
eters. The expression parameters can be changed after the multi topic is created (the topic expression cannot be
changed).

Once the multi topic has been created, it is used by the subscriber’s create_datareader() operation to obtain a multi
topic data reader. This data reader is used by the application to receive the constructed samples of the resulting type.
The manner in which these samples are constructed is described in How Resulting Samples are Constructed.

Topic Expressions

Topic expressions use a syntax that is very similar to a complete SQL query:

SELECT <aggregation> FROM <selection> [WHERE <condition>]

• The aggregation can be either a * or a comma separated list of field specifiers. Each field specifier has the
following syntax:

• – <constituent_field> [[AS] <resulting_field>]]

– constituent_field is a field reference (Filter Expressions) to a field in one of the constituent topics
(which topic is not specified).

– The optional resulting_field is a field reference to a field in the resulting type. If present, the
resulting_field is the destination for the constituent_field in the constructed sample. If absent, the
constituent_field data is assigned to a field with the same name in the resulting type. The optional AS
has no effect.

– If a * is used as the aggregation, each field in the resulting type is assigned the value from a same-named
field in one of the constituent topic types.

• The selection lists one or more constituent topic names. Topic names are separated by a “join” keyword (all 3
join keywords are equivalent):

• – <topic> [{NATURAL INNER | NATURAL | INNER NATURAL} JOIN <topic>]. . .

– Topic names must contain only letters, digits, and dashes (but may not start with a digit).

– The natural join operation is commutative and associative, thus the order of topics has no impact.

– The semantics of the natural join are that any fields with the same name are treated as “join keys” for the
purpose of combining data from the topics in which those keys appear. The join operation is described in
more detail in subsequent sections.

• The condition has the exact same syntax and semantics as the filter expression (Filter Expressions). Field refer-
ences in the condition must match field names in the resulting types, not field names in the constituent topic types.
The condition in the topic expression can use parameter placeholders in the same way that filter expressions (for
content-filtered topics) use them. See Expression Parameters for details.

1.5. Content-Subscription Profile 67

OpenDDS, Release 3.24.0

Usage Notes

Join Keys and DCPS Data Keys

The concept of DCPS data keys (@key) has already been discussed in Defining Data Types with IDL. Join keys for the
multi topic are a distinct but related concept.

A join key is any field name that occurs in the struct for more than one constituent topic. The existence of the join
key enforces a constraint on how data samples of those topics are combined into a constructed sample (How Resulting
Samples are Constructed). Specifically, the value of that key must be equal for those data samples from the constituent
topics to be combined into a sample of the resulting type. If multiple join keys are common to the same two or more
topics, the values of all keys must be equal in order for the data to be combined.

The DDS specification requires that join key fields have the same type. Additionally, OpenDDS imposes two require-
ments on how the IDL must define DCPS data keys to work with multi topics:

1. Each join key field must also be a DCPS data key for the types of its constituent topics.

2. The resulting type must contain each of the join keys, and those fields must be DCPS data keys for the resulting
type.

The example in IDL and Topic Expression meets both of these requirements. Note that it is not necessary to list the
join keys in the aggregation (SELECT clause).

How Resulting Samples are Constructed

Although many concepts in multi topic are borrowed from the domain of relational databases, a real-time middleware
such as DDS is not a database. Instead of processing a batch of data at a time, each sample arriving at the data reader
from one of the constituent topics triggers multi-topic-specific processing that results in the construction of zero, one,
or many samples of the resulting type and insertion of those constructed samples into the multi topic data reader.

Specifically, the arrival of a sample on constituent topic “A” with type “TA” results in the following steps in the multi
topic data reader (this is a simplification of the actual algorithm):

1. A sample of the resulting type is constructed, and fields from TA which exist in the resulting type and are in the
aggregation (or are join keys) are copied from the incoming sample to the constructed sample.

2. Each topic B which has at least one join key in common with A is considered for a join operation. The join reads
READ_SAMPLE_STATE samples on topic B with key values matching those in the constructed sample. The result
of the join may be zero, one, or many samples. Fields from TB are copied to the resulting sample as described in
step 1.

3. Join keys of topic “B” (connecting it to other topics) are then processed as described in step 2, and this continues
to all other topics that are connected by join keys.

4. Any constituent topics that were not visited in steps 2 or 3 are processed as “cross joins” (also known as cross-
product joins). These are joins with no key constraints.

5. If any constructed samples result, they are inserted into the multi topic data reader’s internal data structures as if
they had arrived via the normal mechanisms. Application listeners and conditions are notified.

68 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Use with Subscriber Listeners

If the application has registered a subscriber listener for read condition status changes (DATA_ON_READERS_STATUS)
with the same subscriber that also contains a multi topic, then the application must invoke notify_datareaders()
in its implementation of the subscriber listener’s on_data_on_readers() callback method. This requirement is nec-
essary because the multi topic internally uses data reader listeners, which are preempted when a subscriber listener is
registered.

Multi Topic Example

This example is based on the example topic expression used in Annex A section A.3 of the DDS specification. It
illustrates how the properties of the multi topic join operation can be used to correlate data from separate topics (and
possibly distinct publishers).

IDL and Topic Expression

Often times we will use the same string as both the topic name and topic type. In this example we will use distinct
strings for the type names and topic names, in order to illustrate when each is used.

Here is the IDL for the constituent topic data types:

@topic
struct LocationInfo {
@key unsigned long flight_id;
long x;
long y;
long z;

};

@topic
struct PlanInfo {
@key unsigned long flight_id;
string flight_name;
string tailno;

};

Note that the names and types of the key fields match, so they are designed to be used as join keys. The resulting type
(below) also has that key field.

Next we have the IDL for the resulting data type:

@topic
struct Resulting {
@key unsigned long flight_id;
string flight_name;
long x;
long y;
long height;

};

Based on this IDL, the following topic expression can be used to combine data from a topic Location which uses type
LocationInfo and a topic FlightPlan which uses type PlanInfo:

1.5. Content-Subscription Profile 69

OpenDDS, Release 3.24.0

SELECT flight_name, x, y, z AS height FROM Location NATURAL JOIN FlightPlan WHERE height
→˓< 1000 AND x <23

Taken together, the IDL and the topic expression describe how this multi topic will work. The multi topic data reader
will construct samples which belong to instances keyed by flight_id. The instance of the resulting type will only
come into existence once the corresponding instances are available from both the Location and FlightPlan topics.
Some other domain participant or participants within the domain will publish data on those topics, and they don’t even
need to be aware of one another. Since they each use the same flight_id to refer to flights, the multi topic can
correlate the incoming data from disparate sources.

Creating the Multi Topic Data Reader

Creating a data reader for the multi topic consists of a few steps. First the type support for the resulting type is registered,
then the multi topic itself is created, followed by the data reader:

ResultingTypeSupport_var ts_res = new ResultingTypeSupportImpl;
ts_res->register_type(dp, "");
CORBA::String_var type_name = ts_res->get_type_name();
DDS::MultiTopic_var mt =
dp->create_multitopic("MyMultiTopic",

type_name,
"SELECT flight_name, x, y, z AS height "
"FROM Location NATURAL JOIN FlightPlan "
"WHERE height < 1000 AND x<23",

DDS::StringSeq());
DDS::DataReader_var dr =
sub->create_datareader(mt,

DATAREADER_QOS_DEFAULT,
NULL,
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

Reading Data with the Multi Topic Data Reader

From an API perspective, the multi topic data reader is identical to any other typed data reader for the resulting type.
This example uses a wait set and a read condition in order to block until data is available.

DDS::WaitSet_var ws = new DDS::WaitSet;
DDS::ReadCondition_var rc =
dr->create_readcondition(DDS::ANY_SAMPLE_STATE,

DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

ws->attach_condition(rc);
DDS::Duration_t infinite = {DDS::DURATION_INFINITE_SEC,

DDS::DURATION_INFINITE_NSEC};
DDS::ConditionSeq active;
ws->wait(active, infinite); // error handling not shown
ws->detach_condition(rc);
ResultingDataReader_var res_dr = ResultingDataReader::_narrow(dr);
ResultingSeq data;
DDS::SampleInfoSeq info;
res_dr->take_w_condition(data, info, DDS::LENGTH_UNLIMITED, rc);

70 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

1.6 Built-In Topics

1.6.1 Introduction

In OpenDDS, Built-In-Topics are created and published by default to exchange information about DDS participants
operating in the deployment. When OpenDDS is used in a centralized discovery approach using the DCPSInfoRepo
service, the Built-In-Topics are published by this service. For DDSI-RTPS discovery, the internal OpenDDS implemen-
tation instantiated in a process populates the caches of the Built-In Topic DataReaders. See Configuring for DDSI-RTPS
Discovery for a description of RTPS discovery configuration.

The IDL struct BuiltinTopicKey_t is used by the Built-In Topics. This structure contains an array of 16 octets
(bytes) which corresponds to an InfoRepo identifier or a DDSI-RTPS GUID.

1.6.2 Built-In Topics for DCPSInfoRepo Configuration

When starting the DCPSInfoRepo a command line option of -NOBITS may be used to suppress publication of built-in
topics.

Four separate topics are defined for each domain. Each is dedicated to a particular entity (domain participant DCPSPar-
ticipant Topic, topic DCPSParticipant Topic, data writer DCPSPublication Topic, data reader DCPSSubscription Topic)
and publishes instances describing the state for each entity in the domain.

Subscriptions to built-in topics are automatically created for each domain participant. A participant’s support for Built-
In-Topics can be toggled via the DCPSBit configuration option (see the table in Common Configuration Options) (Note:
this option cannot be used for RTPS discovery). To view the built-in topic data, simply obtain the built-in Subscriber
and then use it to access the Data Reader for the built-in topic of interest. The Data Reader can then be used like any
other Data Reader.

See Built-In Topic Subscription Example for an example showing how to read from a built-in topic.

If you are not planning on using Built-in-Topics in your application, you can configure OpenDDS to remove Built-In-
Topic support at build time. Doing so can reduce the footprint of the core DDS library by up to 30%. See Disabling
the Building of Built-In Topic Support for information on disabling Built-In-Topic support.

1.6.3 DCPSParticipant Topic

The DCPSParticipant topic publishes information about the Domain Participants of the Domain. Here is the IDL
that defines the structure published for this topic:

struct ParticipantBuiltinTopicData {
BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

};

Each Domain Participant is defined by a unique key and is its own instance within this topic.

1.6. Built-In Topics 71

OpenDDS, Release 3.24.0

1.6.4 DCPSTopic Topic

Note: OpenDDS does not support this Built-In-Topic when configured for RTPS discovery.

The DCPSTopic topic publishes information about the topics in the domain. Here is the IDL that defines the structure
published for this topic:

struct TopicBuiltinTopicData {
BuiltinTopicKey_t key;
string name;
string type_name;
DurabilityQosPolicy durability;
QosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

};

Each topic is identified by a unique key and is its own instance within this built-in topic. The members above identify
the name of the topic, the name of the topic type, and the set of QoS policies for that topic.

1.6.5 DCPSPublication Topic

The DCPSPublication topic publishes information about the Data Writers in the Domain. Here is the IDL that defines
the structure published for this topic:

struct PublicationBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

};

72 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Each Data Writer is assigned a unique key when it is created and defines its own instance within this topic. The fields
above identify the Domain Participant (via its key) that the Data Writer belongs to, the topic name and type, and the
various QoS policies applied to the Data Writer.

1.6.6 DCPSSubscription Topic

The DCPSSubscription topic publishes information about the Data Readers in the Domain. Here is the IDL that
defines the structure published for this topic:

struct SubscriptionBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

};

Each Data Reader is assigned a unique key when it is created and defines its own instance within this topic. The fields
above identify the Domain Participant (via its key) that the Data Reader belongs to, the topic name and type, and the
various QoS policies applied to the Data Reader.

1.6.7 Built-In Topic Subscription Example

The following code uses a domain participant to get the built-in subscriber. It then uses the subscriber to get the Data
Reader for the DCPSParticipant topic and subsequently reads samples for that reader.

Subscriber_var bit_subscriber = participant->get_builtin_subscriber();
DDS::DataReader_var dr =
bit_subscriber->lookup_datareader(BUILT_IN_PARTICIPANT_TOPIC);

DDS::ParticipantBuiltinTopicDataDataReader_var part_dr =
DDS::ParticipantBuiltinTopicDataDataReader::_narrow(dr);

DDS::ParticipantBuiltinTopicDataSeq part_data;
DDS::SampleInfoSeq infos;
DDS::ReturnCode_t ret = part_dr->read(part_data, infos, 20,

DDS::ANY_SAMPLE_STATE,
DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

// Check return status and read the participant data

The code for the other built-in topics is similar.

1.6. Built-In Topics 73

OpenDDS, Release 3.24.0

1.6.8 OpenDDS-specific Built-In Topics

OpenDDSParticipantLocation Topic

The Built-In Topic “OpenDDSParticipantLocation” is published by the DDSI-RTPS discovery implementation to give
applications visibility into the details of how each remote participant is connected over the network. If the RtpsRelay
(The RtpsRelay) and/or IETF ICE (Interactive Connectivity Establishment (ICE) for RTPS) are enabled, their usage
is reflected in the OpenDDSParticipantLocation topic data. The topic type ParticipantLocationBuiltinTopicData is
defined in dds/OpenddsDcpsExt.idl in the OpenDDS::DCPS module:

• guid (key) – The GUID of the remote participant. Also, a key into the DCPSParticipant topic.

• location – A bit-mask indicating which fields are populated.

• change_mask – A bit-mask indicating which fields changed.

• local_addr – SPDP address of the remote participant for a local connection.

• local_timestamp – Time that local_addr was set.

• ice_addr – SPDP address of the remote participant for an ICE connection.

• ice_timestamp – Time that ice_addr was set.

• relay_addr – SPDP address of the remote participant using the RtpsRelay.

• relay_timestamp – Time that relay_addr was set.

• local6_addr, local6_timestamp, ice6_addr, ice6_timestamp, relay6_addr, and
relay6_timestamp– Are the IPV6 equivalents.

OpenDDSConnectionRecord Topic

The Built-In Topic “OpenDDSConnectionRecord” is published by the DDSI-RTPS discovery implementation and
RTPS_UDP transport implementation to give applications visibility into the details of a participant’s connection to an
RtpsRelay instance. Security must be enabled in the build of OpenDDS (Building OpenDDS with Security Enabled)
to use this topic.

The topic type ConnectionRecord is defined in dds/OpenddsDcpsExt.idl in the OpenDDS::DCPS module:

• guid (key) – The GUID of the remote participant. Also, a key into the DCPSParticipant topic.

• address (key) – The address of the remote participant.

• protocol (key) – The method used to determine connectivity. Currently, “RtpsRelay:STUN” is the only sup-
ported protocol.

• latency – A measured round-trip latency for protocols that support it.

OpenDDSInternalThread Topic

The Built-In Topic “OpenDDSInternalThread” is published when OpenDDS is configured with DCPSThreadStatusIn-
terval (Common Configuration Options). When enabled, the DataReader for this Built-In Topic will report the status
of threads created and managed by OpenDDS within the current process. The timestamp associated with samples can
be used to determine the health (responsiveness) of the thread.

The topic type InternalThreadBuiltinTopicData is defined in dds/OpenddsDcpsExt.idl in the OpenDDS::DCPS module:

• thread_id (key) – A string identifier for the thread.

• utilization – Estimated utilization of this thread (0.0-1.0).

74 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/OpenddsDcpsExt.idl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/OpenddsDcpsExt.idl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/OpenddsDcpsExt.idl

OpenDDS, Release 3.24.0

1.7 Run-time Configuration

1.7.1 Configuration Approach

OpenDDS includes a file-based configuration framework for configuring global options and options related to specific
publishers and subscribers such as discovery and transport configuration. OpenDDS also allows configuration via the
command line for a limited number of options and via a configuration API. This section summarizes the configuration
options supported by OpenDDS.

OpenDDS configuration is concerned with three main areas:

1. Common Configuration Options – configure the behavior of DCPS entities at a global level. This allows
separately deployed processes in a computing environment to share common settings for the specified behavior
(e.g. all readers and writers should use RTPS discovery).

2. Discovery Configuration Options – configure the behavior of the discovery mechanism(s). OpenDDS supports
multiple approaches for discovering and associating writers and readers as detailed in Discovery Configuration.

3. Transport Configuration Options – configure the Extensible Transport Framework (ETF) which abstracts the
transport layer from the DCPS layer of OpenDDS. Each pluggable transport can be configured separately.

The configuration file for OpenDDS is a human-readable ini-style text file. Table 7-1 shows a list of the available
configuration section types as they relate to the area of OpenDDS that they configure.

Table Configuration File Sections

Focus Area File Section Title
Global Settings [common]
Discovery [domain]

[repository]
[rtps_discovery]

Static Discov-
ery

[endpoint]
[topic]
[datawriterqos]
[datareaderqos]
[publisherqos]
[subscriberqos]

Transport [config]
[transport]

For each of the section types with the exception of [common], the syntax of a section header takes the form of [section
type/instance]. For example, a [repository] section type would always be used in a configuration file like so:

[repository/repo_1] where repository is the section type and repo_1 is an instance name of a repository con-
figuration. How to use instances to configure discovery and transports is explained further in Discovery Configuration
and Transport Configuration.

The -DCPSConfigFile command-line argument can be used to pass the location of a configuration file to OpenDDS.
For example:

Windows:

publisher -DCPSConfigFile pub.ini

Unix:

1.7. Run-time Configuration 75

OpenDDS, Release 3.24.0

./publisher -DCPSConfigFile pub.ini

Command-line arguments are passed to the service participant singleton when initializing the domain participant fac-
tory. This is accomplished by using the TheParticipantFactoryWithArgs macro:

#include <dds/DCPS/Service_Participant.h>

int main(int argc, char* argv[])
{
DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

// ...
}

To set a default configuration file to load, use TheServiceParticipant->default_configuration_file(ACE_TCHAR*
path), like in the following example:

#include <dds/DCPS/Service_Participant.h>

int main(int argc, char* argv[])
{
TheServiceParticipant->default_configuration_file(ACE_TEXT("pub.ini"));

DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

// ...
}

pub.ini would be used unless -DCPSConfigFile is passed to override the default configuration file.

The Service_Participant class also provides methods that allow an application to configure the DDS service. See
the header file dds/DCPS/Service_Participant.h for details.

The following subsections detail each of the configuration file sections and the available options related to those sec-
tions.

1.7.2 Common Configuration Options

The [common] section of an OpenDDS configuration file contains options such as the debugging output level, the
location of the DCPSInfoRepo process, and memory preallocation settings. A sample [common] section follows:

[common]
DCPSDebugLevel=0
DCPSInfoRepo=localhost:12345
DCPSLivelinessFactor=80
DCPSChunks=20
DCPSChunksAssociationMultiplier=10
DCPSBitLookupDurationMsec=2000
DCPSPendingTimeout=30

It is not necessary to specify every option.

Option values in the [common] section with names that begin with “DCPS” can be overridden by a command-line
argument. The command-line argument has the same name as the configuration option with a “-” prepended to it. For
example:

76 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/Service_Participant.h

OpenDDS, Release 3.24.0

subscriber -DCPSInfoRepo localhost:12345

The following table summarizes the [common] configuration options:

Table Common Configuration Options

Option Description Default
DCPSBit=[1|0] Toggle Built-In-Topic support. 1
DCPSBitLookupDurationMsec=msecThe maximum duration in millisec-

onds that the framework will wait
for latent Built-In Topic informa-
tion when retrieving BIT data given
an instance handle. The participant
code may get an instance handle for
a remote entity before the framework
receives and processes the related
BIT information. The framework
waits for up to the given amount of
time before it fails the operation.

2000

DCPSBitTransportIPAddress=addrIP address identifying the local inter-
face to be used by tcp transport for
the Built-In Topics.
NOTE: This property is only appli-
cable to a DCPSInfoRepo configu-
ration.

INADDR_ANY

DCPSBitTransportPort=port Port used by the tcp transport for
Built-In Topics.If the default of ‘0’
is used, the operating system will
choose a port to use. NOTE:
This property is only applicable to a
DCPSInfoRepo configuration.

0

DCPSChunks=n Configurable number of chunks that
a data writer’s and reader’s cached
allocators will preallocate when the
RESOURCE_LIMITS QoS value is in-
finite. When all of the preallocated
chunks are in use, OpenDDS allo-
cates from the heap.

20

continues on next page

1.7. Run-time Configuration 77

OpenDDS, Release 3.24.0

Table 1.1 – continued from previous page
Option Description Default
DCPSChunkAssociationMultiplier=nMultiplier for the DCPSChunks or

resource_limits.max_samples
value to determine the total number
of shallow copy chunks that are pre-
allocated. Set this to a value greater
than the number of connections so
the preallocated chunk handles do
not run out. A sample written to
multiple data readers will not be
copied multiple times but there is a
shallow copy handle to that sample
used to manage the delivery to each
data reader. The size of the handle
is small so there is not great need to
set this value close to the number of
connections.

10

DCPSDebugLevel=n Integer value that controls the
amount of debug information the
DCPS layer prints. Valid values are
0 through 10.

0

ORBLogFile=filename Change log message destination to
the file specified, which is opened
in appending mode. See the note
below this table regarding the ORB
prefix.

None: use standard error

ORBVerboseLogging=[0|1|2] Add a prefix to each log message, us-
ing a format defined by the ACE li-
brary:
0 – no prefix
1 – verbose “lite”: adds timestamp
and priority
2 – verbose: in addition to “lite” has
host name, PID, program name
See the note below this table regard-
ing the ORB prefix.

0

DCPSDefaultAddress=addr Default value for the host por-
tion of local_address for
transport instances containing a
local_address. Only applied
when DCPSDefaultAddress is
set to a non-empty value and no
local_address is specified in the
transport.
Other subsystems (such as
DDSI-RTPS Discovery) use
DCPSDefaultAddress as a default
value as well.

continues on next page

78 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table 1.1 – continued from previous page
Option Description Default
DCPSDefaultDiscovery=[
DEFAULT_REPO|
DEFAULT_RTPS|
DEFAULT_STATIC|
user-defined configuration
instance name]

Specifies a discovery configuration
to use for any domain not explicitly
configured. DEFAULT_REPO trans-
lates to using the DCPSInfoRepo.
DEFAULT_RTPS specifies the
use of RTPS for discovery.
DEFAULT_STATIC specifies the
use of static discovery. See Discov-
ery Configuration for details about
configuring discovery.

DEFAULT_REPO

DCPSGlobalTransportConfig=nameSpecifies the name of the transport
configuration that should be used as
the global configuration. This con-
figuration is used by all entities that
do not otherwise specify a transport
configuration. A special value of
$file uses a transport configuration
that includes all transport instances
defined in the configuration file.

The default configuration is used as
described in Overview

DCPSInfoRepo=objref Object reference for locating the
DCPS Information Repository. This
can either be a full CORBA IOR or
a simple host:port string.

file://repo.ior

DCPSLivelinessFactor=n Percent of the liveliness lease dura-
tion after which a liveliness message
is sent. A value of 80 implies a 20%
cushion of latency from the last de-
tected heartbeat message.

80

DCPSLogLevel=
none|
error|
warning|
notice|
info|
debug

General logging control. See Log-
ging for details.

warning

DCPSMonitor=[0|1] Use the OpenDDS_monitor library
to publish data on monitoring topics
(see dds/monitor/README).

0

DCPSPendingTimeout=sec The maximum duration in seconds a
data writer will block to allow un-
sent samples to drain on deletion.
By default, this option blocks indef-
initely.

0

DCPSPersistentDataDir=path The path on the file system where
durable data will be stored. If the di-
rectory does not exist it will be cre-
ated automatically.

OpenDDS-durable-data-dir

continues on next page

1.7. Run-time Configuration 79

OpenDDS, Release 3.24.0

Table 1.1 – continued from previous page
Option Description Default
DCPSPublisherContentFilter=[1|0]Controls the filter expression evalu-

ation policy for content filtered top-
ics. When enabled (1), the publisher
may drop any samples, before hand-
ing them off to the transport when
these samples would have been ig-
nored by all subscribers.

1

DCPSSecurity=[0|1] This setting is only available when
OpenDDS is compiled with DDS
Security enabled. If set to 1, enable
DDS Security framework and built-
in plugins. Each Domain Participant
using security must be created with
certain QoS policy values. See DDS
Security: DDS Security for more in-
formation.

0

DCPSSecurityDebug=CAT[,CAT.
..]

This setting is only available when
OpenDDS is compiled with DDS
Security enabled. This controls the
security debug logging granularity
by category. See Security Debug
Logging for details.

0

DCPSSecurityDebugLevel=n This setting is only available when
OpenDDS is compiled with DDS
Security enabled. This controls the
security debug logging granularity
by debug level. See Security Debug
Logging for details.

N/A

DCPSSecurityFakeEncryption=[0|1]This setting is only available when
OpenDDS is compiled with DDS
Security enabled. This option, when
set to 1, disables all encryption by
making encryption and decryption
no-ops. OpenDDS still generates
keys and performs other security
bookkeeping, so this option is use-
ful for debugging the security in-
frastructure by making it possible to
manually inspect all messages.

0

DCPSTransportDebugLevel=n Integer value that controls the
amount of debug information the
transport layer prints. See Transport
Layer Debug Logging for details.

0

pool_size=n_bytes Size of safety profile memory pool,
in bytes.

41943040 (40 MiB)

pool_granularity=n_bytes Granularity of safety profile mem-
ory pool in bytes. Must be multiple
of 8.

8

continues on next page

80 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table 1.1 – continued from previous page
Option Description Default
Scheduler=[
SCHED_RR|
SCHED_FIFO|
SCHED_OTHER]

Selects the thread scheduler to
use. Setting the scheduler to a
value other than the default requires
privileges on most systems. A
value of SCHED_RR, SCHED_FIFO,
or SCHED_OTHER can be set.
SCHED_OTHER is the default sched-
uler on most systems; SCHED_RR is
a round robin scheduling algorithm;
and SCHED_FIFO allows each
thread to run until it either blocks
or completes before switching to a
different thread.

SCHED_OTHER

scheduler_slice=usec Some operating systems, such as
SunOS, require a time slice value
to be set when selecting schedulers
other than the default. For those sys-
tems, this option can be used to set a
value in microseconds.

none

DCPSBidirGIOP=[0|1] Use TAO’s BiDirectional GIOP
feature for interaction with the
DCPSInfoRepo. With BiDir en-
abled, fewer sockets are needed
since the same socket can be used
for both client and server roles.

1

DCPSThreadStatusInterval=sec Enable internal thread status re-
porting (OpenDDSInternalThread
Topic) using the specified reporting
interval, in seconds.

0 (disabled)

continues on next page

1.7. Run-time Configuration 81

OpenDDS, Release 3.24.0

Table 1.1 – continued from previous page
Option Description Default
DCPSTypeObjectEncoding=[
Normal |
WriteOldFormat |
ReadOldFormat]

Before version 3.18, OpenDDS had
a bug in the encoding used for Type-
Object (from XTypes) and related
data types.
If this application needs to be com-
patible with an application built
with an older OpenDDS (that has
XTypes), select one of WriteOldFor-
mat or ReadOldFormat.
Using WriteOldFormat means that
the TypeInformation written by this
application will be understood by
legacy applications.
Using WriteOldFormat or ReadOld-
Format means that TypeInformation
written in the legacy format will be
understood by this application.
These options are designed to en-
able a phased migration from the
incorrect implementation (pre-3.18)
to a compliant one. In the first
phase, legacy applications can co-
exist with WriteOldFormat. In the
second phase (once all legacy appli-
cations have been upgraded), Write-
OldFormat can communicate with
ReadOldFormat. In the final phase
(once all WriteOldFormat applica-
tions have been upgraded), Read-
OldFormat applications can be tran-
sitioned to Normal.

Normal

The DCPSInfoRepo option’s value is passed to CORBA::ORB::string_to_object() and can be any Object URL
type understandable by TAO (file, IOR, corbaloc, corbaname). A simplified endpoint description of the form
<host>:<port> is also accepted. It is equivalent to corbaloc::<host>:<port>/DCPSInfoRepo.

Certain options that begin with “ORB” instead of “DCPS” are listed in the table above. They are named differently
since they are inherited from TAO. The options starting with “ORB” listed in this table are implemented directly by
OpenDDS (not passed to TAO) and are supported either on the command line (using a “-” prefix) or in the configuration
file. Other command-line options that begin with “-ORB” are passed to TAO’s ORB_init if DCPSInfoRepo discovery
is used.

The DCPSChunks option allows application developers to tune the amount of memory preallocated when the
RESOURCE_LIMITS are set to infinite. Once the allocated memory is exhausted, additional chunks are allo-
cated/deallocated from the heap. This feature of allocating from the heap when the preallocated memory is exhausted
provides flexibility but performance will decrease when the preallocated memory is exhausted.

82 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

1.7.3 Discovery Configuration

In DDS implementations, participants are instantiated in application processes and must discover one another in order
to communicate. A DDS implementation uses the feature of domains to give context to the data being exchanged
between DDS participants in the same domain. When DDS applications are written, participants are assigned to a
domain and need to ensure their configuration allows each participant to discover the other participants in the same
domain.

OpenDDS offers a centralized discovery mechanism, a peer-to-peer discovery mechanism, and a static discovery mech-
anism. The centralized mechanism uses a separate service running a DCPSInfoRepo process. The RTPS peer-to-peer
mechanism uses the DDSI-RTPS discovery protocol standard to achieve non-centralized discovery. The static discov-
ery mechanism uses the configuration file to determine which writers and readers should be associated and uses the
underlying transport to determine which writers and readers exist. A number of configuration options exist to meet
the deployment needs of DDS applications. Except for static discovery, each mechanism uses default values if no
configuration is supplied either via the command line or configuration file.

The following sections show how to configure the advanced discovery capabilities. For example, some deployments
may need to use multiple DCPSInfoRepo services or DDSI-RTPS discovery to satisfy interoperability requirements.

Domain Configuration

An OpenDDS configuration file uses the [domain] section type to configure one or more discovery domains with
each domain pointing to a discovery configuration in the same file or a default discovery configuration. OpenDDS
applications can use a centralized discovery approach using the DCPSInfoRepo service or a peer-to-peer discovery
approach using the RTPS discovery protocol standard or a combination of the two in the same deployment. The section
type for the DCPSInfoRepo method is [repository] and the section type for an RTPS discovery configuration is
[rtps_discovery]. The static discovery mechanism does not have a dedicated section. Instead, users are expected
to refer to the DEFAULT_STATIC instance. A single domain can refer to only one type of discovery section.

See Configuring Applications for DCPSInfoRepo for configuring InfoRepo Discovery, Configuring for DDSI-RTPS
Discovery for configuring RTPS Discovery, and Configuring for Static Discovery for configuring Static Discovery.

Ultimately a domain is assigned an integer value and a configuration file can support this in two ways. The first is to
simply make the instance value the integer value assigned to the domain as shown here:

[domain/1]
DiscoveryConfig=DiscoveryConfig1
(more properties...)

Our example configures a single domain identified by the domain keyword and followed by an instance value of /1.
The instance value after the slash in this case is the integer value assigned to the domain. An alternative syntax for this
same content is to use a more recognizable (friendly) name instead of a number for the domain name and then add the
DomainId property to the section to give the integer value. Here is an example:

[domain/books]
DomainId=1
DiscoveryConfig=DiscoveryConfig1

The domain is given a friendly name of books. The DomainId property assigns the integer value of 1 needed by a
DDS application reading the configuration. Multiple domain instances can be identified in a single configuration file
in this format.

Once one or more domain instances are established, the discovery properties must be identified for that domain. The
DiscoveryConfig property must either point to another section that holds the discovery configuration or specify one
of the internal default values for discovery (e.g. DEFAULT_REPO, DEFAULT_RTPS, or DEFAULT_STATIC). The instance

1.7. Run-time Configuration 83

OpenDDS, Release 3.24.0

name in our example is DiscoveryConfig1. This instance name must be associated with a section type of either
[repository] or [rtps_discovery].

Here is an extension of our example:

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

In this case our domain points to a [repository] section which is used for an OpenDDS DCPSInfoRepo service.
See Configuring Applications for DCPSInfoRepo for more details.

There are going to be occasions when specific domains are not identified in the configuration file. For example, if an
OpenDDS application assigns a domain ID of 3 to its participants and the above example does not supply a configuration
for domain id of 3 then the following can be used:

[common]
DCPSInfoRepo=host3.mydomain.com:12345
DCPSDefaultDiscovery=DEFAULT_REPO

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

The DCPSDefaultDiscovery property tells the application to assign any participant that doesn’t have a domain id
found in the configuration file to use a discovery type of DEFAULT_REPO which means “use a DCPSInfoRepo ser-
vice” and that DCPSInfoRepo service can be found at host3.mydomain.com:12345.

As shown in Table 7-2 the DCPSDefaultDiscovery property has three other values that can be used. The
DEFAULT_RTPS constant value informs participants that don’t have a domain configuration to use RTPS discovery
to find other participants. Similarly, the DEFAULT_STATIC constant value informs the participants that don’t have a
domain configuration to use static discovery to find other participants.

The final option for the DCPSDefaultDiscovery property is to tell an application to use one of the defined discovery
configurations to be the default configuration for any participant domain that isn’t called out in the file. Here is an
example:

[common]
DCPSDefaultDiscovery=DiscoveryConfig2

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

84 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

By adding the DCPSDefaultDiscovery property to the [common] section, any participant that hasn’t been assigned to
a domain id of 1 or 2will use the configuration of DiscoveryConfig2. For more explanation of a similar configuration
for RTPS discovery see Configuring for DDSI-RTPS Discovery.

Here are the available properties for the [domain] section.

Table Domain Section Configuration Properties

Option Description
DomainId=n An integer value representing a Domain being associated with a repository.
DomainRepoKey=kKey value of the mapped repository

(Deprecated. Provided for backward compatibility).
DiscoveryConfig=config
instance
name

A user-defined string that refers to the instance name of a [repository] or [rtps_discovery]
section in the same configuration file or one of the internal default values (DEFAULT_REPO,
DEFAULT_RTPS, or DEFAULT_STATIC). (Also see the DCPSDefaultDiscovery property in Ta-
ble 7-2)

DefaultTransportConfig=configA user-defined string that refers to the instance name of a [config] section. See Transport
Configuration.

Configuring Applications for DCPSInfoRepo

An OpenDDS DCPSInfoRepo is a service on a local or remote node used for participant discovery. Configuring how
participants should find DCPSInfoRepo is the purpose of this section. Assume for example that the DCPSInfoRepo
service is started on a host and port of myhost.mydomain.com:12345. Applications can make their OpenDDS par-
ticipants aware of how to find this service through command line options or by reading a configuration file.

In our Getting Started example from 2.1.7, “Running the Example” the executables were given a command line param-
eter to find the DCPSInfoRepo service like so:

publisher -DCPSInfoRepo file://repo.ior

This assumes that the DCPSInfoRepo has been started with the following syntax:

Windows:

%DDS_ROOT%\bin\DCPSInfoRepo -o repo.ior

Unix:

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

The DCPSInfoRepo service generates its location object information in this file and participants need to read this file to
ultimately connect. The use of file based IORs to find a discovery service, however, is not practical in most production
environments, so applications instead can use a command line option like the following to simply point to the host and
port where the DCPSInfoRepo is running.

publisher -DCPSInfoRepo myhost.mydomain.com:12345

The above assumes that the DCPSInfoRepo has been started on a host (myhost.mydomain.com) as follows:

Windows:

%DDS_ROOT%\bin\DCPSInfoRepo -ORBListenEndpoints iiop://:12345

Unix:

1.7. Run-time Configuration 85

OpenDDS, Release 3.24.0

$DDS_ROOT/bin/DCPSInfoRepo -ORBListenEndpoints iiop://:12345

If an application needs to use a configuration file for other settings, it would become more convenient to place discovery
content in the file and reduce command line complexity and clutter. The use of a configuration file also introduces the
opportunity for multiple application processes to share common OpenDDS configuration. The above example can
easily be moved to the [common] section of a configuration file (assume a file of pub.ini):

[common]
DCPSInfoRepo=myhost.mydomain.com:12345

The command line to start our executable would now change to the following:

publisher -DCSPConfigFile pub.ini

A configuration file can specify domains with discovery configuration assigned to those domains. In this case the
RepositoryIor property is used to take the same information that would be supplied on a command line to point to
a running DCPSInfoRepo service. Two domains are configured here:

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=myhost.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

The DiscoveryConfig property under [domain/1] instructs all participants in domain 1 to use the configuration
defined in an instance called DiscoveryConfig1. In the above, this is mapped to a [repository] section that gives
the RepositoryIor value of myhost.mydomain.com:12345.

Finally, when configuring a DCPSInfoRepo the DiscoveryConfig property under a domain instance entry can also
contain the value of DEFAULT_REPOwhich instructs a participant using this instance to use the definition of the property
DCPSInfoRepo wherever it has been supplied. Consider the following configuration file as an example:

[common]
DCPSInfoRepo=localhost:12345

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=myhost.mydomain.com:12345

[domain/2]
DiscoveryConfig=DEFAULT_REPO

In this case any participant in domain 2 would be instructed to refer to the discovery property of DCPSInfoRepo,
which is defined in the [common] section of our example. If the DCPSInfoRepo value is not supplied in the [common]
section, it could alternatively be supplied as a parameter to the command line like so:

86 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

publisher -DCPSInfoRepo localhost:12345 -DCPSConfigFile pub.ini

This sets the value of DCPSInfoRepo such that if participants reading the configuration file pub.ini encounters
DEFAULT_REPO, there is a value for it. If DCPSInfoRepo is not defined in a configuration file or on the command
line, then the OpenDDS default value for DCPSInfoRepo is file://repo.ior. As mentioned prior, this is not likely
to be the most useful in production environments and should lead to setting the value of DCPSInfoRepo by one of the
means described in this section.

Configuring for Multiple DCPSInfoRepo Instances

The DDS entities in a single OpenDDS process can be associated with multiple DCPS information repositories
(DCPSInfoRepo).

The repository information and domain associations can be configured using a configuration file, or via application
API. Internal defaults, command line arguments, and configuration file options will work as-is for existing applications
that do not want to use multiple DCPSInfoRepo associations.

See Figure 7-1 for an example of a process that uses multiple DCPSInfoRepo repositories. Processes A and B are
typical application processes that have been configured to communicate with one another and discover one another in
InfoRepo_1. This is a simple use of basic discovery. However, an additional layer of context has been applied with the
use of a specified domain (Domain 1). DDS entities (data readers/data writers) are restricted to communicate to other
entities within that same domain. This provides a useful method of separating traffic when needed by an application.
Processes C and D are configured the same way, but operate in Domain 2 and use InfoRepo_2. The challenge comes
when you have an application process that needs to use multiple domains and have separate discovery services. This is
Process E in our example. It contains two subscribers, one subscribing to publications from InfoRepo_1 and the other
subscribing to publications in InfoRepo_2. What allows this configuration to work can be found in the configE.ini
file.

1.7. Run-time Configuration 87

OpenDDS, Release 3.24.0

Figure Multiple DCPSInfoRepo Configuration

We will now look at the configuration file (referred to as configE.ini) to demonstrate how Process E can communicate
to both domains and separate DCPSInfoRepo services. For this example we will only show the discovery aspects of
the configuration and not show transport content.

configE.ini
[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

When Process E in Figure 7-1 reads in the above configuration it finds the occurrence of multiple domain sections. As
described in Section each domain has an instance integer and a property of DiscoveryConfig defined.

For the first domain ([domain/1]), the DiscoveryConfig property is supplied with the user-defined name of
DiscoveryConfig1 value. This property causes the OpenDDS implementation to find a section title of either
repository or rtps_discovery and an instance name of DiscoveryConfig1. In our example, a [repository/
DiscoveryConfig1] section title is found and this becomes the discovery configuration for domain instance
[domain/1] (integer value 1). The section found now tells us that the address of the DCPSInfoRepo that this do-
main should use can be found by using the RepositoryIor property value. In particular it is host1.mydomain.com

88 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

and port 12345. The values of the RepositoryIor can be a full CORBA IOR or a simple host:port string.

A second domain section title [domain/2] is found in this configuration file along with it’s corresponding repository
section [repository/DiscoveryConfig2] that represents the configuration for the second domain of interest and
the InfoRepo_2 repository. There may be any number of repository or domain sections within a single configuration
file.

Note: Domains not explicitly configured are automatically associated with the default discovery configuration.

Note: Individual DCPSInfoRepos can be associated with multiple domains, however domains cannot be shared be-
tween multiple DCPSInfoRepos.

Here are the valid properties for a [repository] section.

Table Multiple repository configuration sections

Option Description
RepositoryIor=ior Repository IOR or host:port.
RepositoryKey=key Unique key value for the repository. (Deprecated. Provided for backward compatibility)

Configuring for DDSI-RTPS Discovery

The OMG DDSI-RTPS specification gives the following simple description that forms the basis for the discovery
approach used by OpenDDS and the two different protocols used to accomplish the discovery operations. The excerpt
from the OMG DDSI-RTPS specification Section 8.5.1 is as follows:

“The RTPS specification splits up the discovery protocol into two independent protocols:

1. Participant Discovery Protocol

2. Endpoint Discovery Protocol

A Participant Discovery Protocol (PDP) specifies how Participants discover each other in the network. Once two
Participants have discovered each other, they exchange information on the Endpoints they contain using an Endpoint
Discovery Protocol (EDP). Apart from this causality relationship, both protocols can be considered independent.”

The configuration options discussed in this section allow a user to specify property values to change the behavior of
the Simple Participant Discovery Protocol (SPDP) and/or the Simple Endpoint Discovery Protocol (SEDP) default
settings.

DDSI-RTPS can be configured for a single domain or for multiple domains as was done in Configuring for Multiple
DCPSInfoRepo Instances.

A simple configuration is achieved by specifying a property in the [common] section of our example configuration file.

[common]
DCPSDefaultDiscovery=DEFAULT_RTPS

All default values for DDSI-RTPS discovery are adopted in this form. A variant of this same basic configuration is
to specify a section to hold more specific parameters of RTPS discovery. The following example uses the [common]
section to point to an instance of an [rtps_discovery] section followed by an instance name of TheRTPSConfig
which is supplied by the user.

1.7. Run-time Configuration 89

OpenDDS, Release 3.24.0

[common]
DCPSDefaultDiscovery=TheRTPSConfig

[rtps_discovery/TheRTPSConfig]
ResendPeriod=5

The instance [rtps_discovery/TheRTPSConfig] is now the location where properties that vary the default DDSI-
RTPS settings get specified. In our example the ResendPeriod=5 entry sets the number of seconds between periodic
announcements of available data readers / data writers and to detect the presence of other data readers / data writers on
the network. This would override the default of 30 seconds.

If your OpenDDS deployment uses multiple domains, the following configuration approach combines the use of the
[domain] section title with [rtps_discovery] to allow a user to specify particular settings by domain. It might look
like this:

[common]
DCPSDebugLevel=0

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[rtps_discovery/DiscoveryConfig1]
ResendPeriod=5

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[rtps_discovery/DiscoveryConfig2]
ResendPeriod=5
SedpMulticast=0

Some important implementation notes regarding DDSI-RTPS discovery in OpenDDS are as follows:

1. Domain IDs should be between 0 and 231 (inclusive) due to the way UDP ports are assigned to domain IDs. In
each OpenDDS process, up to 120 domain participants are supported in each domain.

2. OpenDDS’s multicast transport (IP Multicast Transport Configuration Options) does not work with RTPS Dis-
covery due to the way GUIDs are assigned (a warning will be issued if this is attempted).

The OMG DDSI-RTPS specification details several properties that can be adjusted from their defaults that influence
the behavior of DDSI-RTPS discovery. Those properties, along with options specific to OpenDDS’s RTPS Discovery
implementation, are listed in Table 7-5.

Table RTPS Discovery Configuration Options

Option Description Default
ResendPeriod=sec The number of seconds that a pro-

cess waits between the announce-
ment of participants (see section
8.5.3 in the OMG DDSI-RTPS spec-
ification for details).

30

MinResendDelay=msec The minimum time in millisec-
onds between participant announce-
ments.

100

continues on next page

90 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table 1.2 – continued from previous page
Option Description Default
QuickResendRatio=frac Tuning parameter that configures lo-

cal SPDP resends as a fraction of the
resend period.

0.1

LeaseDuration=sec Sent as part of the participant an-
nouncement. It tells the peer par-
ticipants that if they don’t hear from
this participant for the specified du-
ration, then this participant can be
considered “not alive.”

300

LeaseExtension=sec Extends the lease of discovered par-
ticipants by the set amount of sec-
onds. Useful on spotty connections
to reduce load on the RtpsRelay.

0

PB=port Port Base number. This number
sets the starting point for deriving
port numbers used for Simple End-
point Discovery Protocol (SEDP).
This property is used in conjunc-
tion with DG, PG, D0 (or DX), and
D1 to construct the necessary End-
points for RTPS discovery commu-
nication. (see section 9.6.1.1 in
the OMG DDSI-RTPS specification
in how these Endpoints are con-
structed)

7400

DG=n An integer value representing the
Domain Gain. This is a multiplier
that assists in formulating Multicast
or Unicast ports for RTPS.

250

PG=n An integer that assists in configur-
ing SPDP Unicast ports and serves
as an offset multiplier as participants
are assigned addresses using the for-
mula:
PB + DG * domainId + d1 +
PG * participantId
(see section 9.6.1.1 in the OMG
DDSI-RTPS specification in how
these Endpoints are constructed)

2

D0=n An integer value that assists in pro-
viding an offset for calculating an
assignable port in SPDP Multicast
configurations. The formula used is:
PB + DG * domainId + d0
(see section 9.6.1.1 in the OMG
DDSI-RTPS specification in how
these Endpoints are constructed)

0

continues on next page

1.7. Run-time Configuration 91

OpenDDS, Release 3.24.0

Table 1.2 – continued from previous page
Option Description Default
D1=n An integer value that assists in pro-

viding an offset for calculating an
assignable port in SPDP Unicast
configurations. The formula used is:
PB + DG * domainId + d1 +
PG * participantId
(see section 9.6.1.1 in the OMG
DDSI-RTPS specification in how
these Endpoints are constructed)

10

SpdpRequestRandomPort=[0|1] Use a random port for SPDP. 0
SedpMaxMessageSize=n Set the maximum SEDP message

size. The default is the max-
imum UDP message size. See
max_message_size in table 7-17.

65466

SedpMulticast=[0|1] A boolean value (0 or 1) that de-
termines whether Multicast is used
for the SEDP traffic. When set to 1,
Multicast is used. When set to zero
(0) Unicast for SEDP is used.

1

SedpLocalAddress=addr:[port] Configure the transport instance cre-
ated and used by SEDP to bind to the
specified local address and port. In
order to leave the port unspecified, it
can be omitted from the setting but
the trailing : must be present.

System default address

SpdpLocalAddress=addr[:port] Address of a local interface, which
will be used by SPDP to bind to that
specific interface.

DCPSDefaultAddress, or
IPADDR_ANY

SedpAdvertisedLocalAddress=
addr:[port]

Sets the address advertised by SEDP.
Typically used when the participant
is behind a firewall or NAT. In order
to leave the port unspecified, it can
be omitted from the setting but the
trailing : must be present.

SedpSendDelay=msec Time in milliseconds for a built-in
(SEDP) Writer to wait before send-
ing data.

10

SedpHeartbeatPeriod=msec Time in milliseconds for a built-
in (SEDP) Writer to announce the
availability of data.

200

SedpNakResponseDelay=msec Time in milliseconds for a built-in
(SEDP) Writer to delay the response
to a negative acknowledgment.

100

continues on next page

92 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table 1.2 – continued from previous page
Option Description Default
DX=n An integer value that assists in pro-

viding an offset for calculating a port
in SEDP Multicast configurations.
The formula used is:
PB + DG * domainId + dx
This is only valid when
SedpMulticast=1. This is an
OpenDDS extension and not part of
the OMG DDSI-RTPS specification.

2

SpdpSendAddrs=
[host:port],[host:port]...

A list (comma or whitespace sepa-
rated) of host:port pairs used as des-
tinations for SPDP content. This
can be a combination of Unicast and
Multicast addresses.

MaxSpdpSequenceMsgResetChecks=nRemove a discovered participant af-
ter this number of SPDP messages
with earlier sequence numbers.

3

PeriodicDirectedSpdp=[0|1] A boolean value that determines
whether directed SPDP messages
are sent to all participants once every
resend period. This setting should
be enabled for participants that can-
not use multicast to send SPDP an-
nouncements, e.g., an RtpsRelay.

0

UndirectedSpdp=[0|1] A boolean value that determines
whether undirected SPDP messages
are sent. This setting should be dis-
abled for participants that cannot use
multicast to send SPDP announce-
ments, e.g., an RtpsRelay.

1

InteropMulticastOverride=
group_address

A network address specifying the
multicast group to be used for SPDP
discovery. This overrides the inter-
operability group of the specifica-
tion. It can be used, for example, to
specify use of a routed group address
to provide a larger discovery scope.

239.255.0.1

TTL=n The value of the Time-To-Live
(TTL) field of multicast datagrams
sent as part of discovery. This value
specifies the number of hops the
datagram will traverse before being
discarded by the network. The de-
fault value of 1 means that all data is
restricted to the local network sub-
net.

1

continues on next page

1.7. Run-time Configuration 93

OpenDDS, Release 3.24.0

Table 1.2 – continued from previous page
Option Description Default
MulticastInterface=iface Specifies the network interface to be

used by this discovery instance. This
uses a platform-specific format that
identifies the network interface. On
Linux systems this would be some-
thing like eth 0.
If this value is not configured,
the Common Configuration value
DCPSDefaultAddress is used to
set the multicast interface.

The system default interface is used

GuidInterface=iface Specifies the network interface to
use when determining which local
MAC address should appear in a
GUID generated by this node.

The system / ACE library default is
used

SpdpRtpsRelayAddress=host:portSpecifies the address of the RtpsRe-
lay for SPDP messages. See The
RtpsRelay.

SpdpRtpsRelaySendPeriod=periodSpecifies the interval between SPDP
announcements sent to the RtpsRe-
lay. See The RtpsRelay.

30 seconds

SedpRtpsRelayAddress=host:portSpecifies the address of the RtpsRe-
lay for SEDP messages. See The
RtpsRelay.

RtpsRelayOnly=[0|1] Only send RTPS message to the Rtp-
sRelay (for debugging). See The
RtpsRelay.

0

UseRtpsRelay=[0|1] Send messages to the RtpsRe-
lay. Messages will only be sent
if SpdpRtpsRelayAddress and/or
SedpRtpsRelayAddress is set. See
The RtpsRelay.

0

SpdpStunServerAddress=host:portSpecifies the address of the STUN
server to use for SPDP when us-
ing ICE. See Interactive Connectiv-
ity Establishment (ICE) for RTPS

SedpStunServerAddress=host:portSpecifies the address of the STUN
server to use for SEDP when us-
ing ICE. See Interactive Connectiv-
ity Establishment (ICE) for RTPS.

UseIce=[0|1] Enable or disable ICE for both SPDP
and SEDP. See Interactive Connec-
tivity Establishment (ICE) for RTPS.

0

IceTa=msec Minimum interval between ICE
sends. See Interactive Connectivity
Establishment (ICE) for RTPS.

50

IceConnectivityCheckTTL=sec Maximum duration of connectivity
check. See Interactive Connectivity
Establishment (ICE) for RTPS.

300

continues on next page

94 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table 1.2 – continued from previous page
Option Description Default
IceChecklistPeriod=sec Attempt to cycle through all of the

connectivity checks for a candidate
in this amount of time. See Inter-
active Connectivity Establishment
(ICE) for RTPS.

10

IceIndicationPeriod=sec Send STUN indications to peers to
maintain NAT bindings at this pe-
riod. See Interactive Connectivity
Establishment (ICE) for RTPS.

15

IceNominatedTTL=sec Forget a valid candidate if an indi-
cation is not received in this amount
of time. See Interactive Connectiv-
ity Establishment (ICE) for RTPS.

300

IceServerReflexiveAddressPeriod=secSend a messages to the STUN server
at this period. See Interactive Con-
nectivity Establishment (ICE) for
RTPS.

30

IceServerReflexiveIndicationCount=integerSend this many indications before
sending a new binding request to the
STUN server. See Interactive Con-
nectivity Establishment (ICE) for
RTPS.

10

IceDeferredTriggeredCheckTTL=secPurge deferred checks after this
amount of time. See Interactive
Connectivity Establishment (ICE)
for RTPS.

300

IceChangePasswordPeriod=sec Change the ICE password after this
amount of time. See Interactive
Connectivity Establishment (ICE)
for RTPS.

300

MaxAuthTime=sec Set the maximum time for authenti-
cation with DDS Security.

300

AuthResendPeriod=sec Resend authentication messages af-
ter this amount of time. It is a float-
ing point value, so fractions of a sec-
ond can be specified.

1

SecureParticipantUserData=[0|1]If DDS Security is enabled, the
Participant’s USER_DATA QoS is
omitted from unsecured discovery
messages.

0

continues on next page

1.7. Run-time Configuration 95

OpenDDS, Release 3.24.0

Table 1.2 – continued from previous page
Option Description Default
UseXTypes=[
no|0|
minimal|1|
complete|2
]

Enables discovery extensions from
the XTypes specification. Partici-
pants exchange top-level type infor-
mation in endpoint announcements
and extended type information using
the Type Lookup Service.
minimal or 1 uses
MinimalTypeObject
and complete or 2 uses
CompleteTypeObject if avail-
able. See Representing Types
with TypeObject and Dynamic-
Type for more information on
CompleteTypeObject and its use
in the dynamic binding.

minimal

TypeLookupServiceReplyTimeout=msecIf a request is sent to a peer’s
Type Lookup Service (see UseX-
Types above), wait up to this dura-
tion (in milliseconds) for a reply.

5000
(5 seconds)

SedpResponsiveMode=[0|1] Causes the built-in SEDP endpoints
to send additional messages which
may reduce latency.

0

SedpPassiveConnectDuration=msecSets the duration that a passive end-
point will wait for a connection.

60000
(1 minute)

SendBufferSize=bytes Socket send buffer size for both
SPDP and SEDP. A value of zero in-
dicates that the system default value
is used.

0

RecvBufferSize=bytes Socket receive buffer size for both
SPDP and SEDP. A value of zero in-
dicates that the system default value
is used.

0

MaxParticipantsInAuthentication=nIf DDS Security is enabled, this op-
tion (when set to a positive num-
ber) limits the number of peer par-
ticipants that can be concurrently in
the process of authenticating – that
is, not yet completed authentication.

0 (unlimited)

SedpReceivePreallocatedMessageBlocks=nConfigure the re-
ceive_preallocated_message_blocks
attribute of SEDP’s transport. See
Configuration Options Common to
All Transports.

0 (use default)

SedpReceivePreallocatedDataBlocks=nConfigure the re-
ceive_preallocated_data_blocks
attribute of SEDP’s transport. See
Configuration Options Common to
All Transports.

0 (use default)

continues on next page

96 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table 1.2 – continued from previous page
Option Description Default
CheckSourceIp=[0|1] Incoming participant announce-

ments (SPDP) are checked to verify
that their source IP address matches
one of:

• An entry in the metatraffic lo-
cator list

• The configured RtpsRelay (if
any)

• An ICE AgentInfo parameter
Announcements that don’t
match any of these are
dropped if this check is
enabled.

1 (enabled)

Note: If the environment variable OPENDDS_RTPS_DEFAULT_D0 is set, its value is used as the D0 default value.

Additional DDSI-RTPS Discovery Features

The DDSI_RTPS discovery implementation creates and manages a transport instance – specifically an object of class
RtpsUdpInst. In order for applications to access this object and enable advanced features (Additional RTPS_UDP
Features), the RtpsDiscovery class provides the method sedp_transport_inst(domainId, participant).

Configuring for Static Discovery

Static discovery may be used when a DDS domain has a fixed number of processes and data readers/writers that are all
known a priori. Data readers and writers are collectively known as endpoints. Using only the configuration file, the
static discovery mechanism must be able to determine a network address and the QoS settings for each endpoint. The
static discovery mechanism uses this information to determine all potential associations between readers and writers.
A domain participant learns about the existence of an endpoint through hints supplied by the underlying transport.

Note: Currently, static discovery can only be used for endpoints using the RTPS UDP transport.

Static discovery introduces the following configuration file sections: [topic/*],``[datawriterqos/]``, ``[dataread-
erqos/]``, [publisherqos/*], [subscriberqos/*], and [endpoint/*]. The [topic/*] (Table 7-6) sec-
tion is used to introduce a topic. The [datawriterqos/*] (Table 7-7), [datareaderqos/*] (Table 7-8),
[publisherqos/*] (Table 7-9), and [subscriberqos/*] (Table 7-10) sections are used to describe a QoS of the
associated type. The [endpoint/*] (Table 7-11) section describes a data reader or writer.

Data reader and writer objects must be identified by the user so that the static discovery mechanism can associate
them with the correct [endpoint/*] section in the configuration file. This is done by setting the user_data of the
DomainParticipantQos to an octet sequence of length 6. The representation of this octet sequence occurs in the
participant value of an [endpoint/*] section as a string with two hexadecimal digits per octet. Similarly, the
user_data of the DataReaderQos or DataWriterQos must be set to an octet sequence of length 3 corresponding to
the entity value in the [endpoint/*] section. For example, suppose the configuration file contains the following:

1.7. Run-time Configuration 97

OpenDDS, Release 3.24.0

[topic/MyTopic]
type_name=TestMsg::TestMsg

[endpoint/MyReader]
type=reader
topic=MyTopic
config=MyConfig
domain=34
participant=0123456789ab
entity=cdef01

[config/MyConfig]
transports=MyTransport

[transport/MyTransport]
transport_type=rtps_udp
use_multicast=0
local_address=1.2.3.4:30000

The corresponding code to configure the DomainParticipantQos is:

DDS::DomainParticipantQos dp_qos;
domainParticipantFactory->get_default_participant_qos(dp_qos);
dp_qos.user_data.value.length(6);
dp_qos.user_data.value[0] = 0x01;
dp_qos.user_data.value[1] = 0x23;
dp_qos.user_data.value[2] = 0x45;
dp_qos.user_data.value[3] = 0x67;
dp_qos.user_data.value[4] = 0x89;
dp_qos.user_data.value[5] = 0xab;

The code to configure the DataReaderQos is similar:

DDS::DataReaderQos qos;
subscriber->get_default_datareader_qos(qos);
qos.user_data.value.length(3);
qos.user_data.value[0] = 0xcd;
qos.user_data.value[1] = 0xef;
qos.user_data.value[2] = 0x01;

The domain id, which is 34 in the example, should be passed to the call to create_participant.

In the example, the endpoint configuration for MyReader references MyConfigwhich in turn references MyTransport.
Transport configuration is described in Transport Configuration. The important detail for static discovery is that at least
one of the transports contains a known network address (1.2.3.4:30000). An error will be issued if an address cannot
be determined for an endpoint. The static discovery implementation also checks that the QoS of a data reader or data
writer object matches the QoS specified in the configuration file.

Table [topic/*] Configuration Options

Option Description Default
name=string The name of the topic. Instance name of

section
type_name=stringIdentifier which uniquely defines the sample type. This is typically a

CORBA interface repository type name.
Required

98 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table [datawriterqos/*] Configuration Options

Option Description Default
durability.kind=[
VOLATILE|TRANSIENT_LOCAL]

See DURABILITY . See Table
3-5.

deadline.period.sec=[
numeric|DURATION_INFINITE_SEC]

See DEADLINE. See Table
3-5.

deadline.period.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See DEADLINE. See Table
3-5.

latency_budget.duration.sec=[
numeric|DURATION_INFINITE_SEC]

See LA-
TENCY_BUDGET .

See Table
3-5.

latency_budget.duration.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See LA-
TENCY_BUDGET .

See Table
3-5.

liveliness.kind=[
AUTOMATIC|
MANUAL_BY_TOPIC|
MANUAL_BY_PARTICIPANT]

See LIVELINESS. See Table
3-5.

liveliness.lease_duration.sec=[
numeric|DURATION_INFINITE_SEC]

See LIVELINESS. See Table
3-5.

liveliness.lease_duration.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See LIVELINESS. See Table
3-5.

reliability.kind=[BEST_EFFORT|RELIABILE] See RELIABILITY . See Table
3-5.

reliability.max_blocking_time.sec=[
numeric|DURATION_INFINITE_SEC]

See RELIABILITY . See Table
3-5.

reliability.max_blocking_time.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See RELIABILITY . See Table
3-5.

destination_order.kind=[
BY_SOURCE_TIMESTAMP|
BY_RECEPTION_TIMESTAMP]

See DESTINA-
TION_ORDER.

See Table
3-5.

history.kind=[KEEP_LAST|KEEP_ALL] See HISTORY . See Table
3-5.

history.depth=numeric See HISTORY . See Table
3-5.

resource_limits.max_samples=numeric See RE-
SOURCE_LIMITS.

See Table
3-5.

resource_limits.max_instances=numeric See RE-
SOURCE_LIMITS.

See Table
3-5.

resource_limits.max_samples_per_instance=
numeric

See RE-
SOURCE_LIMITS.

See Table
3-5.

transport_priority.value=numeric See TRANS-
PORT_PRIORITY .

See Table
3-5.

lifespan.duration.sec=[
numeric|DURATION_INFINITE_SEC]

See LIFESPAN . See Table
3-5.

lifespan.duration.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See LIFESPAN . See Table
3-5.

ownership.kind=[SHARED|EXCLUSIVE] See OWNERSHIP. See Table
3-5.

ownership_strength.value=numeric See OWNER-
SHIP_STRENGTH.

See Table
3-5.

Table [datareaderqos/*] Configuration Options

1.7. Run-time Configuration 99

OpenDDS, Release 3.24.0

Option Description Default
durability.kind=[
VOLATILE|TRANSIENT_LOCAL]

See DURABILITY . See Ta-
ble 3-6.

deadline.period.sec=[
numeric|DURATION_INFINITE_SEC]

See DEADLINE. See Ta-
ble 3-6.

deadline.period.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See DEADLINE. See Ta-
ble 3-6.

latency_budget.duration.sec=[
numeric|DURATION_INFINITE_SEC]

See LA-
TENCY_BUDGET .

See Ta-
ble 3-6.

latency_budget.duration.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See LA-
TENCY_BUDGET .

See Ta-
ble 3-6.

liveliness.kind=[
AUTOMATIC|
MANUAL_BY_TOPIC|
MANUAL_BY_PARTICIPANT]

See LIVELINESS. See Ta-
ble 3-6.

liveliness.lease_duration.sec=[
numeric|DURATION_INFINITE_SEC]

See LIVELINESS. See Ta-
ble 3-6.

liveliness.lease_duration.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See LIVELINESS. See Ta-
ble 3-6.

reliability.kind=[BEST_EFFORT|RELIABILE] See RELIABILITY . See Ta-
ble 3-6.

reliability.max_blocking_time.sec=[
numeric|DURATION_INFINITE_SEC]

See RELIABILITY . See Ta-
ble 3-6.

reliability.max_blocking_time.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See RELIABILITY . See Ta-
ble 3-6.

destination_order.kind=[
BY_SOURCE_TIMESTAMP|
BY_RECEPTION_TIMESTAMP]

See DESTINA-
TION_ORDER.

See Ta-
ble 3-6.

history.kind=[KEEP_LAST|KEEP_ALL] See HISTORY . See Ta-
ble 3-6.

history.depth=numeric See HISTORY . See Ta-
ble 3-6.

resource_limits.max_samples=numeric See RE-
SOURCE_LIMITS.

See Ta-
ble 3-6.

resource_limits.max_instances=numeric See RE-
SOURCE_LIMITS.

See Ta-
ble 3-6.

resource_limits.max_samples_per_instance=
numeric

See RE-
SOURCE_LIMITS.

See Ta-
ble 3-6.

time_based_filter.minimum_separation.sec=[
numeric|DURATION_INFINITE_SEC]

See
TIME_BASED_FILTER.

See Ta-
ble 3-6.

time_based_filter.minimum_separation.nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See
TIME_BASED_FILTER.

See Ta-
ble 3-6.

reader_data_lifecycle. autopurge_nowriter_samples_delay.
sec=[
numeric|DURATION_INFINITE_SEC]

See
READER_DATA_LIFECYCLE.

See Ta-
ble 3-6.

reader_data_lifecycle. autopurge_nowriter_samples_delay.
nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See
READER_DATA_LIFECYCLE.

See Ta-
ble 3-6.

reader_data_lifecycle. autopurge_dispose_samples_delay.sec=[
numeric|DURATION_INFINITE_SEC]

See
READER_DATA_LIFECYCLE.

See Ta-
ble 3-6.

reader_data_lifecycle. autopurge_dispose_samples_delay.
nanosec=[
numeric|DURATION_INFINITE_NANOSEC]

See
READER_DATA_LIFECYCLE.

See Ta-
ble 3-6.

100 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Table [publisherqos/*] Configuration Options

Option Description Default
presentation.access_scope=[INSTANCE|TOPIC|GROUP] See PRESENTATION . See Table 3-3.
presentation.coherent_access=[true|false] See PRESENTATION . See Table 3-3.
presentation.ordered_access=[true|false] See PRESENTATION . See Table 3-3.
partition.name=name0,name1,... See PARTITION . See Table 3-3.

Table [subscriberqos/*] Configuration Options

Option Description Default
presentation.access_scope=[INSTANCE|TOPIC|GROUP] See PRESENTATION . See Table 3-4.
presentation.coherent_access=[true|false] See PRESENTATION . See Table 3-4.
presentation.ordered_access=[true|false] See PRESENTATION . See Table 3-4.
partition.name=name0,name1,... See PARTITION . See Table 3-4.

Table [endpoint/*] Configuration Options

Option Description De-
fault

domain=numericDomain id for endpoint in range 0-231. Used to form GUID of endpoint. Re-
quired

participant=hexstringString of 12 hexadecimal digits. Used to form GUID of endpoint. All endpoints with
the same domain/participant combination should be in the same process.

Re-
quired

entity=hexstringString of 6 hexadecimal digits. Used to form GUID of endpoint. The combination of
domain/participant/entity should be unique.

Re-
quired

type=[reader|writer]Determines if the entity is a data reader or data writer. Re-
quired

topic=name Refers to a [topic/*] section. Re-
quired

datawriterqos=nameRefers to a [datawriterqos/*] section. See Ta-
ble 3-5.

datareaderqos=nameRefers to a [datareaderqos/*] section. See Ta-
ble 3-6.

publisherqos=nameRefers to a [publisherqos/*] section. See Ta-
ble 3-3.

subscriberqos=nameRefers to a [subscriberqos/*] section. See Ta-
ble 3-4.

config Refers to a transport configuration in a [config/*] section. This is used to determine
a network address for the endpoint.

1.7.4 Transport Configuration

Beginning with OpenDDS 3.0, a new transport configuration design has been implemented. The basic goals of this
design were to:

• Allow simple deployments to ignore transport configuration and deploy using intelligent defaults (with no trans-
port code required in the publisher or subscriber).

• Enable flexible deployment of applications using only configuration files and command line options.

1.7. Run-time Configuration 101

OpenDDS, Release 3.24.0

• Allow deployments that mix transports within individual data writers and writers. Publishers and subscribers
negotiate the appropriate transport implementation to use based on the details of the transport configuration, QoS
settings, and network reachability.

• Support a broader range of application deployments in complex networks.

• Support optimized transport development (such as collocated and shared memory transports - note that these are
not currently implemented).

• Integrate support for the RELIABILITY QoS policy with the underlying transport.

• Whenever possible, avoid dependence on the ACE Service Configurator and its configuration files.

Unfortunately, implementing these new capabilities involved breaking of backward compatibility with OpenDDS trans-
port configuration code and files from previous releases. See docs/OpenDDS_3.0_Transition.txt for information on how
to convert your existing application to use the new transport configuration design.

Overview

Transport Concepts

This section provides an overview of the concepts involved in transport configuration and how they interact.

Each data reader and writer uses a Transport Configuration consisting of an ordered set of Transport Instances. Each
Transport Instance specifies a Transport Implementation (i.e. tcp, udp, multicast, shmem, or rtps_udp) and can cus-
tomize the configuration parameters defined by that transport. Transport Configurations and Transport Instances are
managed by the Transport Registry and can be created via configuration files or through programming APIs.

Transport Configurations can be specified for Domain Participants, Publishers, Subscribers, Data Writers, and Data
Readers. When a Data Reader or Writer is enabled, it uses the most specific configuration it can locate, either directly
bound to it or accessible through its parent entity. For example, if a Data Writer specifies a Transport Configuration, it
always uses it. If the Data Writer does not specify a configuration, it tries to use that of its Publisher or Domain Partici-
pant in that order. If none of these entities have a transport configuration specified, the Global Transport Configuration
is obtained from the Transport Registry. The Global Transport Configuration can be specified by the user via either
configuration file, command line option, or a member function call on the Transport Registry. If not defined by the
user, a default transport configuration is used which contains all available transport implementations with their default
configuration parameters. If you don’t specifically load or link in any other transport implementations, OpenDDS uses
the tcp transport for all communication.

How OpenDDS Selects a Transport

Currently, the behavior for OpenDDS is that Data Writers actively connect to Data Readers, which are passively awaiting
those connections. Data Readers “listen” for connections on each of the Transport Instances that are defined in their
Transport Configuration. Data Writers use their Transport Instances to “connect” to those of the Data Readers. Because
the logical connections discussed here don’t correspond to the physical connections of the transport, OpenDDS often
refers to them as Data Links.

When a Data Writer tries to connect to a Data Reader, it first attempts to see if there is an existing data link that it can
use to communicate with that Data Reader. The Data Writer iterates (in definition order) through each of its Transport
Instances and looks for an existing data link to the Transport Instances that the reader defined. If an existing data link
is found it is used for all subsequent communication between the Data Writer and Reader.

If no existing data link is found, the Data Writer attempts to connect using the different Transport Instances in the order
they are defined in its Transport Configuration. Any Transport Instances not “matched” by the other side are skipped.
For example, if the writer specifies udp and tcp transport instances and the reader only specifies tcp, the udp transport
instance is ignored. Matching algorithms may also be affected by QoS parameters, configuration of the instances, and

102 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/docs/OpenDDS_3.0_Transition.txt

OpenDDS, Release 3.24.0

other specifics of the transport implementation. The first pair of Transport Instances that successfully “connect” results
in a data link that is used for all subsequent data sample publication.

Configuration File Examples

The following examples explain the basic features of transport configuration via files and describe some common use
cases. These are followed by full reference documentation for these features.

Single Transport Configuration

The simplest way to provide a transport configuration for your application is to use the OpenDDS configuration file.
Here is a sample configuration file that might be used by an application running on a computer with two network
interfaces that only wants to communicate using one of them:

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mytcp

[transport/mytcp]
transport_type=tcp
local_address=myhost

This file does the following (starting from the bottom up):

1. Defines a transport instance named mytcp with a transport type of tcp and the local address specified as myhost,
which is the host name corresponding to the network interface we want to use.

2. Defines a transport configuration named myconfig that uses the transport instance mytcp as its only transport.

3. Makes the transport configuration named myconfig the global transport configuration for all entities in this
process.

A process using this configuration file utilizes our customized transport configuration for all Data Readers and Writers
created by it (unless we specifically bind another configuration in the code as described in Using Multiple Configura-
tions).

Using Mixed Transports

This example configures an application to primarily use multicast and to “fall back” to tcp when it is unable to use
multicast. Here is the configuration file:

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mymulticast,mytcp

[transport/mymulticast]
transport_type=multicast

(continues on next page)

1.7. Run-time Configuration 103

OpenDDS, Release 3.24.0

(continued from previous page)

[transport/mytcp]
transport_type=tcp

The transport configuration named myconfig now includes two transport instances, mymulticast and mytcp. Neither
of these transport instances specify any parameters besides transport_type, so they use the default configuration of these
transport implementations. Users are free to use any of the transport-specific configuration parameters that are listed
in the following reference sections.

Assuming that all participating processes use this configuration file, the application attempts to use multicast to initiate
communication between data writers and readers. If the initial multicast communication fails for any reason (possibly
because an intervening router is not passing multicast traffic) tcp is used to initiate the connection.

Using Multiple Configurations

For many applications, one configuration is not equally applicable to all communication within a given process. These
applications must create multiple Transport Configurations and then assign them to the different entities of the process.

For this example consider an application hosted on a computer with two network interfaces that requires communication
of some data over one interface and the remainder over the other interface. Here is our configuration file:

[common]
DCPSGlobalTransportConfig=config_a

[config/config_a]
transports=tcp_a

[config/config_b]
transports=tcp_b

[transport/tcp_a]
transport_type=tcp
local_address=hosta

[transport/tcp_b]
transport_type=tcp
local_address=hostb

Assuming hosta and hostb are the host names assigned to the two network interfaces, we now have separate con-
figurations that can use tcp on the respective networks. The above file sets the “A” side configuration as the default,
meaning we must manually bind any entities we want to use the other side to the “B” side configuration.

OpenDDS provides two mechanisms to assign configurations to entities:

• Via source code by attaching a configuration to an entity (reader, writer, publisher, subscriber, or domain partic-
ipant)

• Via configuration file by associating a configuration with a domain

Here is the source code mechanism (using a domain participant):

DDS::DomainParticipant_var dp =
dpf->create_participant(MY_DOMAIN,

PARTICIPANT_QOS_DEFAULT,
DDS::DomainParticipantListener::_nil(),

(continues on next page)

104 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

OpenDDS::DCPS::DEFAULT_STATUS_MASK);

OpenDDS::DCPS::TransportRegistry::instance()->bind_config("config_b", dp);

Any Data Writers or Readers owned by this Domain Participant should now use the “B” side configuration.

Note: When directly binding a configuration to a data writer or reader, the bind_config call must occur before the
reader or writer is enabled. This is not an issue when binding configurations to Domain Participants, Publishers, or
Subscribers. See ENTITY_FACTORY for details on how to create entities that are not enabled.

Transport Registry Example

OpenDDS allows developers to also define transport configurations and instances via C++ APIs. The
OpenDDS::DCPS::TransportRegistry class is used to construct OpenDDS::DCPS::TransportConfig and
OpenDDS::DCPS::TransportInst objects. The TransportConfig and TransportInst classes contain public
data member corresponding to the options defined below. This section contains the code equivalent of the simple
transport configuration file described in . First, we need to include the correct header files:

#include <dds/DCPS/transport/framework/TransportRegistry.h>
#include <dds/DCPS/transport/framework/TransportConfig.h>
#include <dds/DCPS/transport/framework/TransportInst.h>
#include <dds/DCPS/transport/tcp/TcpInst.h>

using namespace OpenDDS::DCPS;

Next we create the transport configuration, create the transport instance, configure the transport instance, and then add
the instance to the configuration’s collection of instances:

TransportConfig_rch cfg = TheTransportRegistry->create_config("myconfig");
TransportInst_rch inst = TheTransportRegistry->create_inst("mytcp", // name

"tcp"); // type

// Must cast to TcpInst to get access to transport-specific options
TcpInst_rch tcp_inst = dynamic_rchandle_cast<TcpInst>(inst);
tcp_inst->local_address_str_ = "myhost";

// Add the inst to the config
cfg->instances_.push_back(inst);

Lastly, we can make our newly defined transport configuration the global transport configuration:

TheTransportRegistry->global_config(cfg);

This code should be executed before any Data Readers or Writers are enabled.

See the header files included above for the full list of public data members and member functions that can be used. See
the option descriptions in the following sections for a full understanding of the semantics of these settings.

Stepping back and comparing this code to the original configuration file from, the configuration file is much simpler
than the corresponding C++ code and has the added advantage of being modifiable at run-time. It is easy to see why
we recommend that almost all applications should use the configuration file mechanism for transport configuration.

1.7. Run-time Configuration 105

OpenDDS, Release 3.24.0

Transport Configuration Options

Transport Configurations are specified in the OpenDDS configuration file via sections with the format of [config/
<name>], where <name> is a unique name for that configuration within that process. The following table summarizes
the options when specifying a transport configuration:

Table Transport Configuration Options

Option Description De-
fault

transports=inst1[,
inst2][,
...]

The ordered list of transport instance names that this configuration will utilize. This field is
required for every transport configuration.

none

swap_bytes=[0|1]A value of 0 causes DDS to serialize data in the source machine’s native endianness; a value
of 1 causes DDS to serialize data in the opposite endianness. The receiving side will adjust the
data for its endianness so there is no need to match this option between machines. The purpose
of this option is to allow the developer to decide which side will make the endian adjustment,
if necessary.

0

passive_connect_duration=msecTimeout (milliseconds) for initial passive connection establishment. A value of zero would wait
indefinitely (not recommended).

10000
(10
sec)

The passive_connect_duration option is typically set to a non-zero, positive integer. Without a suitable connection
timeout, the subscriber endpoint can potentially enter a state of deadlock while waiting for the remote side to initiate
a connection. Because there can be multiple transport instances on both the publisher and subscriber side, this option
needs to be set to a high enough value to allow the publisher to iterate through the combinations until it succeeds.

In addition to the user-defined configurations, OpenDDS can implicitly define two transport configurations. The first is
the default configuration and includes all transport implementations that are linked into the process. If none are found,
then only tcp is used. Each of these transport instances uses the default configuration for that transport implementation.
This is the global transport configuration used when the user does not define one.

The second implicit transport configuration is defined whenever an OpenDDS configuration file is used. It
is given the same name as the file being read and includes all the transport instances defined in that file, in
the alphabetical order of their names. The user can most easily utilize this configuration by specifying the
DCPSGlobalTransportConfiguration=$file option in the same file. The $file value always binds to the implicit
file configuration of the current file.

Transport Instance Options

Transport Instances are specified in the OpenDDS configuration file via sections with the format of [transport/
<name>], where <name> is a unique name for that instance within that process. Each Transport Instance must specify
the transport_type option with a valid transport implementation type. The following sections list the other options
that can be specified, starting with those options common to all transport types and following with those specific to
each transport type.

When using dynamic libraries, the OpenDDS transport libraries are dynamically loaded whenever an instance of that
type is defined in a configuration file. When using custom transport implementations or static linking, the application
developer is responsible for ensuring that the transport implementation code is linked with their executables.

106 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Configuration Options Common to All Transports

The following table summarizes the transport configuration options that are common to all transports:

Table Common Transport Configuration Options

Option Description De-
fault

transport_type=transportType of the transport; the list of available transports can be extended programmat-
ically via the transport framework. tcp, udp, multicast, shmem, and rtps_udp are
included with OpenDDS.

none

queue_messages_per_pool=nWhen backpressure is detected, messages to be sent are queued. When the message
queue must grow, it grows by this number.

10

queue_initial_pools=nThe initial number of pools for the backpressure queue. The default settings of the
two backpressure queue values preallocate space for 50 messages (5 pools of 10
messages).

5

max_packet_size=nThe maximum size of a transport packet, including its transport header, sample
header, and sample data.

2147481599

max_samples_per_packet=nMaximum number of samples in a transport packet. 10
optimum_packet_size=nTransport packets greater than this size will be sent over the wire even if there are

still queued samples to be sent. This value may impact performance depending on
your network configuration and application nature.

4096
(4
KiB)

thread_per_connection=
[0|1]

Enable or disable the thread per connection send strategy. By default, this option is
disabled.

0

datalink_release_delay=msecThe datalink_release_delay is the delay (in milliseconds) for datalink release after
no associations. Increasing this value may reduce the overhead of re-establishment
when reader/writer associations are added and removed frequently.

10000
(10
sec)

receive_preallocated_message_blocks=nSet to a positive number to override the number of message blocks that the allocator
reserves memory for eagerly (on startup).

0
(use
default)

receive_preallocated_data_blocks=nSet to a positive number to override the number of data blocks that the allocator
reserves memory for eagerly (on startup).

0
(use
default)

Enabling the thread_per_connection option will increase performance when writing to multiple data readers on
different process as long as the overhead of thread context switching does not outweigh the benefits of parallel writes.
This balance of network performance to context switching overhead is best determined by experimenting. If a machine
has multiple network cards, it may improve performance by creating a transport for each network card.

TCP/IP Transport Configuration Options

There are a number of configurable options for the tcp transport. A properly configured transport provides added
resilience to underlying stack disturbances. Almost all of the options available to customize the connection and recon-
nection strategies have reasonable defaults, but ultimately these values should to be chosen based upon a careful study
of the quality of the network and the desired QoS in the specific DDS application and target environment.

The local_address option is used by the peer to establish a connection. By default, the TCP transport selects an
ephemeral port number on the NIC with the FQDN (fully qualified domain name) resolved. Therefore, you may wish
to explicitly set the address if you have multiple NICs or if you wish to specify the port number. When you configure
inter-host communication, the local_address can not be localhost and should be configured with an externally visible
address (i.e. 192.168.0.2), or you can leave it unspecified in which case the FQDN and an ephemeral port will be used.

FQDN resolution is dependent upon system configuration. In the absence of a FQDN (e.g. example.opendds.org),

1.7. Run-time Configuration 107

OpenDDS, Release 3.24.0

OpenDDS will use any discovered short names (e.g. example). If that fails, it will use the name resolved from the
loopback address (e.g. localhost).

Note: OpenDDS IPv6 support requires that the underlying ACE/TAO components be built with IPv6 support enabled.
The local_address needs to be an IPv6 decimal address or a FQDN with port number. The FQDN must be resolvable
to an IPv6 address.

The tcp transport exists as an independent library and needs to be linked in order to use it. When using a dynamically-
linked build, OpenDDS automatically loads the transport library whenever it is referenced in a configuration file or as
the default transport when no other transports are specified.

When the tcp library is built statically, your application must link directly against the library. To do this, your applica-
tion must first include the proper header for service initialization: <dds/DCPS/transport/tcp/Tcp.h>.

You can also configure the publisher and subscriber transport implementations programatically, as described in Trans-
port Registry Example. Configuring subscribers and publishers should be identical, but different addresses/ports should
be assigned to each Transport Instance.

The following table summarizes the transport configuration options that are unique to the tcp transport:

Table TCP/IP Configuration Options

Option Description De-
fault

active_conn_timeout_period=msecThe time period (milliseconds) for the active connection side to wait for the connection to be
established. If not connected within this period then the on_publication_lost() callbacks will be
called.

5000
(5
sec)

conn_retry_attempts=nNumber of reconnect attempts before giving up and calling the on_publication_lost() and
on_subscription_lost() callbacks.

3

conn_retry_initial_delay=msecInitial delay (milliseconds) for reconnect attempt. As soon as a lost connection is detected, a
reconnect is attempted. If this reconnect fails, a second attempt is made after this specified delay.

500

conn_retry_backoff_multiplier=nThe backoff multiplier for reconnection tries. After the initial delay described above, subsequent
delays are determined by the product of this multiplier and the previous delay. For example, with a
conn_retry_initial_delay of 500 and a conn_retry_backoff_multiplier of 1.5, the second reconnect
attempt will be 0.5 seconds after the first retry connect fails; the third attempt will be 0.75 seconds
after the second retry connect fails; the fourth attempt will be 1.125 seconds after the third retry
connect fails.

2.
0

enable_nagle_algorithm=[0|1]Enable or disable the Nagle’s algorithm. By default, it is disabled.
Enabling the Nagle’s algorithm may increase throughput at the expense of increased latency.

0

local_address=host:portHostname and port of the connection acceptor. The default value is the FQDN and port 0, which
means the OS will choose the port. If only the host is specified and the port number is omitted,
the ‘:’ is still required on the host specifier.

fqdn:0

max_output_pause_period=msecMaximum period (milliseconds) of not being able to send queued messages. If there are sam-
ples queued and no output for longer than this period then the connection will be closed and
on_*_lost() callbacks will be called. The default value of zero means that this check is not
made.

0

passive_reconnect_duration=msecThe time period (milliseconds) for the passive connection side to wait for the connection to be
reconnected. If not reconnected within this period then the on_*_lost() callbacks will be called.

2000
(2
sec)

pub_address=host:portOverride the address sent to peers with the configured string. This can be used for firewall traversal
and other advanced network configurations.

108 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

TCP/IP Reconnection Options

When a TCP/IP connection gets closed OpenDDS attempts to reconnect. The reconnection process is (a successful
reconnect ends this sequence):

• Upon detecting a lost connection immediately attempt reconnect.

• If that fails, then wait conn_retry_initial_delay milliseconds and attempt reconnect.

• While we have not tried more than conn_retry_attempts, wait (previous wait time *
conn_retry_backoff_multiplier) milliseconds and attempt to reconnect.

UDP/IP Transport Configuration Options

The udp transport is a bare bones transport that supports best-effort delivery only. Like tcp, local_address, it
supports both IPv4 and IPv6 addresses.

udp exists as an independent library and therefore needs to be linked and configured like other transport libraries.
When using a dynamic library build, OpenDDS automatically loads the library when it is referenced in a configuration
file. When the udp library is built statically, your application must link directly against the library. Additionally, your
application must also include the proper header for service initialization: <dds/DCPS/transport/udp/Udp.h>.

The following table summarizes the transport configuration options that are unique to the udp transport:

Table UDP/IP Configuration Options

Option Description Default
local_address=host:portHostname and port of the listening socket. Defaults to a value picked

by the underlying OS. The port can be omitted, in which case the
value should end in “:”.

fqdn:0

send_buffer_size=nTotal send buffer size in bytes for UDP payload. Platform value of
ACE_DEFAULT_MAX_SOCKET_BUFSIZ

rcv_buffer_size=nTotal receive buffer size in bytes for UDP payload. Platform value of
ACE_DEFAULT_MAX_SOCKET_BUFSIZ

IP Multicast Transport Configuration Options

The multicast transport provides unified support for best-effort and reliable delivery based on a transport configura-
tion parameter.

Best-effort delivery imposes the least amount of overhead as data is exchanged between peers, however it does not
provide any guarantee of delivery. Data may be lost due to unresponsive or unreachable peers or received in duplicate.

Reliable delivery provides for guaranteed delivery of data to associated peers with no duplication at the cost of additional
processing and bandwidth. Reliable delivery is achieved through two primary mechanisms: 2-way peer handshaking
and negative acknowledgment of missing data. Each of these mechanisms are bounded to ensure deterministic behavior
and is configurable to ensure the broadest applicability possible for user environments.

multicast supports a number of configuration options:

The default_to_ipv6 and port_offset options affect how default multicast group addresses are selected. If
default_to_ipv6 is set to “1” (enabled), then the default IPv6 address will be used ([FF01::80]). The
port_offset option determines the default port used when the group address is not set and defaults to 49152.

The group_address option may be used to manually define a multicast group to join to exchange data. Both IPv4 and
IPv6 addresses are supported. As with tcp, OpenDDS IPv6 support requires that the underlying ACE/TAO components
be built with IPv6 support enabled.

1.7. Run-time Configuration 109

OpenDDS, Release 3.24.0

On hosts with multiple network interfaces, it may be necessary to specify that the multicast group should be joined on
a specific interface. The option local_address can be set to the IP address of the local interface that will receive
multicast traffic.

If reliable delivery is desired, the reliable option may be specified (the default). The remainder of configuration
options affect the reliability mechanisms used by the multicast transport:

The syn_backoff, syn_interval, and syn_timeout configuration options affect the handshaking mechanism.
syn_backoff is the exponential base used when calculating the backoff delay between retries. The syn_interval
option defines the minimum number of milliseconds to wait before retrying a handshake. The syn_timeout defines
the maximum number of milliseconds to wait before giving up on the handshake.

Given the values of syn_backoff and syn_interval, it is possible to calculate the delays between handshake at-
tempts (bounded by syn_timeout):

delay = syn_interval * syn_backoff ^ number_of_retries

For example, if the default configuration options are assumed, the delays between handshake attempts would be: 0,
250, 1000, 2000, 4000, and 8000 milliseconds respectively.

The nak_depth, nak_interval, and nak_timeout configuration options affect the Negative Acknowledgment mech-
anism. nak_depth determines the maximum number of datagrams retained by the transport to service incoming repair
requests. The nak_interval configuration option defines the minimum number of milliseconds to wait between repair
requests. This interval is randomized to prevent potential collisions between similarly associated peers. The maximum
delay between repair requests is bounded to double the minimum value.

The nak_timeout configuration option defines the maximum amount of time to wait on a repair request before giving
up.

The nak_delay_intervals configuration option defines the number of intervals between naks after the initial nak.

The nak_max configuration option limits the maximum number of times a missing sample will be nak’ed. Use this
option so that naks will be not be sent repeatedly for unrecoverable packets before nak_timeout.

Currently, there are a couple of requirements above and beyond those already mandated by the ETF when using this
transport:

• At most, one DDS domain may be used per multicast group;

• A given participant may only have a single multicast transport attached per multicast group; if you wish to
send and receive samples on the same multicast group in the same process, independent participants must be
used.

multicast exists as an independent library and therefore needs to be linked and configured like other transport li-
braries. When using a dynamic library build, OpenDDS automatically loads the library when it is referenced in a con-
figuration file. When the multicast library is built statically, your application must link directly against the library.
Additionally, your application must also include the proper header for service initialization: <dds/DCPS/transport/
multicast/Multicast.h>.

The following table summarizes the transport configuration options that are unique to the multicast transport:

Table IP Multicast Configuration Options

110 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Option Description Default
default_to_ipv6=[0|1]Enables IPv6 default group address selection. By default, this option is disabled. 0
group_address=host:portThe multicast group to join to send/receive data. 224.0.0.

128:<port>,
[FF01::80]:<port>

local_address=addressIf non-empty, address of a local network interface which is used to join the multicast
group.

nak_delay_intervals=nThe number of intervals between naks after the initial nak. 4
nak_depth=nThe number of datagrams to retain in order to service repair requests (reliable only). 32
nak_interval=msecThe minimum number of milliseconds to wait between repair requests (reliable

only).
500

nak_max=n The maximum number of times a missing sample will be nak’ed. 3
nak_timeout=msecThe maximum number of milliseconds to wait before giving up on a repair response

(reliable only).
30000 (30
sec)

port_offset=nUsed to set the port number when not specifying a group address. When a group
address is specified, the port number within it is used. If no group address is speci-
fied, the port offset is used as a port number. This value should not be set less than
49152.

49152

rcv_buffer_size=nThe size of the socket receive buffer in bytes. A value of zero indicates that the
system default value is used.

0

reliable=[0|1]Enables reliable communication. 1
syn_backoff=nThe exponential base used during handshake retries; smaller values yield shorter

delays between attempts.
2.0

syn_interval=msecThe minimum number of milliseconds to wait between handshake attempts during
association.

250

syn_timeout=msecThe maximum number of milliseconds to wait before giving up on a handshake
response during association. The default is 30 seconds.

30000 (30
sec)

ttl=n The value of the time-to-live (ttl) field of any datagrams sent. The default value of
one means that all data is restricted to the local network.

1

async_send=[0|1]Send datagrams using Async I/O (on platforms that support it efficiently).

RTPS_UDP Transport Configuration Options

The OpenDDS implementation of the OMG DDSI-RTPS (formal/2014-09-01) specification includes the transport
protocols necessary to fulfill the specification requirements and those needed to be interoperable with other DDS im-
plementations. The rtps_udp transport is one of the pluggable transports available to a developer and is necessary for
interoperable communication between implementations. This section will discuss the options available to the developer
for configuring OpenDDS to use this transport.

To provide an RTPS variant of the single configuration example from Single Transport Configuration, the configuration
file below simply introduces the myrtps transport and modifies the transport_type property to the value rtps_udp.
All other items remain the same.

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=myrtps

[transport/myrtps]
transport_type=rtps_udp
local_address=myhost

1.7. Run-time Configuration 111

OpenDDS, Release 3.24.0

To extend our examples to a mixed transport configuration as shown in Using Mixed Transports, below shows the use of
an rtps_udp transport mixed with a tcp transport. The interesting pattern that this allows for is a deployed OpenDDS
application that can be, for example, communicating using tcpwith other OpenDDS participants while communicating
in an interoperability configuration with a non-OpenDDS participant using rtps_udp.

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mytcp,myrtps

[transport/myrtps]
transport_type=rtps_udp

[transport/mytcp]
transport_type=tcp

Some implementation notes related to using the rtps_udp transport protocol are as follows:

1. WRITER_DATA_LIFECYCLE (8.7.2.2.7) notes that the same Data sub-message should dispose and unregister an
instance. OpenDDS may use two Data sub-messages.

2. RTPS transport instances can not be shared by different Domain Participants.

3. Transport auto-selection (negotiation) is partially supported with RTPS such that the rtps_udp transport goes
through a handshaking phase only in reliable mode.

Table RTPS_UDP Configuration Options

112 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Option Description Default
use_multicast=[0|1]The rtps_udp transport can use Unicast or Multicast. When set to 0 (false) the trans-

port uses Unicast, otherwise a value of 1 (true) will use Multicast.
1

multicast_group_address
=network_address

When the transport is set to multicast, this is the multicast network address that should
be used. If no port is specified for the network address, port 7401 will be used.

239.
255.0.
2:7401

multicast_interface=ifaceSpecifies the network interface to be used by this transport instance. This uses a
platform-specific format that identifies the network interface. On Linux systems this
would be something like eth 0.
If this value is not configured, the Common Configuration value
DCPSDefaultAddress is used to set the multicast interface.

The
system
default
interface
is used

local_address=addr:[port]Bind the socket to the given address and port. Port can be omitted but the trailing “:”
is required.

System
default

ipv6_local_address
=
addr:[port]

Bind the socket to the given address and port. Port can be omitted but the trailing “:”
is required.

System
default

advertised_address=
addr:[port]

Sets the address advertised by the transport. Typically used when the participant is
behind a firewall or NAT. Port can be omitted but the trailing “:” is required.

ipv6_advertised_address
=
addr:[port]

Sets the address advertised by the transport. Typically used when the participant is
behind a firewall or NAT. Port can be omitted but the trailing “:” is required.

send_delay=*msec*Time in milliseconds for an RTPS Writer to wait before sending data. 10
nak_depth=n The number of data samples to retain in order to service repair requests (reliable only). 32
nak_response_delay=msecProtocol tuning parameter that allows the RTPS Writer to delay the response (ex-

pressed in milliseconds) to a request for data from a negative acknowledgment.
(see table 8.47 in the OMG DDSI-RTPS specification)

200

heartbeat_period=msecProtocol tuning parameter that specifies in milliseconds how often an RTPS Writer
announces the availability of data.
(see table 8.47 in the OMG DDSI-RTPS specification)

1000 (1
sec)

Respon-
siveMode
=[0|1]

Causes reliable writers and readers to send additional messages which may reduce
latency.

0

max_message_size=nThe maximum message size. The default is the maximum UDP message size. 65466
ttl=n The value of the time-to-live (ttl) field of any multicast datagrams sent. This value

specifies the number of hops the datagram will traverse before being discarded by the
network. The default value of 1 means that all data is restricted to the local network
subnet.

1

DataRtpsRelayAddress=host:portSpecifies the address of the RtpsRelay for RTPS messages. See The RtpsRelay.
RtpsRelayOnly=[0|1]Only send RTPS message to the RtpsRelay (for debugging). See The RtpsRelay. 0
UseRtpsRelay=[0|1]Send messages to the RtpsRelay. Messages will only be sent if DataRtpsRelayAddress

is set. See The RtpsRelay.
0

DataStunServerAddress=host:portSpecifies the address of the STUN server to use for RTPS when using ICE. See Inter-
active Connectivity Establishment (ICE) for RTPS.

UseIce=[0|1] Enable or disable ICE for this transport instance. See Interactive Connectivity Estab-
lishment (ICE) for RTPS.

0

1.7. Run-time Configuration 113

OpenDDS, Release 3.24.0

Additional RTPS_UDP Features

The RTPS_UDP transport implementation has capabilities that can only be enabled by API. These features cannot be
enabled using configuration files.

The RtpsUdpInst class has a method count_messages(bool flag) via inheritance from TransportInst. With
count_messages enabled, the transport will track various counters and make them available to the application using
the method append_transport_statistics(TransportStatisticsSequence& seq). The elements of that se-
quence are defined in IDL: OpenDDS::DCPS::TransportStatistics and detailed in the tables below.

TransportStatistics

Type Name Description
string transport The name of the transport.
Message-
CountSe-
quence

mes-
sage_count

Set of message counts grouped by remote address.
See the MessageCount table below.

Guid-
CountSe-
quence

writer_resend_countMap of counts indicating how many times a local writer has resent a data sample.
Each element in the sequence is a structure containing a GUID and a count.

Guid-
CountSe-
quence

reader_nack_countMap of counts indicating how many times a local reader has requested a sample to be
resent.

MessageCount

Type Name Description
Locator_t locator A byte array containing an IPv4 or IPv6 address.
MessageCoun-
tKind

kind Key indicating the type of message count for transports that use multiple
protocols.

boolean relay Indicates that the locator is a relay.
unsigned long send_count Number of messages sent to the locator.
unsigned long send_bytes Number of bytes sent to the locator.
unsigned long send_fail_count Number of sends directed at the locator that failed.
unsigned long send_fail_bytes Number of bytes directed at the locator that failed.
unsigned long recv_count Number of messages received from the locator.
unsigned long recv_bytes Number of bytes received from the locator.

Shared-Memory Transport Configuration Options

The following table summarizes the transport configuration options that are unique to the shmem transport. This trans-
port type is supported Unix-like platforms with POSIX/XSI shared memory and on Windows platforms. The shared
memory transport type can only provide communication between transport instances on the same host. As part of
transport negotiation (Using Mixed Transports), if there are multiple transport instances available for communication
between hosts, the shared memory transport instances will be skipped so that other types can be used.

Table Shared-Memory Transport Configuration Options

114 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Option Description Default
pool_size=bytes The size of the single shared-memory pool allocated. 16777216

(16 MiB)
datalink_control_size=bytesThe size of the control area allocated for each data link. This allocation

comes out of the shared-memory pool defined by pool_size.
4096 (4 KiB)

host_name=host Override the host name used to identify the host machine. Uses fully quali-
fied domain name

1.7.5 Discovery and Transport Configuration Templates

OpenDDS supports dynamic configuration of RTPS discovery and transports by means of configuration templates in
OpenDDS configuration files. This feature adds 3 optional file sections, [DomainRange], [transport_template],
and [Customization], as well as a new transport property, instantiation_rule, which specifies when transport
instances are created. Configuration templates are processed at application startup; however, creation of domain, dis-
covery, and transport objects is deferred until a participant is created in a corresponding domain.

A traditional OpenDDS application with 5 participants in different domains will have a config.ini file with 5 separate but
nearly identical [domain] sections. The same functionality can be accomplished with a single [DomainRange/1-5]
section using templates.

[Customization] sections can be used in [rtps_discovery] template sections to add the domain ID to the multicast
override address. This creates a unique address for each domain. [Customization] sections can also be used with
[transport_template] sections to modify the transport multicast group addresses and address ports by domain
ID. The [transport_template] rule, instantiation_rule=per_participant, configures OpenDDS to create
a separate transport instance for each domain participant. This allows applications to have multiple participants per
domain when using RTPS.

Configuring Discovery for a Set of Similar Domains

Domain range sections are similar to domain sections and use the same configuration properties with 3 notable differ-
ences.

• Domain ranges must have a beginning and end domain, such as

[DomainRange/1-5].

• Domain ranges use the DiscoveryTemplate property rather than the DiscoveryConfig property to denote
the corresponding [rtps_discovery] section.

• Domain ranges can have an optional Customization property that maps to a named [Customization] section

See Example Config.ini for a [DomainRange] example.

Configuring a Set of Similar Transports

Transport template sections are specified as [transport_template/name]. They are similar to [transport] sec-
tions and use the same configuration properties as well as an optional Customization property that maps to a named
[Customization] section. To associate a transport template with a domain range in a configuration file, set the
DCPSGlobalTransportConfig property in the [common] section to the name of the [config] whose transports
property is the name of the transport template. For example, for a global config setting

[common]
DCPSGlobalTransportConfig=primary_config

1.7. Run-time Configuration 115

OpenDDS, Release 3.24.0

a corresponding config could be

[config/primary_config]
transports=auto_config_rtps

and the partial transport template would be

[transport_template/auto_config_rtps]
transport_type=rtps_udp

Domain participants that belong to a domain that is configured by a template can bind to non-global transport config-
urations using the bind_config function. See Using Multiple Configurations for a discussion of bind_config.

If the [transport_template] sets the property instantiation_rule=per_participant, a separate transport
instance will be created for each participant in the domain.

See Example Config.ini for a [transport_template] example.

Adding Customizations

[Customization] sections can modify the InteropMulticastOverride property in [rtps_discovery] sections and the
multicast_group_address property in [transport_template] sections.

• InteropMulticastOverride=AddDomainId adds the domain id to the last octet of the
InteropMulticastOverride address

• multicast_group_address=add_domain_id_to_ip_addr adds the domain ID to the last octet of the mul-
ticast group address

• multicast_group_address=add_domain_id_to_port uses the domain ID in the port calculation for the
multicast group address

Example Config.ini

The following is an example configuration file for domains 2 through 10. It includes customizations to add the domain
ID to the discovery InteropMulticastOverride address and customizations to add the domain ID to the transport’s
multicast group IP address and port.

[common]
DCPSGlobalTransportConfig=the_config

[DomainRange/2-10]
DiscoveryTemplate=DiscoveryConfigTemplate

[Customization/discovery_customization]
InteropMulticastOverride=AddDomainId

[Customization/transport_customization]
multicast_group_address=add_domain_id_to_ip_addr,add_domain_id_to_port

[rtps_discovery/DiscoveryConfigTemplate]
InteropMulticastOverride=239.255.4.0
Customization=discovery_customization
SedpMulticast=1

(continues on next page)

116 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

[config/the_config]
transports=auto_config_rtps

[transport_template/auto_config_rtps]
transport_type=rtps_udp
instantiation_rule=per_participant
Customization=transport_customization
multicast_group_address=239.255.2.0

1.7.6 Logging

By default, the OpenDDS framework will only log serious errors and warnings that can’t be conveyed to the user in
the API. An OpenDDS user may increase the amount of logging via the log level and debug logging via controls at the
DCPS, Transport, or Security layers.

The default destination of these log messages is the process’s standard error stream. See Table 7-2 Common Configu-
ration Options for options controlling the destination and formatting of log messages.

The highest level logging is controlled by the general log levels listed in the following table.

Table : Log Levels

Level Values Description
ErrorDCPSLogLevel: error

log_level:
Log_Level::Error
ACE_Log_Priority:LM_ERROR

Logs issues that may prevent OpenDDS from functioning properly or func-
tioning as configured.

WarningDCPSLogLevel: warning
log_level:
Log_Level::Warning
ACE_Log_Priority:LM_WARNING

Log issues that should probably be addressed, but don’t prevent OpenDDS
from functioning. This is the default.

NoticeDCPSLogLevel: notice
log_level:
Log_Level::Notice
ACE_Log_Priority:LM_NOTICE

Logs details of issues that are returned to the user via the API, for example
through a DDS::ReturnCode_t.

Info DCPSLogLevel: info
log_level:
Log_Level::Info
ACE_Log_Priority:LM_INFO

Logs a small amount of basic information, such as the version of OpenDDS
being used.

DebugDCPSLogLevel: debug
log_level:
Log_Level::Debug
ACE_Log_Priority:LM_DEBUG

This level doesn’t directly control any logging but will enable at least DCPS
and security debug level 1. For backwards compatibility, setting DCPS debug
logging to greater than zero will set this log level. Setting the log level to
below this level will disable all debug logging.

The log level can be set a number of ways. To do it with command line arguments, pass:

-DCPSLogLevel notice

Using a configuration file option is similar:

DCPSLogLevel=notice

Doing this from code can be done using an enumerator or a string:

1.7. Run-time Configuration 117

OpenDDS, Release 3.24.0

OpenDDS::DCPS::log_level.set(OpenDDS::DCPS::LogLevel::Notice);
OpenDDS::DCPS::log_level.set_from_string("notice");

Passing invalid levels to the text-based methods will cause warning messages to be logged unconditionally, but will not
cause the DomainParticipantFactory to fail to initialize.

DCPS Layer Debug Logging

Debug logging in the DCPS layer of OpenDDS is controlled by the DCPSDebugLevel configuration option and
command-line option. It can also be set in application code using:

OpenDDS::DCPS::set_DCPS_debug_level(level)

The level defaults to a value of 0 and has values of 0 to 10 as defined below:

• 0 – debug logging is disabled

• 1 - logs that should happen once per process

• 2 - logs that should happen once per DDS entity

• 4 - logs that are related to administrative interfaces

• 6 - logs that should happen every Nth sample write/read

• 8 - logs that should happen once per sample write/read

• 10 - logs that may happen more than once per sample write/read

Transport Layer Debug Logging

OpenDDS transport debug layer logging is controlled via the DCPSTransportDebugLevel configuration option. For
example, to add transport layer logging to any OpenDDS application that uses TheParticipantFactoryWithArgs,
add the following option to the command line:

-DCPSTransportDebugLevel level

The transport layer logging level can also be configured by setting the variable:

OpenDDS::DCPS::Transport_debug_level = level;

Valid transport logging levels range from 0 to 5 with increasing verbosity of output.

Note: Transport logging level 6 is available to generate system trace logs. Using this level is not recommended as
the amount of data generated can be overwhelming and is mostly of interest only to OpenDDS developers. Setting the
logging level to 6 requires defining the DDS_BLD_DEBUG_LEVEL macro to 6 and rebuilding OpenDDS.

There are additional debug logging options available through the transport_debug object that are separate from the
logging controlled by the transport debug level. For the moment this can only be configured using C++; for example:

OpenDDS::DCPS::transport_debug.log_progress = true;

Table Transport Debug Logging Categories

118 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Option Description
log_progress Log progress for RTPS entity discovery and association.
log_dropped_messagesLog received RTPS messages that were dropped.
log_nonfinal_messagesLog non-final RTPS messages send or received. Useful to gauge lost messages and resends.
log_fragment_storageLog fragment reassembly process for transports where that applies. Also logged when the

transport debug level is set to the most verbose.
log_remote_countsLog number of associations and pending associations of RTPS entities.

Security Debug Logging

When OpenDDS is compiled with security enabled, debug logging for security can be enabled using
DCPSecurityDebug (Table 7-2 Common Configuration Options). Security logging is divided into categories, al-
though DCPSSecurityDebugLevel is also provided, which controls the categories in a similar manner and using the
same scale as DCPSDebugLevel.

Table Security Debug Logging Categories

Option Debug
Level

Description

N/A 0 The default. Security related messages are not logged.
access_error1 Log errors from permission and governance file parsing.
new_entity_error1 Log security-related errors that prevented a DDS entity from being created.
cleanup_error1 Log errors from cleaning up DDS entities in the security plugins.
access_warn 2 Log warnings from permission and governance file parsing.
auth_warn 3 Log warnings from the authentication and handshake that happen when two secure par-

ticipants discover each other.
encdec_error3 Log errors from the encryption and decryption of RTPS messages.
new_entity_warn3 Log security-related warnings from creating a DDS entity.
bookkeeping 4 Log generation of crypto handles and keys for local DDS entities and tracking crypto

handles and keys for remote DDS entities.
auth_debug 4 Log debug information from the authentication and handshake that happen when two

secure participants discover each other.
encdec_warn 4 Log warnings from the encryption and decryption of RTPS messages.
encdec_debug8 Log debug information from the encryption and decryption of RTPS messages.
showkeys 9 Log the whole key when generating it, receiving it, and using it.
chlookup 10 Very verbosely prints the steps being taken when looking up a crypto handle for decrypt-

ing. This is most useful to see what keys a participant has.
all 10 Enable all the security related logging.

Categories are passed to DCPSecurityDebug using a comma limited list:

-DCPSSecurityDebug=access_warn,showkeys

Unknown categories will cause warning messages, but will not cause the DomainParticipantFactory to fail to
initialize.

Like the other debug levels, security logging can also be programmatically configured. All the following are equivalent:

OpenDDS::DCPS::security_debug.access_warn = true;
OpenDDS::DCPS::security_debug.set_debug_level(1);
OpenDDS::DCPS::security_debug.parse_flags(ACE_TEXT("access_warn"));

1.7. Run-time Configuration 119

OpenDDS, Release 3.24.0

1.8 opendds_idl

opendds_idl is one of the code generators used in the process of building OpenDDS and OpenDDS applications. It can
be used in a number of different ways to customize how source code is generated from IDL files. See Processing the
IDL for an overview of the default usage pattern.

The OpenDDS IDL compiler is invoked using the opendds_idl executable, located in bin/ (on the PATH). It parses
a single IDL file and generates the serialization and key support code that OpenDDS requires to marshal and demar-
shal the types described in the IDL file, as well as the type support code for the data readers and writers. For each
IDL file processed, such as xyz.idl, it generates three files: xyzTypeSupport.idl, xyzTypeSupportImpl.h, and
xyzTypeSupportImpl.cpp. In the typical usage, opendds_idl is passed a number of options and the IDL file name
as a parameter. For example,

opendds_idl [options...] Foo.idl

Subsequent sections describe all of the command-line options and the ways that opendds_idl can be used to generate
alternate mappings.

1.8.1 opendds_idl Command Line Options

The following table summarizes the options supported by opendds_idl.

Table opendds_idl Command Line Options

Option Description Default
-v Enables verbose execution Quiet execution
-h Prints a help (usage) message and

exits
N/A

-V Prints version numbers of both TAO
and OpenDDS

N/A

--idl-version VERSION Set the version of IDL to use. 4
--list-idl-versions List the versions of IDL at least par-

tially supported.
N/A

--syntax-only Just check syntax of input files, exit-
ing after parsing.

Goes on to generate code

-Wb,export_macro=macro Export macro used for generat-
ing C++ implementation code.
--export is equivalent to -Wb,
export_macro

No export macro used

-Wb,export_include=file Additional header to #include
in generated code — this header
#defines the export macro

No additional include

-Wb,pch_include=file Pre-compiled header file to include
in generated C++ files

No pre-compiled header included

-Dname[=value] Define a preprocessor macro N/A
-Idir Add dir to the preprocessor include

path
N/A

-o outputdir Output directory where
opendds_idl should place the
generated files.

The current directory

continues on next page

120 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/bin/

OpenDDS, Release 3.24.0

Table 1.3 – continued from previous page
Option Description Default
-Wb,java Enable OpenDDS Java Bindings for

generated TypeSupport implementa-
tion classes

No Java support

-Gitl Generates “Intermediate Type Lan-
guage” descriptions of datatypes.
These files are used by the Wire-
shark dissector or other external ap-
plications.

Not generated

-GfaceTS Generates FACE (Future Airborne
Capability Environment) Transport
Services API

Not generated

-Gv8 Generate type support for converting
data samples to/from V8 JavaScript
objects
-Wb,v8 is an alternative form of this
option

Not generated

-Grapidjson Generate type support for convert-
ing data samples to/from RapidJ-
SON objects

Not generated

-Gxtypes-complete Generate complete XTypes TypeOb-
jects which can be used to provide
type information to applications that
don’t have compile-time knowledge
of the IDL. See Dynamic Language
Binding.

Only minimal TypeObjects are gen-
erated

-Lface Generates IDL-to-C++ mapping for
FACE

Not generated

-Lspcpp Generates IDL-to-C++ mapping for
Safety Profile

Not generated

-Lc++11 Generates IDL-to-C++11 mapping Not generated
-Wb,tao_include_prefix=s Prefix the string s to #include direc-

tives meant to include headers gen-
erated by tao_idl

N/A

-St Suppress generation of IDL Type-
Codes when one of the -L options
are present.

IDL TypeCodes generated

continues on next page

1.8. opendds_idl 121

OpenDDS, Release 3.24.0

Table 1.3 – continued from previous page
Option Description Default
--unknown-annotations VAL For IDL version 4, control the reac-

tion to unknown annotations. The
options are:

• warn-once, the
default, warn once
per annotation with
the same name.

• warn-all, warn for
every use of an
unknown annotation.

• error, similar to
warn-all, but causes
the compiler to exit
with an error status
when finished.

• ignore, ignore all
unknown annotations.

warn-once

--no-dcps-data-type-warnings Don’t warn about #pragma
DCPS_DATA_TYPE

Warnings are issued, use annota-
tions to silence them

--[no-]default-nested Un-annotated types/modules are
treated as nested. See Topic Types
vs. Nested Types for details.

Types are nested by default.

--default-extensibility Set the default XTypes extensibil-
ity. Can be final, appendable or
mutable. See Extensibility for de-
tails.

appendable

--default-enum-extensibility-zeroDo not set the type flags for enums.
This flag is for simulating the
behavior of previous versions of
OpenDDS.

--default-autoid VAL Set the default XTypes auto
member-id assignment strategy:
sequential or hash – see @au-
toid(value)

sequential

--default-try-construct VAL Set the default XTypes try-construct
strategy: discard, use-default,
or trim – see Customizing XTypes
per-member

discard

--old-typeobject-encoding Use the pre-3.18 encoding of
TypeObjects when deriving
TypeIdentifiers

Use standard encoding

--old-typeobject-member-order Use the pre-3.24 struct and union
member order for TypeObjects,
which is ordered by member id in-
stead of declared order. See 3.24.0
news entry for more info.

Use standard declared order

The code generation options allow the application developer to use the generated code in a wide variety of environ-
ments. Since IDL may contain preprocessing directives (#include, #define, etc.), the C++ preprocessor is invoked
by opendds_idl. The -I and -D options allow customization of the preprocessing step. The -Wb,export_macro
option lets you add an export macro to your class definitions. This is required if the generated code is going to reside

122 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

in a shared library and the compiler (such as Visual C++ or GCC) uses the export macro (dllexport on Visual C++ /
overriding hidden visibility on GCC). The -Wb,pch_include option is required if the generated implementation code
is to be used in a project that uses precompiled headers.

1.8.2 Using the IDL-to-C++11 Mapping

The IDL-to-C++11 Mapping is a separate specification from the OMG. Like the “classic” IDL-to-C++ Mapping, IDL-
to-C++11 describes how IDL constructs (structs, sequences, unions, etc.) should appear in C++. Since the IDL-to-
C++11 Mapping assumes a C++11 (or higher) compiler and standard library, the code generated is easier to use and
looks more natural to C++ developers who are not familiar with the classic mapping. For example, IDL strings, arrays,
and sequences map to their equivalents in the std namespace: string, array, and vector. All of the details of the
mapping are spelled out in the specification document (available at https://www.omg.org/spec/CPP11), however the
easiest way to get started with the mapping is to generate code from IDL and examine the generated header file.

In the default mode of opendds_idl (as described in Processing the IDL), responsibility for generating the language
mapping is delegated to tao_idl (using the IDL-to-C++ classic mapping). In this case, opendds_idl is only respon-
sible for generating the OpenDDS-specific additions such as TypeSupport.idl and the marshal/demarshal functions.

Contrast this with using opendds_idl for IDL-to-C++11. In this case, opendds_idl takes over responsibility for
generating the language mapping. This is indicated by the -Lc++11 command-line option.

Starting with a user-written file Foo.idl, running “opendds_idl -Lc++11<other options> Foo.idl” generates
these output files:

• FooTypeSupport.idl

– IDL local interfaces for *TypeSupport, *DataWriter, *DataReader

• FooC.h

– IDL-to-C++11 language mapping

• FooTypeSupportImpl.h and .cpp

– Additional source code needed for OpenDDS

FooTypeSupport.idl is the same as it was when using the classic mapping. After it’s generated by opendds_idl, it needs
to be processed by tao_idl to generate FooTypeSupportC.h, FooTypeSupportC.inl, and FooTypeSupportC.
cpp.

Unlike when using the classic mapping, Foo.idl is not processed by tao_idl.

Foo.idl can contain the following IDL features:

• modules, typedefs, and constants

• basic types

• constructed types: enums, structs and unions

– Note that setting a union value through a modifier method automatically sets the discriminator. In cases
where there are multiple possible values for the discriminator, a 2-argument modifier method is provided.
Using this is preferred to using _d().

– If you chose to use the _d() method of the generated union types, take note that it can only be used to set
a value that selects the same union member as the one that’s currently selected. OpenDDS treats this as a
precondition (it is not checked within the implementation).

• strings (narrow and wide), sequences, and arrays

– Bounded strings and sequences are supported, but bounds checks are not currently enforced. Due to this
limitation, distinct types are not used for bounded instantiations.

1.8. opendds_idl 123

https://www.omg.org/spec/CPP11

OpenDDS, Release 3.24.0

• annotations – see Defining Data Types with IDL

• #includes of IDL files that are also used with the IDL-to-C++11 mapping

When using MPC to generate projects, the opendds_cxx11 base project should be used to inherit the correct settings
for code generation. If the generated code will be part of a shared library, use the -Wb,export_include option (in
addition to -Wb,export_macro) so that the generated headers have an #include for the export header.

When using CMake to generate projects, see the CMake module documentation included in the OpenDDS repository
(docs/cmake.md).

1.9 The DCPS Information Repository

1.9.1 DCPS Information Repository Options

The table below shows the command line options for the DCPSInfoRepo server:

Table DCPS Information Repository Options

Option Description Default
-o file Write the IOR of the DCPSInfo object to the specified file repo.ior
-NOBITS Disable the publication of built-in topics Built-in top-

ics are pub-
lished

-a
address

Listening address for built-in topics (when built-in topics are published). Random port

-z Turn on verbose transport logging Minimal
transport
logging.

-r Resurrect from persistent file 1 (true)
-FederationId
<id>

Unique identifier for this repository within any federation. This is supplied as a 32
bit decimal numeric value.

N/A

-FederateWith
<ref>

Repository federation reference at which to join a federation. This is supplied as
a valid CORBA object reference in string form: stringified IOR, file: or corbaloc:
reference string.

N/A

-? Display the command line usage and exit N/A

OpenDDS clients often use the IOR file that DCPSInfoRepo outputs to locate the service. The -o option allows you
to place the IOR file into an application-specific directory or file name. This file can subsequently be used by clients
with the file:// IOR prefix.

Applications that do not use built-in topics may want to disable them with -NOBITS to reduce the load on the server.
If you are publishing the built-in topics, then the -a option lets you pick the listen address of the tcp transport that is
used for these topics.

Using the -z option causes the invocation of many transport-level debug messages. This option is only effective when
the DCPS library is built with the DCPS_TRANS_VERBOSE_DEBUG environment variable defined.

The -FederationId and -FederateWith options are used to control the federation of multiple DCPSInfoRepo
servers into a single logical repository. See Repository Federation for descriptions of the federation capabilities and
how to use these options.

File persistence is implemented as an ACE Service object and is controlled via service config directives. Currently
available configuration options are:

Table InfoRepo persistence directives

124 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Options Description Defaults
-file Name of the persistent file InforepoPersist
-reset Wipe out old persistent data. 0 (false)

The following directive:

static PersistenceUpdater_Static_Service "-file info.pr -reset 1"

will persist DCPSInfoRepo updates to local file info.pr. If a file by that name already exists, its contents will be
erased. Used with the command-line option -r, the DCPSInfoRepo can be reincarnated to a prior state. When using
persistence, start the DCPSInfoRepo process using a TCP fixed port number with the following command line option.
This allows existing clients to reconnect to a restarted InfoRepo.

-ORBListenEndpoints iiop://:<port>

1.9.2 Repository Federation

Note: Repository federation should be considered an experimental feature.

Repository Federation allows multiple DCPS Information Repository servers to collaborate with one another into a
single federated service. This allows applications obtaining service metadata and events from one repository to obtain
them from another if the original repository is no longer available.

While the motivation to create this feature was the ability to provide a measure of fault tolerance to the DDS service
metadata, other use cases can benefit from this feature as well. This includes the ability of initially separate systems to
become federated and gain the ability to pass data between applications that were not originally reachable. An example
of this would include two platforms which have independently established internal DDS services passing data between
applications; at some point during operation the systems become reachable to each other and federating repositories
allows data to pass between applications on the different platforms.

The current federation capabilities in OpenDDS provide only the ability to statically specify a federation of repositories
at startup of applications and repositories. A mechanism to dynamically discover and join a federation is planned for a
future OpenDDS release.

OpenDDS automatically detects the loss of a repository by using the LIVELINESS Quality of Service policy on
a Built-in Topic. When a federation is used, the LIVELINESS QoS policy is modified to a non-infinite value.
When LIVELINESS is lost for a Built-in Topic an application will initiate a failover sequence causing it to as-
sociate with a different repository server. Because the federation implementation currently uses a Built-in Topic
ParticipantDataDataReaderListener entity, applications should not install their own listeners for this topic. Do-
ing so would affect the federation implementation’s capability to detect repository failures.

The federation implementation distributes repository data within the federation using a reserved DDS domain. The
default domain used for federation is defined by the constant Federator::DEFAULT_FEDERATIONDOMAIN.

Currently only static specification of federation topology is available. This means that each DCPS Information Repos-
itory, as well as each application using a federated DDS service, needs to include federation configuration as part of
its configuration data. This is done by specifying each available repository within the federation to each participating
process and assigning each repository to a different key value in the configuration files as described in Configuring for
Multiple DCPSInfoRepo Instances.

Each application and repository must include the same set of repositories in its configuration information. Failover
sequencing will attempt to reach the next repository in numeric sequence (wrapping from the last to the first) of the
repository key values. This sequence is unique to each application configured, and should be different to avoid over-
loading any individual repository.

1.9. The DCPS Information Repository 125

OpenDDS, Release 3.24.0

Once the topology information has been specified, then repositories will need to be started with two additional command
line arguments. These are shown in Table 9-1. One, -FederationId <value>, specifies the unique identifier for a
repository within the federation. This is a 32 bit numeric value and needs to be unique for all possible federation
topologies.

The second command line argument required is -FederateWith <ref>. This causes the repository to join a federation
at the <ref> object reference after initialization and before accepting connections from applications.

Only repositories which are started with a federation identification number may participate in a federation. The first
repository started should not be given a -FederateWith command line directive. All others are required to have this
directive in order to establish the initial federation. There is a command line tool (federation) supplied that can be
used to establish federation associations if this is not done at startup. See Federation Management for a description. It
is possible, with the current static-only implementation, that the failure of a repository before a federation topology is
entirely established could result in a partially unusable service. Due to this current limitation, it is highly recommended
to always establish the federation topology of repositories prior to starting the applications.

Federation Management

A new command line tool has been provided to allow some minimal run-time management of repository federation.
This tool allows repositories started without the -FederateWith option to be commanded to participate in a federation.
Since the operation of the federated repositories and failover sequencing depends on the presence of connected topology,
it is recommended that this tool be used before starting applications that will be using the federated set of repositories.

The command is named repoctl and is located in the bin/ directory. It has a command format syntax of:

repoctl <cmd> <arguments>

Where each individual command has its own format as shown in Table 9-3. Some options contain endpoint information.
This information consists of an optional host specification, separated from a required port specification by a colon.
This endpoint information is used to create a CORBA object reference using the corbaloc: syntax in order to locate the
‘Federator’ object of the repository server.

Table repoctl Repository Management Command

Com-
mand

Syntax Description

join repoctl join
<target> <peer> [
<federation domain>
]

Calls the <peer> to join <target> to the federation. <federation domain>
is passed if present, or the default Federation Domain value is passed.

leave repoctl leave
<target>

Causes the <target> to gracefully leave the federation, removing all managed
associations between applications using <target> as a repository with appli-
cations that are not using <target> as a repository.

shutdownrepoctl shutdown
<target>

Causes the <target> to shutdown without removing any managed associa-
tions. This is the same effect as a repository which has crashed during opera-
tion.

kill repoctl kill
<target>

Kills the <target> repository regardless of its federation status.

help repoctl help Prints a usage message and quits.

A join command specifies two repository servers (by endpoint) and asks the second to join the first in a federation:

repoctl join 2112 otherhost:1812

126 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/bin/

OpenDDS, Release 3.24.0

This generates a CORBA object reference of corbaloc::otherhost:1812/Federator that the federator connects
to and invokes a join operation. The join operation invocation passes the default Federation Domain value (because
we did not specify one) and the location of the joining repository which is obtained by resolving the object reference
corbaloc::localhost:2112/Federator.

A full description of the command arguments are shown in Table 9-4.

Table Federation Management Command Arguments

Option Description
<target> This is endpoint information that can be used to locate the Federator::Manager CORBA interface of

a repository which is used to manage federation behavior. This is used to command leave and shutdown
federation operations and to identify the joining repository for the join command.

<peer> This is endpoint information that can be used to locate the Federator::Manager CORBA interface
of a repository which is used to manage federation behavior. This is used to command join federation
operations.

<federation
domain>

This is the domain specification used by federation participants to distribute service metadata amongst
the federated repositories. This only needs to be specified if more than one federation exists among the
same set of repositories, which is currently not supported. The default domain is sufficient for single
federations.

Federation Example

To illustrate the setup and use of a federation, this section walks through a simple example that establishes a federation
and a working service that uses it.

This example is based on a two repository federation, with the simple Message publisher and subscriber from Using
DCPS configured to use the federated repositories.

Configuring the Federation Example

There are two configuration files to create for this example one each for the message publisher and subscriber.

The Message Publisher configuration pub.ini for this example is as follows:

[common]
DCPSDebugLevel=0

[domain/information]
DomainId=42
DomainRepoKey=1

[repository/primary]
RepositoryKey=1
RepositoryIor=corbaloc::localhost:2112/InfoRepo

[repository/secondary]
RepositoryKey=2
RepositoryIor=file://repo.ior

Note that the DCPSInfo attribute/value pair has been omitted from the [common] section. The user domain is 42, so
that domain is configured to use the primary repository for service metadata and events.

1.9. The DCPS Information Repository 127

OpenDDS, Release 3.24.0

The [repository/primary] and [repository/secondary] sections define the primary and secondary reposito-
ries to use within the federation (of two repositories) for this application. The RepositoryKey attribute is an internal
key value used to uniquely identify the repository (and allow the domain to be associated with it, as in the preceding
[domain/information] section). The RepositoryIor attributes contain string values of resolvable object refer-
ences to reach the specified repository. The primary repository is referenced at port 2112 of the localhost and is
expected to be available via the TAO IORTable with an object name of /InfoRepo. The secondary repository is
expected to provide an IOR value via a file named repo.ior in the local directory.

The subscriber process is configured with the sub.ini file as follows:

[common]
DCPSDebugLevel=0

[domain/information]
DomainId=42
DomainRepoKey=1

[repository/primary]
RepositoryKey=1
RepositoryIor=file://repo.ior

[repository/secondary]
RepositoryKey=2
RepositoryIor=corbaloc::localhost:2112/InfoRepo

Note that this is the same as the pub.ini file except the subscriber has specified that the repository located at port 2112
of the localhost is the secondary and the repository located by the repo.ior file is the primary. This is opposite of
the assignment for the publisher. It means that the publisher is started using the repository at port 2112 for metadata
and events while the subscriber is started using the repository located by the IOR contained in the file. In each case, if
a repository is detected as unavailable the application will attempt to use the other repository if it can be reached.

The repositories do not need any special configuration specifications in order to participate in federation, and so no
files are required for them in this example.

Running the Federation Example

The example is executed by first starting the repositories and federating them, then starting the application publisher
and subscriber processes the same way as was done in the example of Running the Example.

Start the first repository as:

$DDS/bin/DCPSInfoRepo -o repo.ior -FederationId 1024

The -o repo.ior option ensures that the repository IOR will be placed into the file as expected by the configuration
files. The -FederationId 1024 option assigns the value 1024 to this repository as its unique id within the federation.

Start the second repository as:

$DDS/bin/DCPSInfoRepo \
-ORBListenEndpoints iiop://localhost:2112 \
-FederationId 2048 -FederateWith file://repo.ior

Note that this is all intended to be on a single command line. The -ORBListenEndpoints iiop://localhost:2112
option ensures that the repository will be listening on the port that the previous configuration files are expecting.
The -FederationId 2048 option assigns the value 2048 as the repositories unique id within the federation. The

128 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

-FederateWith file://repo.ior option initiates federation with the repository located at the IOR contained
within the named file - which was written by the previously started repository.

Once the repositories have been started and federation has been established (this will be done automatically after the
second repository has initialized), the application publisher and subscriber processes can be started and should execute
as they did for the previous example in Running the Example.

1.10 Java Bindings

1.10.1 Introduction

OpenDDS provides JNI bindings. Java applications can make use of the complete OpenDDS middleware just like C++
applications.

See the java/INSTALL file for information on getting started, including the prerequisites and dependencies.

Java versions 9 and up use the Java Platform Module System. To use OpenDDS with one of these Java versions, set
the MPC feature java_pre_jpms to 0. OpenDDS’s configure script will attempt to detect the Java version and set this
automatically.

See the java/FAQ file for information on common issues encountered while developing applications with the Java
bindings.

1.10.2 IDL and Code Generation

The OpenDDS Java binding is more than just a library that lives in one or two .jar files. The DDS specification defines
the interaction between a DDS application and the DDS middleware. In particular, DDS applications send and receive
messages that are strongly-typed and those types are defined by the application developer in IDL.

In order for the application to interact with the middleware in terms of these user-defined types, code must be gener-
ated at compile-time based on this IDL. C++, Java, and even some additional IDL code is generated. In most cases,
application developers do not need to be concerned with the details of all the generated files. Scripts included with
OpenDDS automate this process so that the end result is a native library (.so or .dll) and a Java library (.jar or just
a classes directory) that together contain all of the generated code.

Below is a description of the generated files and which tools generate them. In this example, Foo.idl contains a single
struct Bar contained in module Baz (IDL modules are similar to C++ namespaces and Java packages). To the right of
each file name is the name of the tool that generates it, followed by some notes on its purpose.

Table Generated files descriptions

File Generation Tool
Foo.idl Developer-written description of the DDS sample type
Foo{C,S}. {h,inl,cpp} tao_idl: C++ representation of the IDL
FooTypeSupport.idl opendds_idl: DDS type-specific interfaces
FooTypeSupport{C,S}. {h,inl,cpp} tao_idl
Baz/BarSeq{Helper,Holder}.java idl2jni
Baz/BarData{Reader,Writer}*.java idl2jni
Baz/BarTypeSupport*.java idl2jni (except TypeSupportImpl, see below)
FooTypeSupportJC. {h,cpp} idl2jni: JNI native method implementations
FooTypeSupportImpl. {h,cpp} opendds_idl: DDS type-specific C++ impl.
Baz/BarTypeSupportImpl.java opendds_idl: DDS type-specific Java impl.
Baz/Bar*.java idl2jni: Java representation of IDL struct
FooJC. {h,cpp} idl2jni: JNI native method implementations

1.10. Java Bindings 129

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/java/INSTALL
https://en.wikipedia.org/wiki/Java_Platform_Module_System
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/java/FAQ

OpenDDS, Release 3.24.0

Foo.idl:

module Baz {
@topic
struct Bar {
long x;

};
};

1.10.3 Setting up an OpenDDS Java Project

These instructions assume you have completed the installation steps in the java/INSTALL document, including having
the various environment variables defined.

• Start with an empty directory that will be used for your IDL and the code generated from it.
java/tests/messenger/messenger_idl/ is set up this way.

• Create an IDL file describing the data structure you will be using with OpenDDS. See Messenger.idl for an
example. This file will contain at least struct/union annotated with @topic. For the sake of these instructions,
we will call the file Foo.idl.

• The C++ generated classes will be packaged in a shared library to be loaded at run-time by the JVM. This requires
the packaged classes to be exported for external visibility. ACE provides a utility script for generating the correct
export macros. The script usage is shown here:

Unix:

$ACE_ROOT/bin/generate_export_file.pl Foo > Foo_Export.h

Windows:

%ACE_ROOT%\bin\generate_export_file.pl Foo > Foo_Export.h

• Create an MPC file, Foo.mpc, from this template:

project: dcps_java {
idlflags += -Wb,stub_export_include=Foo_Export.h \
-Wb,stub_export_macro=Foo_Export

dcps_ts_flags += -Wb,export_macro=Foo_Export
idl2jniflags += -Wb,stub_export_include=Foo_Export.h \
-Wb,stub_export_macro=Foo_Export

dynamicflags += FOO_BUILD_DLL

specific {
jarname = DDS_Foo_types

}

TypeSupport_Files {
Foo.idl

}
}

You can leave out the specific {. . . } block if you do not need to create a jar file. In this case you can directly use the
Java .class files which will be generated under the classes subdirectory of the current directory.

• Run MPC to generate platform-specific build files.

130 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/java/INSTALL
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/java/tests/messenger/messenger_idl/

OpenDDS, Release 3.24.0

Unix:

$ACE_ROOT/bin/mwc.pl -type gnuace

Windows:

%ACE_ROOT%\bin\mwc.pl -type [CompilerType]

CompilerType can be any supported MPC type (such as “vs2019”)

Make sure this is running ActiveState Perl or Strawberry Perl.

• Compile the generated C++ and Java code

Unix:

make

Windows:

Build the generated .``sln`` (Solution) file using your preferred method. This can be either the Visual Studio IDE or
one of the command-line tools. If you use the IDE, start it from a command prompt using devenv so that it inherits
the environment variables. Command-line tools for building include ms build and invoking the IDE (devenv) with
the appropriate arguments.

When this completes successfully you have a native library and a Java .jar file. The native library names are as
follows:

Unix:

libFoo.so

Windows:

Foo.dll (Release) or Food.dll (Debug)

You can change the locations of these libraries (including the .jar file) by adding a line such as the following to the
Foo.mpc file:

libout = $(PROJECT_ROOT)/lib

where PROJECT_ROOT can be any environment variable defined at build-time.

• You now have all of the Java and C++ code needed to compile and run a Java OpenDDS application. The
generated .jar file needs to be added to your classpath, along with the .jar files that come from OpenDDS
(in the lib directory). The generated C++ library needs to be available for loading at run-time:

Unix:

Add the directory containing libFoo.so to the LD_LIBRARY_PATH.

Windows:

Add the directory containing Foo.dll (or Food.dll) to the PATH. If you are using the debug version (Food.dll)
you will need to inform the OpenDDS middleware that it should not look for Foo.dll. To do this, add -Dopendds.
native.debug=1 to the Java VM arguments.

See the publisher and subscriber directories in java/tests/messenger/ for examples of publishing and subscribing appli-
cations using the OpenDDS Java bindings.

• If you make subsequent changes to Foo.idl, start by re-running MPC (step #5 above). This is needed because
certain changes to Foo.idl will affect which files are generated and need to be compiled.

1.10. Java Bindings 131

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/java/tests/messenger/

OpenDDS, Release 3.24.0

1.10.4 A Simple Message Publisher

This section presents a simple OpenDDS Java publishing process. The complete code for this can be found at
java/tests/messenger/publisher/TestPublisher.java. Uninteresting segments such as imports and error handling have
been omitted here. The code has been broken down and explained in logical subsections.

Initializing the Participant

DDS applications are boot-strapped by obtaining an initial reference to the Participant Factory. A call to the static
method TheParticipantFactory.WithArgs() returns a Factory reference. This also transparently initializes the
C++ Participant Factory. We can then create Participants for specific domains.

public static void main(String[] args) {

DomainParticipantFactory dpf =
TheParticipantFactory.WithArgs(new StringSeqHolder(args));

if (dpf == null) {
System.err.println ("Domain Participant Factory not found");
return;

}
final int DOMAIN_ID = 42;
DomainParticipant dp = dpf.create_participant(DOMAIN_ID,
PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

if (dp == null) {
System.err.println ("Domain Participant creation failed");
return;

}

Object creation failure is indicated by a null return. The third argument to create_participant() takes a Participant
events listener. If one is not available, a null can be passed instead as done in our example.

Registering the Data Type and Creating a Topic

Next we register our data type with the DomainParticipant using the register_type() operation. We can specify
a type name or pass an empty string. Passing an empty string indicates that the middleware should simply use the
identifier generated by the IDL compiler for the type.

MessageTypeSupportImpl servant = new MessageTypeSupportImpl();
if (servant.register_type(dp, "") != RETCODE_OK.value) {
System.err.println ("register_type failed");
return;

}

Next we create a topic using the type support servant’s registered name.

Topic top = dp.create_topic("Movie Discussion List",
servant.get_type_name(),
TOPIC_QOS_DEFAULT.get(), null,
DEFAULT_STATUS_MASK.value);

Now we have a topic named “Movie Discussion List” with the registered data type and default QoS policies.

132 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/java/tests/messenger/publisher/TestPublisher.java

OpenDDS, Release 3.24.0

Creating a Publisher

Next, we create a publisher:

Publisher pub = dp.create_publisher(
PUBLISHER_QOS_DEFAULT.get(),
null,
DEFAULT_STATUS_MASK.value);

Creating a DataWriter and Registering an Instance

With the publisher, we can now create a DataWriter:

DataWriter dw = pub.create_datawriter(
top, DATAWRITER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

The DataWriter is for a specific topic. For our example, we use the default DataWriter QoS policies and a null
DataWriterListener.

Next, we narrow the generic DataWriter to the type-specific DataWriter and register the instance we wish to publish.
In our data definition IDL we had specified the subject_id field as the key, so it needs to be populated with the instance
id (99 in our example):

MessageDataWriter mdw = MessageDataWriterHelper.narrow(dw);
Message msg = new Message();
msg.subject_id = 99;
int handle = mdw.register(msg);

Our example waits for any peers to be initialized and connected. It then publishes a few messages which are distributed
to any subscribers of this topic in the same domain.

msg.from = "OpenDDS-Java";
msg.subject = "Review";
msg.text = "Worst. Movie. Ever.";
msg.count = 0;
int ret = mdw.write(msg, handle);

1.10.5 Setting up the Subscriber

Much of the initialization code for a subscriber is identical to the publisher. The subscriber needs to create a participant
in the same domain, register an identical data type, and create the same named topic.

public static void main(String[] args) {

DomainParticipantFactory dpf =
TheParticipantFactory.WithArgs(new StringSeqHolder(args));

if (dpf == null) {
System.err.println ("Domain Participant Factory not found");
return;

}
DomainParticipant dp = dpf.create_participant(42,
PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

(continues on next page)

1.10. Java Bindings 133

OpenDDS, Release 3.24.0

(continued from previous page)

if (dp == null) {
System.err.println("Domain Participant creation failed");
return;

}

MessageTypeSupportImpl servant = new MessageTypeSupportImpl();
if (servant.register_type(dp, "") != RETCODE_OK.value) {

System.err.println ("register_type failed");
return;

}
Topic top = dp.create_topic("Movie Discussion List",

servant.get_type_name(),
TOPIC_QOS_DEFAULT.get(), null,
DEFAULT_STATUS_MASK.value);

Creating a Subscriber

As with the publisher, we create a subscriber:

Subscriber sub = dp.create_subscriber(
SUBSCRIBER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

Creating a DataReader and Listener

Providing a DataReaderListener to the middleware is the simplest way to be notified of the receipt of data and to
access the data. We therefore create an instance of a DataReaderListenerImpl and pass it as a DataReader creation
parameter:

DataReaderListenerImpl listener = new DataReaderListenerImpl();
DataReader dr = sub.create_datareader(
top, DATAREADER_QOS_DEFAULT.get(), listener,
DEFAULT_STATUS_MASK.value);

Any incoming messages will be received by the Listener in the middleware’s thread. The application thread is free to
perform other tasks at this time.

1.10.6 The DataReader Listener Implementation

The application defined DataReaderListenerImpl needs to implement the specification’s DDS.
DataReaderListener interface. OpenDDS provides an abstract class DDS._DataReaderListenerLocalBase.
The application’s listener class extends this abstract class and implements the abstract methods to add application-
specific functionality.

Our example DataReaderListener stubs out most of the Listener methods. The only method implemented is the
message available callback from the middleware:

public class DataReaderListenerImpl extends DDS._DataReaderListenerLocalBase {

private int num_reads_;

(continues on next page)

134 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

public synchronized void on_data_available(DDS.DataReader reader) {
++num_reads_;
MessageDataReader mdr = MessageDataReaderHelper.narrow(reader);
if (mdr == null) {
System.err.println ("read: narrow failed.");
return;

}

The Listener callback is passed a reference to a generic DataReader. The application narrows it to a type-specific
DataReader:

MessageHolder mh = new MessageHolder(new Message());
SampleInfoHolder sih = new SampleInfoHolder(new SampleInfo(0, 0, 0,

new DDS.Time_t(), 0, 0, 0, 0, 0, 0, 0, false));
int status = mdr.take_next_sample(mh, sih);

It then creates holder objects for the actual message and associated SampleInfo and takes the next sample from the
DataReader. Once taken, that sample is removed from the DataReader’s available sample pool.

if (status == RETCODE_OK.value) {

System.out.println ("SampleInfo.sample_rank = "+ sih.value.sample_rank);
System.out.println ("SampleInfo.instance_state = "+

sih.value.instance_state);

if (sih.value.valid_data) {

System.out.println("Message: subject = " + mh.value.subject);
System.out.println(" subject_id = " + mh.value.subject_id);
System.out.println(" from = " + mh.value.from);
System.out.println(" count = " + mh.value.count);
System.out.println(" text = " + mh.value.text);
System.out.println("SampleInfo.sample_rank = " +

sih.value.sample_rank);
}
else if (sih.value.instance_state ==

NOT_ALIVE_DISPOSED_INSTANCE_STATE.value) {
System.out.println ("instance is disposed");

}
else if (sih.value.instance_state ==

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.value) {
System.out.println ("instance is unregistered");

}
else {

System.out.println ("DataReaderListenerImpl::on_data_available: "+
"received unknown instance state "+
sih.value.instance_state);

}

} else if (status == RETCODE_NO_DATA.value) {
System.err.println ("ERROR: reader received DDS::RETCODE_NO_DATA!");

} else {
(continues on next page)

1.10. Java Bindings 135

OpenDDS, Release 3.24.0

(continued from previous page)

System.err.println ("ERROR: read Message: Error: "+ status);
}

}

}

The SampleInfo contains meta-information regarding the message such as the message validity, instance state, etc.

1.10.7 Cleaning up OpenDDS Java Clients

An application should clean up its OpenDDS environment with the following steps:

dp.delete_contained_entities();

Cleans up all topics, subscribers and publishers associated with that Participant.

dpf.delete_participant(dp);

The DomainParticipantFactory reclaims any resources associated with the DomainParticipant.

TheServiceParticipant.shutdown();

Shuts down the ServiceParticipant. This cleans up all OpenDDS associated resources. Cleaning up these re-
sources is necessary to prevent the DCPSInfoRepo from forming associations between endpoints which no longer
exist.

1.10.8 Configuring the Example

OpenDDS offers a file-based configuration mechanism. The syntax of the configuration file is similar to a Windows INI
file. The properties are divided into named sections corresponding to common and individual transports configuration.

The Messenger example has common properties for the DCPSInfoRepo objects location and the global transport con-
figuration:

[common]
DCPSInfoRepo=file://repo.ior
DCPSGlobalTransportConfig=$file

and a transport instance section with a transport type property:

[transport/1]
transport_type=tcp

The [transport/1] section contains configuration information for the transport instance named “1”. It is defined to
be of type tcp. The global transport configuration setting above causes this transport instance to be used by all readers
and writers in the process.

See Run-time Configuration for a complete description of all OpenDDS configuration parameters.

136 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

1.10.9 Running the Example

To run the Messenger Java OpenDDS application, use the following commands:

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

$JAVA_HOME/bin/java -ea -cp classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.
→˓jar:classes TestPublisher -DCPSConfigFile pub_tcp.ini

$JAVA_HOME/bin/java -ea -cp classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.
→˓jar:classes TestSubscriber -DCPSConfigFile sub_tcp.ini

The -DCPSConfigFile command-line argument passes the location of the OpenDDS configuration file.

1.10.10 Java Message Service (JMS) Support

OpenDDS provides partial support for JMS version 1.1. Enterprise Java applications can make use of the complete
OpenDDS middleware just like standard Java and C++ applications.

See the INSTALL file in the java/jms/ directory for information on getting started with the OpenDDS JMS support,
including the prerequisites and dependencies.

1.11 Modeling SDK

The OpenDDS Modeling SDK is a modeling tool that can be used by the application developer to define the required
middleware components and data structures as a UML model and then generate the code to implement the model using
OpenDDS. The generated code can then be compiled and linked with the application to provide seamless middleware
support to the application.

1.11.1 Overview

Model Capture

UML models defining DCPS elements and policies along with data definitions are captured using the graphical model
capture editors included in the Eclipse plug-ins. The elements of the UML models follow the structure of the DDS
UML Platform Independent Model (PIM) defined in the DDS specification (OMG: formal/2015-04-10).

Opening a new OpenDDS model within the plug-ins begins with a top level main diagram. This diagram includes any
package structures to be included in the model along with the local QoS policy definitions, data definitions, and DCPS
elements of the model. Zero or more of the policy or data definition elements can be included. Zero or one DCPS
elements definition can be included in any given model.

Figure Graphical modeling of the data definitions

Creating separate models for QoS policies only, data definitions only, or DCPS elements only is supported. References
to other models allows externally defined models to be included in a model. This allows sharing of data definitions and
QoS policies among different DCPS models as well as including externally defined data in a new set of data definitions.

1.11. Modeling SDK 137

https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/java/jms/

OpenDDS, Release 3.24.0

Figure Graphical modeling of the DCPS entities

138 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Code Generation

Once models have been captured, source code can be generated from them. This source code can then be compiled
into link libraries providing the middleware elements defined in the model to applications that link the library. Code
generation is done using a separate forms based editor.

Specifics of code generation are unique to the individual generation forms and are kept separate from the models for
which generation is being performed. Code generation is performed on a single model at a time and includes the ability
to tailor the generated code as well as specifying search paths to be used for locating resources at build time.

It is possible to generate model variations (distinct customizations of the same model) that can then be created within
the same application or different applications. It is also possible to specify locations to search for header files and link
libraries at build time. See Generated Code for details.

Programming

In order to use the middleware defined by models, applications need to link in the generated code. This is done through
header files and link libraries. Support for building applications using the MPC portable build tool is included in the
generated files for a model. See Developing Applications for details.

1.11.2 Installation and Getting Started

Unlike the OpenDDS Middleware which is compiled from source code by the developer, the compiled Modeling SDK
is available for download via an Eclipse Update Site.

Prerequisites

• Java Runtime Environment (JRE)

• Eclipse IDE

1.11. Modeling SDK 139

OpenDDS, Release 3.24.0

Installation

1. From Eclipse, open the Help menu and select Install New Software.

Figure Eclipse Software Installation Dialog

• Click the hyperlink for Available Software Sites.

• The standard eclipse.org sites (Eclipse Project Updates and Galileo) should be enabled. If they are disabled,
enable them now.

• Add a new Site entry named OpenDDS with URL http://download.opendds.org/modeling/eclipse_44/

• Click OK to close the Preferences dialog and return to the Install dialog.

• In the “Work with” combo box, select the new entry for OpenDDS.

• Select the “OpenDDS Modeling SDK” and click Next.

• Review the “Install Details” list and click Next. Review the license, select Accept (if you do accept it), and click
Finish.

• Eclipse will download the OpenDDS plug-ins and various plug-ins from eclipse.org that they depend on.
There will be a security warning because the OpenDDS plug-ins are not signed. There also may be a prompt to
accept a certificate from eclipse.org.

140 Chapter 1. Developer’s Guide

http://download.opendds.org/modeling/eclipse_44/

OpenDDS, Release 3.24.0

• Eclipse will prompt the user to restart in order to use the newly installed software.

Getting Started

The OpenDDS Modeling SDK contains an Eclipse Perspective. Open it by going to the Window menu and selecting
Open Perspective -> Other -> OpenDDS Modeling.

To get started using the OpenDDS Modeling SDK, see the help content installed in Eclipse. Start by going to the Help
menu and selecting Help Contents. There is a top-level item for “OpenDDS Modeling SDK Guide” that contains all
of the OpenDDS-specific content describing the modeling and code generation activities.

1.11.3 Developing Applications

In order to build an application using the OpenDDS Modeling SDK, one must understand a few key concepts. The
concepts concern:

1. The support library

2. Generated model code

3. Application code

Modeling Support Library

The OpenDDS Modeling SDK includes a support library, found at tools/modeling/codegen/model. This support library,
when combined with the code generated by the Modeling SDK, greatly reduces the amount of code needed to build an
OpenDDS application.

The support library is a C++ library which is used by an OpenDDS Modeling SDK application. Two classes in the
support library that most developers will need are the Application and Service classes.

The Application Class

The OpenDDS::Model::Application class takes care of initialization and finalization of the OpenDDS library. It
is required for any application using OpenDDS to instantiate a single instance of the Application class, and further
that the Application object not be destroyed while communicating using OpenDDS.

The Application class initializes the factory used to create OpenDDS participants. This factory requires the user-
provided command line arguments. In order to provide them, the Application object must be provided the same
command line arguments.

The Service Class

The OpenDDS::Model::Service class is responsible for the creation of OpenDDS entities described in an OpenDDS
Modeling SDK model. Since the model can be generic, describing a much broader domain than an individual applica-
tion uses, the Service class uses lazy instantiation to create OpenDDS entities.

In order to properly instantiate these entities, it must know:

• The relationships among the entities

• The transport configuration used by entities

1.11. Modeling SDK 141

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tools/modeling/codegen/model

OpenDDS, Release 3.24.0

Generated Code

The OpenDDS Modeling SDK generates model-specific code for use by an OpenDDS Modeling SDK application.
Starting with a .codegen file (which refers to an .opendds model file), the files described in Table 11-1. The process
of generating code is documented in the Eclipse help.

Table Generated Files

File Name Description
<ModelName>.idl Data types from the model’s DataLib
<ModelName>_T.h C++ class from the model’s DcpsLib
<ModelName>_T.cpp C++ implementation of the model’s DcpsLib
<ModelName>.mpc MPC project file for the generated C++ library
<ModelName>.mpb MPC base project for use by the application
<ModelName>_paths.mpb MPC base project with paths, see Dependencies Between Models
<ModelName>Traits.h Transport configuration from the .codegen file
<ModelName>Traits.cpp Transport configuration from the .codegen file

The DCPS Model Class

The DCPS library models relationships between DDS entities, including Topics, DomainParticipants,
Publishers, Subscribers, DataWriters and DataReaders, and their corresponding Domains.

For each DCPS library in your model, the OpenDDS Modeling SDK generates a class named after the DCPS library.
This DCPS model class is named after the DCPS library, and is found in the <ModelName>_T.h file in the code
generation target directory.

The model class contains an inner class, named Elements, defining enumerated identifiers for each DCPS entity mod-
eled in the library and each type referenced by the library’s Topics. This Elements class contains enumeration definitions
for each of:

• DomainParticipants

• Types

• Topics

• Content Filtered Topics

• Multi Topics

• Publishers

• Subscribers

• Data Writers

• Data Readers

In addition, the DCPS model class captures the relationships between these entities. These relationships are used by
the Service class when instantiating DCPS entities.

142 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

The Traits Class

Entities in a DCPS model reference their transport configuration by name. The Model Customization tab of the Codegen
file editor is used to define the transport configuration for each name.

There can be more than one set of configurations defined for a specific code generation file. These sets of configura-
tions are grouped into instances, each identified by a name. Multiple instances may be defined, representing different
deployment scenarios for models using the application.

For each of these instances, a Traits class is generated. The traits class provides the transport configuration modeled
in the Codegen editor for a specific transport configuration name.

The Service Typedef

The Service is a template which needs two parameters: (1) the entity model, in the DCPS model Elements
class, (2) transport configuration, in a Traits class. The OpenDDS Modeling SDK generates one type-
def for each combination of DCPS library and transport configuration model instance. The typedef is named
<InstanceName><DCPSLibraryName>Type.

Data Library Generated Code

From the data library, IDL is generated, which is processed by the IDL compilers. The IDL compilers generate type
support code, which is used to serialize and deserialize data types.

QoS Policy Library Generated Code

There are no specific compilation units generated from the QoS policy library. Instead, the DCPS library stores the
QoS policies of the entities it models. This QoS policy is later queried by the Service class, which sets the QoS policy
upon entity creation.

Application Code Requirements

Required headers

The application will need to include the Traits header, in addition to the Tcp.h header (for static linking). These will
include everything required to build a publishing application. Here is the #include section of an example publishing
application, MinimalPublisher.cpp.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"

1.11. Modeling SDK 143

OpenDDS, Release 3.24.0

Exception Handling

It is recommended that Modeling SDK applications catch both CORBA::Exception objects and std::exception
objects.

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
// Create and use OpenDDS Modeling SDK (see below)

} catch (const CORBA::Exception& e) {
// Handle exception and return non-zero

} catch (const OpenDDS::DCPS::Transport::Exception& te) {
// Handle exception and return non-zero

} catch (const std::exception& ex) {
// Handle exception and return non-zero

}
return 0;

}

Instantiation

As stated above, an OpenDDS Modeling SDK application must create an OpenDDS::Model::Application object
for the duration of its lifetime. This Application object, in turn, is passed to the constructor of the Service object
specified by one of the typedef declarations in the traits headers.

The service is then used to create OpenDDS entities. The specific entity to create is specified using one of the enumer-
ated identifiers specified in the Elements class. The Service provides this interface for entity creation:

DDS::DomainParticipant_var participant(Elements::Participants::Values part);
DDS::TopicDescription_var topic(Elements::Participants::Values part,

Elements::Topics::Values topic);
DDS::Publisher_var publisher(Elements::Publishers::Values publisher);
DDS::Subscriber_var subscriber(Elements::Subscribers::Values subscriber);
DDS::DataWriter_var writer(Elements::DataWriters::Values writer);
DDS::DataReader_var reader(Elements::DataReaders::Values reader);

It is important to note that the service also creates any required intermediate entities, such as DomainParticipants,
Publishers, Subscribers, and Topics, when necessary.

Publisher Code

Using the writer() method shown above, MinimalPublisher.cpp continues:

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
OpenDDS::Model::Application application(argc, argv);
MinimalLib::DefaultMinimalType model(application, argc, argv);

using OpenDDS::Model::MinimalLib::Elements;
DDS::DataWriter_var writer = model.writer(Elements::DataWriters::writer);

144 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

What remains is to narrow the DataWriter to a type-specific data writer, and send samples.

data1::MessageDataWriter_var msg_writer =
data1::MessageDataWriter::_narrow(writer);

data1::Message message;
// Populate message and send
message.text = "Worst. Movie. Ever.";
DDS::ReturnCode_t error = msg_writer->write(message, DDS::HANDLE_NIL);
if (error != DDS::RETCODE_OK) {
// Handle error

}

In total our publishing application, MinimalPublisher.cpp, looks like this:

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
OpenDDS::Model::Application application(argc, argv);
MinimalLib::DefaultMinimalType model(application, argc, argv);

using OpenDDS::Model::MinimalLib::Elements;
DDS::DataWriter_var writer = model.writer(Elements::DataWriters::writer);

data1::MessageDataWriter_var msg_writer =
data1::MessageDataWriter::_narrow(writer);

data1::Message message;
// Populate message and send
message.text = "Worst. Movie. Ever.";
DDS::ReturnCode_t error = msg_writer->write(message, DDS::HANDLE_NIL);
if (error != DDS::RETCODE_OK) {
// Handle error

}
} catch (const CORBA::Exception& e) {
// Handle exception and return non-zero

} catch (const std::exception& ex) {
// Handle exception and return non-zero

}
return 0;

}

Note this minimal example ignores logging and synchronization, which are issues that are not specific to the OpenDDS
Modeling SDK.

1.11. Modeling SDK 145

OpenDDS, Release 3.24.0

Subscriber Code

The subscriber code is much like the publisher. For simplicity, OpenDDS Modeling SDK subscribers may want
to take advantage of a base class for Reader Listeners, called OpenDDS::Modeling::NullReaderListener. The
NullReaderListener implements the entire DataReaderListener interface and logs every callback.

Subscribers can create a listener by deriving a class from NullReaderListener and overriding the interfaces of
interest, for example on_data_available.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"
#include <model/NullReaderListener.h>

class ReaderListener : public OpenDDS::Model::NullReaderListener {
public:
virtual void on_data_available(DDS::DataReader_ptr reader)
ACE_THROW_SPEC((CORBA::SystemException)) {
data1::MessageDataReader_var reader_i =
data1::MessageDataReader::_narrow(reader);

if (!reader_i) {
// Handle error
ACE_OS::exit(-1);

}

data1::Message msg;
DDS::SampleInfo info;

// Read until no more messages
while (true) {
DDS::ReturnCode_t error = reader_i->take_next_sample(msg, info);
if (error == DDS::RETCODE_OK) {
if (info.valid_data) {
std::cout << "Message: " << msg.text.in() << std::endl;

}
} else {
if (error != DDS::RETCODE_NO_DATA) {
// Handle error

}
break;

}
}

}
};

In the main function, create a data reader from the service object:

DDS::DataReader_var reader = model.reader(Elements::DataReaders::reader);

Naturally, the DataReaderListener must be associated with the data reader in order to get its callbacks.

146 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

DDS::DataReaderListener_var listener(new ReaderListener);
reader->set_listener(listener, OpenDDS::DCPS::DEFAULT_STATUS_MASK);

The remaining subscriber code has the same requirements of any OpenDDS Modeling SDK application, in that it must
initialize the OpenDDS library through an OpenDDS::Modeling::Application object, and create a Service object
with the proper DCPS model Elements class and traits class.

An example subscribing application, MinimalSubscriber.cpp, follows.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"
#include <model/NullReaderListener.h>

class ReaderListener : public OpenDDS::Model::NullReaderListener {
public:
virtual void on_data_available(DDS::DataReader_ptr reader)
ACE_THROW_SPEC((CORBA::SystemException)) {
data1::MessageDataReader_var reader_i =
data1::MessageDataReader::_narrow(reader);

if (!reader_i) {
// Handle error
ACE_OS::exit(-1);

}

data1::Message msg;
DDS::SampleInfo info;

// Read until no more messages
while (true) {
DDS::ReturnCode_t error = reader_i->take_next_sample(msg, info);
if (error == DDS::RETCODE_OK) {
if (info.valid_data) {
std::cout << "Message: " << msg.text.in() << std::endl;

}
} else {
if (error != DDS::RETCODE_NO_DATA) {
// Handle error

}
break;

}
}

}
};

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
OpenDDS::Model::Application application(argc, argv);
MinimalLib::DefaultMinimalType model(application, argc, argv);

(continues on next page)

1.11. Modeling SDK 147

OpenDDS, Release 3.24.0

(continued from previous page)

using OpenDDS::Model::MinimalLib::Elements;

DDS::DataReader_var reader = model.reader(Elements::DataReaders::reader);

DDS::DataReaderListener_var listener(new ReaderListener);
reader->set_listener(listener, OpenDDS::DCPS::DEFAULT_STATUS_MASK);

// Call on_data_available in case there are samples which are waiting
listener->on_data_available(reader);

// At this point the application can wait for an exteral “stop” indication
// such as blocking until the user terminates the program with Ctrl-C.

} catch (const CORBA::Exception& e) {
e._tao_print_exception("Exception caught in main():");
return -1;

} catch (const std::exception& ex) {
// Handle error
return -1;

}
return 0;

}

MPC Projects

In order to make use of the OpenDDS Modeling SDK support library, OpenDDS Modeling SDK MPC projects should
inherit from the dds_model project base. This is in addition to the dcpsexe base from which non-Modeling SDK
projects inherit.

project(*Publisher) : dcpsexe, dds_model {
// project configuration

}

The generated model library will generate an MPC project file and base project file in the target directory, and take
care of building the model shared library. OpenDDS modeling applications must both (1) include the generated model
library in their build and (2) ensure their projects are built after the generated model libraries.

project(*Publisher) : dcpsexe, dds_model {
// project configuration
libs += Minimal
after += Minimal

}

Both of these can be accomplished by inheriting from the model library’s project base, named after the model library.

project(*Publisher) : dcpsexe, dds_model, Minimal {
// project configuration

}

Note that the Minimal.mpb file must now be found by MPC during project file creation. This can be accomplished
through the -include command line option.

148 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Using either form, the MPC file must tell the build system where to look for the generated model library.

project(*Publisher) : dcpsexe, dds_model, Minimal {
// project configuration
libpaths += model

}

This setting based upon what was provided to the Target Folder setting in the Codegen file editor.

Finally, like any other MPC project, its source files must be included:

Source_Files {
MinimalPublisher.cpp

}

The final MPC project looks like this for the publisher:

project(*Publisher) : dcpsexe, dds_model, Minimal {
exename = publisher
libpaths += model

Source_Files {
MinimalPublisher.cpp

}
}

And similar for the subscriber:

project(*Subscriber) : dcpsexe, dds_model, Minimal {
exename = subscriber
libpaths += model

Source_Files {
MinimalSubscriber.cpp

}
}

Dependencies Between Models

One final consideration — the generated model library could itself depend on other generated model libraries. For
example, there could be an external data type library which is generated to a different directory.

This possibility could cause a great deal of maintenance of project files, as models change their dependencies over time.
To help overcome this burden, the generated model library records the paths to all of its externally referenced model
libraries in a separate MPB file named <ModelName>_paths.mpb. Inheriting from this paths base project will inherit
the needed settings to include the dependent model as well.

Our full MPC file looks like this:

project(*Publisher) : dcpsexe, dds_model, Minimal, Minimal_paths {
exename = publisher
libpaths += model

Source_Files {
(continues on next page)

1.11. Modeling SDK 149

OpenDDS, Release 3.24.0

(continued from previous page)

MinimalPublisher.cpp
}

}

project(*Subscriber) : dcpsexe, dds_model, Minimal, Minimal_paths {
exename = subscriber
libpaths += model

Source_Files {
MinimalSubscriber.cpp

}
}

1.12 Alternate Interfaces to Data

The DDS-DCPS approach to data transfer using synchronization of strongly-typed caches (DataWriter and DataReader)
is not appropriate for all applications. Therefore OpenDDS provides two different alternate interface approaches which
are described in this section. These are not defined by OMG specifications and may change in future releases of
OpenDDS, including minor updates. The two approaches are:

• Recorder and Replayer

– These interfaces allow the application to create untyped stand-ins for DataReaders and/or DataWriters

– Recorder can be used with the Dynamic Language Binding XTypes features (Dynamic Language Binding)
to access typed data samples through a reflection-based API

• Observer

– Observers play a role similar to the spec-defined Listeners (attached to DataReaders and/or DataWriters).
Unlike the Listeners, Observers don’t need to interact with the DataReader/Writer caches to access the data
samples.

The XTypes Dynamic Language Binding (Dynamic Language Binding) provides a set of related features that can be
used to create DataWriters and DataReaders that work with a generic data container (DynamicData) instead of a specific
IDL-generated data type.

1.12.1 Recorder and Replayer

The Recorder feature of OpenDDS allows applications to record samples published on arbitrary topics without any
prior knowledge of the data type used by that topic. Analogously, the Replayer feature allows these recorded samples
to by re-published back into the same or other topics. What makes these features different from other Data Readers and
Writers are their ability to work with any data type, even if unknown at application build time. Effectively, the samples
are treated as if each one contains an opaque byte sequence.

The purpose of this section is to describe the public API for OpenDDS to enable the recording/replaying use-case.

150 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

API Structure

Two new user-visible classes (that behave somewhat like their DDS Entity counterparts) are defined in the
OpenDDS::DCPS namespace, along with the associated Listener interfaces. Listeners may be optionally implemented
by the application. The Recorder class acts similarly to a DataReader and the Replayer class acts similarly to a
DataWriter.

Both Recorder and Replayer make use of the underlying OpenDDS discovery and transport libraries as if they were
DataReader and DataWriter, respectively. Regular OpenDDS applications in the domain will “see” the Recorder
objects as if they were remote DataReader s and Replayers as if they were DataWriter s.

Usage Model

The application creates any number of Recorder s and Replayer s as necessary. This could be based on using the
Built-In Topics to dynamically discover which topics are active in the Domain. Creating a Recorder or Replayer
requires the application to provide a topic name and type name (as in DomainParticipant::create_topic())
and also the relevant QoS data structures. The Recorder requires SubscriberQos and DataReaderQos whereas the
Replayer requires PublisherQos and DataWriterQos. These values are used in discovery’s reader/writer matching.
See the section on QoS processing below for how the Recorder and Replayer use QoS. Here is the code needed to
create a recorder:

OpenDDS::DCPS::Recorder_var recorder =
service_participant->create_recorder(domain_participant,

topic.in(),
sub_qos,
dr_qos,
recorder_listener);

Data samples are made available to the application via the RecorderListener using a simple “one callback per
sample” model. The sample is delivered as an OpenDDS::DCPS::RawDataSample object. This object includes the
timestamp for that data sample as well as the marshaled sample value. Here is a class definition for a user-defined
Recorder Listener.

class MessengerRecorderListener : public OpenDDS::DCPS::RecorderListener
{
public:

MessengerRecorderListener();

virtual void on_sample_data_received(OpenDDS::DCPS::Recorder*,
const OpenDDS::DCPS::RawDataSample& sample);

virtual void on_recorder_matched(OpenDDS::DCPS::Recorder*,
const DDS::SubscriptionMatchedStatus& status);

};

The application can store the data wherever it sees fit (in memory, file system, database, etc.). At any later time, the
application can provide that same sample to a Replayer object configured for the same topic. It’s the application’s
responsibility to make sure the topic types match. Here is an example call that replays a sample to all readers connected
on a replayer’s topic:

replayer->write(sample);

1.12. Alternate Interfaces to Data 151

OpenDDS, Release 3.24.0

Because the stored data is dependent on the definition of the data structure, it can’t be used across different versions of
OpenDDS or different versions of the IDL used by the OpenDDS participants.

QoS Processing

The lack of detailed knowledge about the data sample complicates the use of many normal DDS QoS properties on the
Replayer side. The properties can be divided into a few categories:

• Supported

• – Liveliness

– Time-Based Filter

– Lifespan

– Durability (transient local level, see details below)

– Presentation (topic level only)

– Transport Priority (pass-thru to transport)

• Unsupported

• – Deadline (still used for reader/writer match)

– History

– Resource Limits

– Durability Service

– Ownership and Ownership Strength (still used for reader/writer match)

• Affects reader/writer matching and Built-In Topics but otherwise ignored

• – Partition

– Reliability (still used by transport negotiation)

– Destination Order

– Latency Budget

– User/Group Data

Durability details

On the Recorder side, transient local durability works just the same as any normal DataReader. Durable data is
received from matched DataWriter s. On the Replayer side there are some differences. As opposed to the normal
DDS DataWriter, Replayer is not caching/storing any data samples (they are simply sent to the transport). Because
instances are not known, storing data samples according to the usual History and Resource Limits rules is not possible.
Instead, transient local durability can be supported with a “pull” model whereby the middleware invokes a method on
the ReplayerListener when a new remote DataReader is discovered. The application can then call a method on the
Replayer with any data samples that should be sent to that newly-joined DataReader. Determining which samples
these are is left to the application.

152 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Recorder With XTypes Dynamic Language Binding

The Recorder class includes support for the Dynamic Language Binding from XTypes (Dynamic Language Binding).
Type information for each matched DataWriter (that supports XTypes complete TypeObjects) is stored in the Recorder.
Users can call Recorder::get_dynamic_data, passing a RawDataSample to get back a DynamicData object which in-
cludes type information – see DynamicData::type().

A tool called “inspect,” uses the Recorder and Dynamic Language Binding allow for the printing of any type, so long
as the topic name, type name, and domain ID are known. The DataWriter must include code generation for complete
TypeObjects. See tools/inspect/Inspect.cpp for this tool’s source code. It can be used as a standalone tool or an example
for developing your own applications using these APIs.

1.12.2 Observer

To observe the most important events happening within OpenDDS, applications can create classes that derive from the
Observer abstract base class (in dds/DCPS/Observer.h). The design of Observer is intended to allow applications to
have a single Observer object observing many Entities, however this is flexible to allow many different use cases. The
following events can be observed:

• DataWriter/Reader enabled, deleted

• DataWriter/Reader QoS changed

• DataWriter/Reader peer associated, disassociated

• DataWriter sample sent

• DataReader sample received (enters the cache), read, taken

Attaching Observers to Entities

Entity is the spec-defined base interface of the following types:

• DataWriter, DataReader

– As seen above in Observer, the Observer events originate in the DataWriter and DataReader Entities

• DomainParticipant, Publisher, Subscriber

– Among their other roles, these Entities act as containers (either directly or indirectly) for DataWriters and
DataReaders.

– If a smaller-scoped Entity (such as a DataWriter) has no Observer for the event in question, its containing
Entity (in this example, a Publisher) is checked for an Observer.

• Topic

– Although it is an Entity, no Observer events are generated by Topics or Entities they contain (since they
don’t contain any Entities)

The class EntityImpl (in dds/DCPS/EntityImpl.h) is OpenDDS’s base class for all Entity types. EntityImpl includes
public methods for Observer registration: set_observer and get_observer. These methods are not part of the IDL
interfaces, so invoking them the requires a cast to the implementation (Impl) of Entity.

DDS::DataWriter_var dw = /* ... */;
EntityImpl* entity = dynamic_cast<EntityImpl*>(dw.in());
Observer_rch observer = make_rch<MyObserver>();
entity->set_observer(observer, Observer::e_SAMPLE_SENT);

1.12. Alternate Interfaces to Data 153

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/Observer.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/EntityImpl.h

OpenDDS, Release 3.24.0

Note that since the Observer class as an internal (not IDL) interface, it uses the “RCH” (Reference Counted Handle)
smart pointer classes. Observer itself inherits from RcObject, and uses of Observer-derived classes should use the
RcHandle template and its associated functions, as in the example above. See dds/DCPS/RcHandle_T.h for details.

Writing Observer-Derived Classes

The virtual methods in the Observer class are divided into 3 groups based on the general category of events they observe:

1. Operations on the observed Entity itself

2. • on_enabled, on_deleted, on_qos_changed

• The only parameter to these methods is the Entity, so the Observer implementation can use the public
methods on the Entity.

3. Events relating to associating with remote matched endpoints

• on_associated, on_disassociated

• In addition to the Entity, the Observer implementation receives a GUID_t structure which is the internal
representation of remote Entity identity. The GUID_t values from on_associated could be stored or logged
to correlate them with the values from on_disassociated.

4. Events relating to data samples moving through the system

• on_sample_sent, on_sample_received, on_sample_read, on_sample_taken

5. • In addition to the Entity, the Observer implementation receives an instance of the Sample structure. The
definition of this structure is nested within Observer. See below for details.

The Observer::Sample structure

The Observer::Sample structure contains the following fields:

• instance and instance_state

– Describe the instance that this sample belongs to, using the spec-defined types

• timestamp and sequence_number

– Attributes of the sample itself: timestamp uses a spec-defined type whereas sequence_number uses the
OpenDDS internal type for DDSI-RTPS 64-bit sequence numbers.

• data and data_dispatcher

– Since Observer is an un-typed interface, the contents of the data sample itself are represented only as a void
pointer

– Implementations that need to process this data can use the data_dispatcher object to interpret it. See the
class definition of ValueDispatcher in dds/DCPS/ValueDispatcher.h for more details.

154 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/RcHandle_T.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/ValueDispatcher.h

OpenDDS, Release 3.24.0

1.13 Safety Profile

1.13.1 Overview

The Safety Profile configuration allows OpenDDS to be used in environments that have a restricted set of operating
system and standard library functions available and that require dynamic memory allocation to occur only at system
start-up.

OpenDDS Safety Profile (and the corresponding features in ACE) were developed for the Open Group’s FACE spec-
ification, edition 2.1. It can be used along with the support for FACE Transport Services to create FACE-conformant
DDS applications, or it can be used by general DDS applications that are not written to the FACE Transport Services
APIs. This latter use-case is described by this section of the developer’s guide. For more information on the former
use-case see the file FACE/README.txt in the source distribution.

1.13.2 Safety Profile Subset of OpenDDS

The following features of OpenDDS are not available when it is configured for Safety Profile:

• DCPSInfoRepo and its associated libraries and tools

• Transport types: tcp, udp, multicast, shared memory

– The rtps_udp transport type is available (uses UDP unicast or multicast)

• OpenDDS Monitor library and monitoring GUI

When developing the Safety Profile, the following DDS Compliance Profiles were disabled:

• content_subscription

• ownership_kind_exclusive

• object_model_profile

• persistence_profile

See Disabling the Building of Compliance Profile Features for more details on compliance profiles. It is possible that
enabling any of these compliance profiles in a Safety Profile build will result in a compile-time or run-time error.

To build OpenDDS Safety Profile, pass the command line argument “–safety-profile” to the configure script along with
any other arguments needed for your platform or configuration. When safety profile is enabled in the configure script,
the four compliance profiles listed above default to disabled. See Installation and the INSTALL.md file in the source
distribution for more information about the configure script.

1.13.3 Safety Profile Configurations of ACE

OpenDDS uses ACE as its platform abstraction library, and in OpenDDS’s Safety Profile configuration, one of the
following safety profile configurations must be enabled in ACE:

• FACE Safety Base (always uses the memory pool)

• FACE Safety Extended with Memory Pool

• FACE Safety Extended with Standard C++ Dynamic Allocation

OpenDDS’s configure script will automatically configure ACE. Pass the command line argument “–safety-
profile=base” to select the Safety Base profile. Otherwise a “–safety-profile” (no equals sign) configuration will default
to Safety Extended with Memory Pool.

1.13. Safety Profile 155

https://www.opengroup.org/face/tech-standard-2.1
https://www.opengroup.org/face/tech-standard-2.1

OpenDDS, Release 3.24.0

The Safety Extended with Standard C++ Dynamic Allocation configuration is not automatically generated by the con-
figure script, but the file “build/target/ACE_wrappers/ace/config.h” can be edited after it is generated by configure (and
before running make). Remove the macro definition for ACE_HAS_ALLOC_HOOKS to disable the memory pool.

ACE’s safety profile configurations have been tested on Linux and on LynxOS-178 version 2.3.2+patches. Other plat-
forms may work too but may require additional configuration.

1.13.4 Run-time Configurable Options

The memory pool used by OpenDDS can be configured by setting values in the [common] section of the configuration
file. See Common Configuration Options and the pool_size and pool_granularity rows of table Table 7-2.

1.13.5 Running ACE and OpenDDS Tests

After configuring and building OpenDDS Safety Profile, note that there are two sub-directories of the top level that
each contain some binary artifacts:

• build/host has the build-time code generators tao_idl and opendds_idl

• build/target has the run-time libraries for safety profile ACE and OpenDDS and the OpenDDS tests

Therefore, testing needs to be relative to the build/target sub-directory. Source-in the generated file build/target/
setenv.sh to get all of the needed environment variables.

ACE tests are not built by default, but once this environment is set up all it takes to build them is generating makefiles
and running make:

1. cd $ACE_ROOT/tests

2. $ACE_ROOT/bin/mwc.pl -type gnuace

3. make

Run ACE tests by changing to the $ACE_ROOT/tests directory and using run_test.pl. Pass any “-Config XYZ” options
required for your configuration (use run_test.pl -h to see the available Config options).

Run OpenDDS tests by changing to the $DDS_ROOT and using bin/auto_run_tests.pl. Pass “-
Config OPENDDS_SAFETY_PROFILE”, “-Config SAFETY_BASE” (if using safety base), “-Config
RTPS”, and -Config options corresponding to each disabled compliance profile, by default: “-Config
DDS_NO_OBJECT_MODEL_PROFILE -Config DDS_NO_OWNERSHIP_KIND_EXCLUSIVE -Config
DDS_NO_PERSISTENCE_PROFILE -Config DDS_NO_CONTENT_SUBSCRIPTION”.

Alternatively, an individual test can be run using run_test.pl from that test’s directory. Pass the same set of -Config
options to run_test.pl.

1.13.6 Using the Memory Pool in Applications

When the Memory Pool is enabled at build time, all dynamic allocations made by code in OpenDDS or in ACE (methods
invoked by OpenDDS) go through the pool. Since the pool is a general purpose dynamic allocator, it may be desirable
for application code to use the pool too. Since these APIs are internal to OpenDDS, they may change in future releases.

The class OpenDDS::DCPS::MemoryPool (dds/DCPS/MemoryPool.h) contains the pool im-
plementation. However, most client code shouldn’t interact directly with it. The class
OpenDDS::DCPS::SafetyProfilePool (dds/DCPS/SafetyProfilePool.h) adapts the pool to the ACE_Allocator
interface. OpenDDS::DCPS::PoolAllocator<T> (dds/DCPS/PoolAllocator.h) adapts the pool to the C++ Allo-
cator concept (C++03). Since the PoolAllocator is stateless, it depends on the ACE_Allocator’s singleton. When

156 Chapter 1. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/MemoryPool.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/SafetyProfilePool.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/PoolAllocator.h

OpenDDS, Release 3.24.0

OpenDDS is configured with the memory pool, ACE_Allocator’s singleton instance will point to an object of class
SafetyProfilePool.

Application code that makes use of C++ Standard Library classes can either use PoolAllocator directly, or make use of
the macros defined in PoolAllocator.h (for example OPENDDS_STRING).

Application code that allocates raw (untyped) buffers of dynamic memory can use SafetyProfilePool either directly or
via the ACE_Allocator::instance() singleton.

Application code that allocates objects from the heap can use the PoolAllocator<T> template.

Classes written by the application developer can derive from PoolAllocationBase (see PoolAllocationBase.h) to inherit
class-scoped operators new and delete, thus redirecting all dynamic allocation of these classes to the pool.

1.14 DDS Security

1.14.1 Building OpenDDS with Security Enabled

Prior to utilizing DDS Security, OpenDDS must be built to include security elements into the resulting libraries. The
following instructions show how this is to be completed on various platforms.

Prerequisites

OpenDDS includes an implementation of the OMG DDS Security 1.1 specification. Building OpenDDS with security
enabled requires the following dependencies:

1. Xerces-C++ v3.x

2. OpenSSL v1.0.2+, v1.1, or v3.0.1+ (1.1 is preferred)

3. Google Test (only required if building OpenDDS tests)

• If you are using OpenDDS from a git repository, Google Test is provided as a git submodule. Make sure to
enable submodules with the --recursive option to git clone.

4. CMake (required if building OpenDDS tests and building Google Test and other dependencies from source).

General Notes on Using OpenDDS Configure Script with DDS Security:

1. DDS Security is disabled by default, enable it with --security

2. OpenDDS tests are disabled by default, enable them with --tests

• Disabling tests skips the Google Test and CMake dependencies

• If tests are enabled, the configure script can run CMake and build Google Test

Building OpenDDS with Security on Windows

Using Microsoft vcpkg

Microsoft vcpkg is a “C++ Library Manager for Windows, Linux, and macOS” which helps developers build/install
dependencies. Although it is cross-platform, this guide only discusses vcpkg on Windows.

As of this writing, vcpkg is only supported on Visual Studio 2015 Update 3 and later versions; if using an earlier version
of Visual Studio, skip down to the manual setup instructions later in this section.

• If OpenDDS tests will be built, install CMake or put the one that comes with Visual Studio on the PATH (see
Common7\IDE\CommonExtensions\Microsoft\CMake).

1.14. DDS Security 157

OpenDDS, Release 3.24.0

• If you need to obtain and install vcpkg, navigate to https://github.com/Microsoft/vcpkg and follow the instructions
to obtain vcpkg by cloning the repository and bootstrapping it.

• Fetch and build the dependencies; by default, vcpkg targets x86 so be sure to specify the x64 target if required
by specifying it when invoking vcpkg install, as shown here:

vcpkg install openssl:x64-windows xerces-c:x64-windows

• Configure OpenDDS by passing the openssl and xerces3 switches. As a convenience, it can be helpful to set an
environment variable to store the path since it is the same location for both dependencies.

set VCPKG_INSTALL=c:\path\to\vcpkg\installed\x64-windows
configure --security --openssl=%VCPKG_INSTALL% --xerces3=%VCPKG_INSTALL%

• Compile with msbuild or by launching Visual Studio from this command prompt so it inherits the correct envi-
ronment variables and building from there.

msbuild /m DDS_TAOv2_all.sln

Manual Build

Note: For all of the build steps listed here, check that each package targets the same architecture (either 32-bit or
64-bit) by compiling all dependencies within the same type of Developer Command Prompt.

Compiling OpenSSL

Official OpenSSL instructions can be found here.

1. Install Perl and add it to the Path environment variable. For this guide, ActiveState is used.

2. Install Netwide Assembler (NASM). Click through the latest stable release and there is a win32 and win64
directory containing executable installers. The installer does not update the Path environment variable, so a
manual entry (%LOCALAPPDATA%\bin\NASM) is necessary.

3. Download the required version of OpenSSL by cloning the repository.

4. Open a Developer Command Prompt (32-bit or 64-bit depending on the desired target architecture) and change
into the freshly cloned openssl directory.

5. Run the configure script and specify a required architecture (perl Configure VC-WIN32 or perl Configure
VC-WIN64A).

6. Run nmake

7. Run nmake install

Note: If the default OpenSSL location is desired, which will be searched by OpenDDS, open the “Developer Command
Prompt” as an administrator before running the install. It will write to C:\Program Files or C:\Program Files
(x86) depending on the architecture.

Compiling Xerces-C++ 3

Official Xerces instructions can be found here.

1. Download/extract the Xerces source files.

2. Create a cmake build directory and change into it (from within the Xerces source tree).

158 Chapter 1. Developer’s Guide

https://wiki.openssl.org/index.php/Compilation_and_Installation#Windows
https://xerces.apache.org/xerces-c/build-3.html

OpenDDS, Release 3.24.0

mkdir build
cd build

3. Run cmake with the appropriate generator. In this case Visual Studio 2017 with 64-bit is being used so:

cmake -G "Visual Studio 15 2017 Win64" ..

4. Run cmake again with the build switch and install target (this should be done in an administrator command-
prompt to install in the default location as mentioned above).

cmake --build . --target install

Configuring and Building OpenDDS:

1. Change into the OpenDDS root folder and run configure with security enabled.

• If the default location was used for OpenSSL and Xerces, configure should automatically find the depen-
dencies:

configure --security

2. If a different location was used (assuming environment variables NEW_SSL_ROOT and NEW_XERCES_ROOT point
to their respective library directories):

configure --security --openssl=%NEW_SSL_ROOT% \
--xerces3=%NEW_XERCES_ROOT%

3. Compile with msbuild (or by opening the solution file in Visual Studio and building from there).

msbuild /m DDS_TAOv2_all.sln

Building OpenDDS with Security on Linux

Xerces-C++ and OpenSSL may be installed using the system package manager, or built from source. If using the
system package manager (that is, headers can be found under /usr/include), invoke the configure script with the
–security option. If Xerces-C++ and/or OpenSSL are built from source or installed in a custom location, also provide
the --xerces3=/foo and --openssl=/bar command line options.

Building OpenDDS with Security on macOS

Xerces-C++ and OpenSSL may be installed using homebrew or another developer-focused package manager, or built
from source. The instructions above for Linux also apply to macOS but the package manager will not install directly
in /usr so make sure to specify the library locations to the configure script.

1.14. DDS Security 159

OpenDDS, Release 3.24.0

Building OpenDDS with Security for Android

See the docs/android.md file included in the OpenDDS source code.

1.14.2 Architecture of the DDS Security Specification

The DDS Security specification defines plugin APIs for Authentication, Access Control, and Cryptographic operations.
These APIs provide a level of abstraction for DDS implementations as well as allowing for future extensibility and
version control. Additionally, the specification defines Built-In implementations of each of these plugins, which allows
for a baseline of functionality and interoperability between DDS implementations. OpenDDS implements these Built-
In plugins, and this document assumes that the Built-In plugins are being used. Developers using OpenDDS may also
implement their own custom plugins, but those efforts are well beyond the scope of this document.

1.14.3 Terms and Background Info

DDS Security uses current industry standards and best-practices in security. As such, this document makes use of
several security concepts which may warrant additional research by OpenDDS users.

Term Group References
Public Key Cryptography (including Private Keys)

• Public Key Cryptography
• RSA
• Elliptic Curve Cryptography

Public Key Certificate
• Public Key Certificate
• Certificate Authority
• X.509
• PEM

Signed Documents
• Digital Signature

Table

1.14.4 Required DDS Security Artifacts

Per-Domain Artifacts

These are shared by all participants within the secured DDS Domain:

• Identity CA Certificate

• Permissions CA Certificate (may be same as Identity CA Certificate)

• Governance Document

• Signed by Permissions CA using its private key

160 Chapter 1. Developer’s Guide

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Digital_signature

OpenDDS, Release 3.24.0

Per-Participant Artifacts

These are specific to the individual Domain Participants within the DDS Domain:

• Identity Certificate and its Private Key

• Issued by Identity CA (or a CA that it authorized to act on its behalf)

• Permissions Document

• Contains a “subject name” which matches the participant certificate’s Subject

• Signed by Permissions CA using its private key

1.14.5 Required OpenDDS Configuration

The following configuration steps are required to enable OpenDDS Security features:

1. Select RTPS Discovery and the RTPS-UDP Transport; because DDS Security only works with these configura-
tions, both must be specified for any security-enabled participant.

2. Enable OpenDDS security-features, which can be done two ways:

• Via API: “TheServiceParticipant->set_security(true);” or

• Via config file: “DCPSSecurity=1” in the [common] section.

DDS Security Configuration via PropertyQosPolicy

When the application creates a DomainParticipant object, the DomainParticipantQos passed to the
create_participant() method now contains a PropertyQosPolicy object which has a sequence of name-
value pairs. The following properties must be included to enable security. Except where noted, these values take the
form of a URI starting with either the scheme “file:” followed by a filesystem path (absolute or relative) or the scheme
“data:” followed by the literal data.

Name Value Notes
dds.sec.auth.identity_ca Certificate PEM file Can be the same as permissions_ca
dds.sec.access.permissions_ca Certificate PEM file Can be the same as identity_ca
dds.sec.access.governance Signed XML (.p7s) Signed by permissions_ca
dds.sec.auth.
identity_certificate

Certificate PEM file Signed by identity_ca

dds.sec.auth.private_key Private Key PEM file Private key for
identity_certificate

dds.sec.auth.password Private Key Password (not a
URI)

Optional, Base64 encoded

dds.sec.access.permissions Signed XML (.p7s) Signed by permissions_ca

Table

1.14. DDS Security 161

OpenDDS, Release 3.24.0

PropertyQosPolicy Example Code

Below is an example of code that sets the DDS Participant QoS’s PropertyQoSPolicy in order to configure DDS Secu-
rity.

// DDS Security artifact file locations
const char auth_ca_file[] = "file:identity_ca_cert.pem";
const char perm_ca_file[] = "file:permissions_ca_cert.pem";
const char id_cert_file[] = "file:test_participant_01_cert.pem";
const char id_key_file[] = "file:test_participant_01_private_key.pem";
const char governance_file[] = "file:governance_signed.p7s";
const char permissions_file[] = "file:permissions_01_signed.p7s";

// DDS Security property names
const char DDSSEC_PROP_IDENTITY_CA[] = "dds.sec.auth.identity_ca";
const char DDSSEC_PROP_IDENTITY_CERT[] = "dds.sec.auth.identity_certificate";
const char DDSSEC_PROP_IDENTITY_PRIVKEY[] = "dds.sec.auth.private_key";
const char DDSSEC_PROP_PERM_CA[] = "dds.sec.access.permissions_ca";
const char DDSSEC_PROP_PERM_GOV_DOC[] = "dds.sec.access.governance";
const char DDSSEC_PROP_PERM_DOC[] = "dds.sec.access.permissions";

void append(DDS::PropertySeq& props, const char* name, const char* value)
{
const DDS::Property_t prop = {name, value, false /*propagate*/};
const unsigned int len = props.length();
props.length(len + 1);
props[len] = prop;

}

int main(int argc, char* argv[])
{
DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

// Start with the default Participant QoS
DDS::DomainParticipantQos part_qos;
dpf->get_default_participant_qos(part_qos);

// Add properties required by DDS Security
DDS::PropertySeq& props = part_qos.property.value;
append(props, DDSSEC_PROP_IDENTITY_CA, auth_ca_file);
append(props, DDSSEC_PROP_IDENTITY_CERT, id_cert_file);
append(props, DDSSEC_PROP_IDENTITY_PRIVKEY, id_key_file);
append(props, DDSSEC_PROP_PERM_CA, perm_ca_file);
append(props, DDSSEC_PROP_PERM_GOV_DOC, governance_file);
append(props, DDSSEC_PROP_PERM_DOC, permissions_file);

// Create the participant
participant = dpf->create_participant(4, // DomainID

part_qos,
0, // No listener
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

162 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Identity Certificates and Certificate Authorities

All certificate inputs to OpenDDS, including self-signed CA certificates, are expected to be an X.509 v3 certificate in
PEM format for either a 2048-bit RSA key or a 256-bit Elliptic Curve key (using the prime256v1 curve).

Identity, Permissions, and Subject Names

The “subject_name” element for a signed permissions XML document must match the “Subject:” field provided by the
accompanying Identity Certificate which is transmitted during participant discovery, authentication, and authorization.
This ensures that the permissions granted by the Permissions CA do, in fact, correspond to the identity provided.

Examples in the OpenDDS Source Code Repository

Examples to demonstrate how the DDS Security features are used with OpenDDS can be found in the OpenDDS GitHub
repository.

The following table describes the various examples and where to find them in the source tree.

Example Source Location
C++ application that configures security QoS policies via
command-line parameters

tests/DCPS/Messenger/publisher.cpp

Identity CA Certificate (along with private key) tests/security/certs/identity/identity_ca_cert.pem
Permissions CA Certificate (along with private key) tests/security/certs/permissions/permissions_ca_cert.pem
Participant Identity Certificate (along with private key) tests/security/certs/identity/test_participant_01_cert.pem
Governance XML Document (alongside signed document) tests/DCPS/Messenger/governance.xml
Permissions XML Document (alongside signed document) tests/DCPS/Messenger/permissions_1.xml

Table

Using OpenSSL Utilities for OpenDDS

To generate certificates using the openssl command, a configuration file “openssl.cnf” is required (see below for example
commands). Before proceeding, it may be helpful to review OpenSSL’s manpages to get help with the file format. In
particular, configuration file format and ca command’s documentation and configuration file options.

An example OpenSSL CA-Config file used in OpenDDS testing can be found here:
tests/security/certs/identity/identity_ca_openssl.cnf

Creating Self-Signed Certificate Authorities

Generate a self-signed 2048-bit RSA CA:

openssl genrsa -out ca_key.pem 2048
openssl req -config openssl.cnf -new -key ca_key.pem -out ca.csr
openssl x509 -req -days 3650 -in ca.csr -signkey ca_key.pem -out ca_cert.pem

Generate self-signed 256-bit Elliptic Curve CA:

openssl ecparam -name prime256v1 -genkey -out ca_key.pem
openssl req -config openssl.cnf -new -key ca_key.pem -out ca.csr
openssl x509 -req -days 3650 -in ca.csr -signkey ca_key.pem -out ca_cert.pem

1.14. DDS Security 163

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/DCPS/Messenger/publisher.cpp
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/security/certs/identity/identity_ca_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/security/certs/permissions/permissions_ca_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/security/certs/identity/test_participant_01_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/DCPS/Messenger/governance.xml
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/DCPS/Messenger/permissions_1.xml
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/security/certs/identity/identity_ca_openssl.cnf

OpenDDS, Release 3.24.0

Creating Signed Certificates with an Existing CA

Generate a signed 2048-bit RSA certificate:

openssl genrsa -out cert_1_key.pem 2048
openssl req -new -key cert_1_key.pem -out cert_1.csr
openssl ca -config openssl.cnf -days 3650 -in cert_1.csr -out cert_1.pem

Generate a signed 256-bit Elliptic Curve certificate:

openssl ecparam -name prime256v1 -genkey -out cert_2_key.pem
openssl req -new -key cert_2_key.pem -out cert_2.csr
openssl ca -config openssl.cnf -days 3650 -in cert_2.csr -out cert_2.pem

Signing Documents with SMIME

Sign a document using existing CA & CA private key:

openssl smime -sign -in doc.xml -text -out doc_signed.p7s -signer ca_cert.pem -inkey ca_
→˓private_key.pem

1.14.6 Domain Governance Document

The signed governance document is used by the DDS Security built-in access control plugin in order to determine both
per-domain and per-topic security configuration options for specific domains. For full details regarding the content of
the governance document, see the OMG DDS Security specification section 9.4.1.2.

Global Governance Model

It’s worth noting that the DDS Security Model expects the governance document to be globally shared by all participants
making use of the relevant domains described within the governance document. Even if this is not the case, the local
participant will verify incoming authentication and access control requests as if the remote participant shared the same
governance document and accept or reject the requests accordingly.

Key Governance Elements

Domain Id Set

A list of domain ids and/or domain id ranges of domains impacted by the current domain rule. The syntax is the same
as the domain id set found in the governance document.

The set is made up of <id> tags or <id_range> tags. An <id> tag simply contains the domain id that are part of the set.
An <id_range> tag can be used to add multiple ids at once. It must contain a <min> tag to say where the range starts
and may also have a <max> tag to say where the range ends. If the <max> tag is omitted then the set includes all valid
domain ids starting at <min>.

If the domain rule or permissions grant should to apply to all domains, use the following:

<domains>
<id_range><min>0</min></id_range>

</domains>

164 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

If there’s a need to be selective about what domains are chosen, here’s an annotated example:

<domains>
<id>2</id>
<id_range><min>4</min><max>6</max></id_range> <!-- 4, 5, 6 -->
<id_range><min>10</min></id_range> <!-- 10 and onward -->

</domains>

Governance Configuration Types

The following types and values are used in configuring both per-domain and per-topic security configuration options.
We summarize them here to simplify discussion of the configuration options where they’re used, found below.

Boolean

A boolean value indicating whether a configuration option is enabled or not. Recognized values are: TRUE/true/1 or
FALSE/false/0.

ProtectionKind

The method used to protect domain data (message signatures or message encryption) along with the ability to in-
clude origin authentication for either protection kind. Currently, OpenDDS doesn’t implement origin authenti-
cation. So while the “_WITH_ORIGIN_AUTHENTICATION” options are recognized, the underlying configura-
tion is unsupported. Recognized values are: {NONE, SIGN, ENCRYPT,SIGN_WITH_ORIGIN_AUTHENTICATION, or
ENCRYPT_WITH_ORIGIN_AUTHENTICATION}

BasicProtectionKind

The method used to protect domain data (message signatures or message encryption). Recognized values are: {NONE,
SIGN, or ENCRYPT}

FnmatchExpression

A wildcard-capable string used to match topic names. Recognized values will conform to POSIX fnmatch() function
as specified in POSIX 1003.2-1992, Section B.6.

Domain Rule Configuration Options

The following XML elements are used to configure domain participant behaviors.

Ele-
ment

Type Description

<allow_unauthenticated_participants>BooleanA boolean value which determines whether to allow unauthenticated participants for the current
domain rule

<enable_join_access_control>BooleanA boolean value which determines whether to enforce domain access controls for authenticated
participants

<dis-
cov-
ery_protection_kind>

Pro-
tec-
tionKind

The discovery protection element specifies the protection kind used for the built-in DataWriter(s)
and DataReader(s) used for secure endpoint discovery messages

<liveli-
ness_protection_kind>

Pro-
tec-
tionKind

The liveliness protection element specifies the protection kind used for the built-in DataWriter
and DataReader used for secure liveliness messages

<rtps_protection_kind>Pro-
tec-
tionKind

Indicate the desired level of protection for the whole RTPS message. Very little RTPS data exists
outside the “metadata protection” envelope (see topic rule configuration options), and so for most
use cases topic-level “data protection” or “metadata protection” can be combined with discovery
protection and/or liveliness protection in order to secure domain data adequately. One item that is
not secured by “metadata protection” is the timestamp, since RTPS uses a separate InfoTimestamp
submessage for this. The timestamp can be secured by using <rtps_protection_kind>

1.14. DDS Security 165

OpenDDS, Release 3.24.0

Table

Topic Rule Configuration Options

The following XML elements are used to configure topic endpoint behaviors:

<topic_expression> : FnmatchExpression

A wildcard-capable string used to match topic names. See description above. A “default” rule to catch all previously
unmatched topics can be made with: <topic_expression>*</topic_expression>

<enable_discovery_protection> : Boolean

Enables the use of secure discovery protections for matching user topic announcements.

<enable_read_access_control> : Boolean

Enables the use of access control protections for matching user topic DataReaders.

<enable_write_access_control> : Boolean

Enables the use of access control protections for matching user topic DataWriters.

<metadata_protection_kind> : ProtectionKind

Specifies the protection kind used for the RTPS SubMessages sent by any DataWriter and DataReader whose associated
Topic name matches the rule’s topic expression.

<data_protection_kind> : BasicProtectionKind

Specifies the basic protection kind used for the RTPS SerializedPayload SubMessage element sent by any DataWriter
whose associated Topic name matches the rule’s topic expression.

Governance XML Example

<?xml version="1.0" encoding="utf-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation=
→˓"http://www.omg.org/spec/DDS- Security/20170801/omg_shared_ca_domain_governance.xsd">
<domain_access_rules>
<domain_rule>
<domains>
<id>0</id>
<id_range>
<min>10</min>
<max>20</max>

</id_range>
</domains>

<allow_unauthenticated_participants>FALSE</allow_unauthenticated_participants>
<enable_join_access_control>TRUE</enable_join_access_control>
<rtps_protection_kind>SIGN</rtps_protection_kind>
<discovery_protection_kind>ENCRYPT</discovery_protection_kind>
<liveliness_protection_kind>SIGN</liveliness_protection_kind>
<topic_access_rules>
<topic_rule>
<topic_expression>Square*</topic_expression>
<enable_discovery_protection>TRUE</enable_discovery_protection>
<enable_read_access_control>TRUE</enable_read_access_control>

(continues on next page)

166 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
<topic_rule>
<topic_expression>Circle</topic_expression>
<enable_discovery_protection>TRUE</enable_discovery_protection>
<enable_read_access_control>FALSE</enable_read_access_control>
<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
<topic_rule>
<topic_expression>Triangle</topic_expression>
<enable_discovery_protection>FALSE</enable_discovery_protection>
<enable_read_access_control>FALSE</enable_read_access_control>
<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>NONE</metadata_protection_kind>
<data_protection_kind>NONE</data_protection_kind>

</topic_rule>
<topic_rule>
<topic_expression>*</topic_expression>
<enable_discovery_protection>TRUE</enable_discovery_protection>
<enable_read_access_control>TRUE</enable_read_access_control>
<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
</topic_access_rules>

</domain_rule>
</domain_access_rules>

</dds>

1.14.7 Participant Permissions Document

The signed permissions document is used by the DDS Security built-in access control plugin in order to determine
participant permissions to join domains and to create endpoints for reading, writing, and relaying domain data. For full
details regarding the content of the permissions document, see the OMG DDS Security specification section 9.4.1.3.

Key Permissions Elements

Grants

Each permissions file consists of one or more permissions grants. Each grant bestows access control privileges to a
single subject name for a limited validity period.

Subject Name

Each grant’s subject name is intended to match against a corresponding identity certificate’s “subject” field. In order
for permissions checks to successfully validate for both local and remote participants, the supplied identity certificate
subject name must match the subject name of one of the grants included in the permissions file.

Validity

1.14. DDS Security 167

OpenDDS, Release 3.24.0

Each grant’s validity section contains a start date and time (<not_before>) and an end date and time (<not_after>)
to indicate the period of time during which the grant is valid.

The format of the date and time, which is like ISO-8601, must take one of the following forms:

• YYYY-MM-DDThh:mm:ss

– Example: 2020-10-26T22:45:30

• YYYY-MM-DDThh:mm:ssZ

– Example:2020-10-26T22:45:30Z

• YYYY-MM-DDThh:mm:ss+hh:mm

– Example:2020-10-26T23:45:30+01:00

• YYYY-MM-DDThh:mm:ss-hh:mm

– Example:2020-10-26T16:45:30-06:00

All fields shown must include leading zeros to fill out their full width, as shown in the examples. YYYY-MM-DD is
the date and hh:mm:ss is the time in 24-hour format. The date and time must be able to be represented by the time_t
(C standard library) type of the system. The seconds field can also include a variable length fractional part, like 00.0
or 01.234, but it will be ignored because time_t represents a whole number of seconds. Examples #1 and #2 are both
interpreted to be using UTC. To put the date and time in a local time, a time zone offset can to be added that says how
far the local timezone is ahead of (using ‘+’ as in example #3) or behind (using ‘-’ as in example #4) UTC at that date
and time.

Allow / Deny Rules

Grants will contain one or more allow / deny rules to indicate which privileges are being applied. When verifying that
a particular operation is allowed by the supplied grant, rules are checked in the order they appear in the file. If the
domain, partition, and (when implemented) data tags for an applicable topic rule match the operation being verified,
the rule is applied (either allow or deny). Otherwise, the next rule is considered. Special Note: If a grant contains any
allow rule that matches a given domain (even one with no publish / subscribe / relay rules), the grant may be used to
join a domain with join access controls enabled.

Default Rule

The default rule is the rule applied if none of the grant’s allow rules or deny rules match the incoming operation to be
verified.

Domain Id Set

Every allow or deny rule must contain a set of domain ids to which it applies. The syntax is the same as the domain id
set found in the governance document. See Key Governance Elements for details.

Publish / Subscribe / Relay Rules (PSR rules)

Every allow or deny rule may optionally contain a list of publish, subscribe, or relay rules bestowing privileges to
publish, subscribe, or relay data (respectively). Each rule applies to a collection of topics in a set of partitions with
a particular set of data tags. As such, each rule must then meet these three conditions (topics, partitions, and (when
implemented) data tags) in order to apply to a given operation. These conditions are governed by their relevant subsec-
tion, but the exact meaning and default values will vary depending on the both the PSR type (publish, subscribe, relay)
as well as whether this is an allow rule or a deny rule. Each condition is summarized below. See the DDS Security
specification for full details. OpenDDS does not currently support relay-only behavior and consequently ignores allow
and deny relay rules for both local and remote entities. Additionally, OpenDDS does not currently support data tags,
and so the data tag condition applied is always the “default” behavior described below.

Topic List

168 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

The list of topics and/or topic expressions for which a rule applies. Topic names and expressions are matched using
POSIX fnmatch() rules and syntax. If the triggering operation matches any of the topics listed, the topic condition is
met. The topic section must always be present for a PSR rule, so there there is no default behavior.

Partition List

The partitions list contains the set of partition names for which the parent PSR rule applies. Similarly to topics, partition
names and expressions are matched using POSIX fnmatch() rules and syntax. For “allow” PSR rules, the DDS entity
of the associated triggering operation must be using a strict subset of the partitions listed for the rule to apply. When
no partition list is given for an “allow” PSR rule, the “empty string” partition is used as the default value. For “deny”
PSR rules, the rule will apply if the associated DDS entity is using any of the partitions listed. When no partition list
is given for a “deny” PSR rule, the wildcard expression “*” is used as the default value.

Data Tags List

Data tags are an optional part of the DDS Security specification and are not currently implemented by OpenDDS. If
they were implemented, the condition criteria for data tags would be similar to partitions. For “allow” PSR rules, the
DDS entity of the associated triggering operation must be using a strict subset of the data tags listed for the rule to
apply. When no data tag list is given for an “allow” PSR rule, the empty set of data tags is used as the default value.
For “deny” PSR rules, the rule will apply if the associated DDS entity is using any of the data tags listed. When no
data tag list is given for a “deny” PSR rule, the set of “all possible tags” is used as the default value.

Permissions XML Example

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation=
→˓"http://www.omg.org/spec/DDS-Security/20170801/omg_shared_ca_permissions.xsd">
<permissions>
<grant name="ShapesPermission">
<subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO Office, O=ACME␣

→˓Inc., L=Sunnyvale, ST=CA, C=US</subject_name>
<validity>
<not_before>2015-10-26T00:00:00</not_before>
<not_after>2020-10-26T22:45:30</not_after>

</validity>
<allow_rule>
<domains>
<id>0</id>

</domains>
</allow_rule>
<deny_rule>
<domains>
<id>0</id>

</domains>
<publish>
<topics>
<topic>Circle1</topic>

</topics>
</publish>
<publish>
<topics>
<topic>Square</topic>

</topics>
<partitions>

(continues on next page)

1.14. DDS Security 169

OpenDDS, Release 3.24.0

(continued from previous page)

<partition>A_partition</partition>
</partitions>

</publish>
<subscribe>
<topics>
<topic>Square1</topic>

</topics>
</subscribe>
<subscribe>
<topics>
<topic>Tr*</topic>

</topics>
<partitions>
<partition>P1*</partition>

</partitions>
</subscribe>

</deny_rule>
<default>DENY</default>

</grant>
</permissions>

</dds>

1.14.8 DDS Security Implementation Status

The following DDS Security features are not implemented in OpenDDS.

1. Optional parts of the DDS Security v1.1 specification

• Ability to write a custom plugin in C or in Java (C++ is supported)

• Logging Plugin support

• Built-in Logging Plugin

• Data Tagging

2. Use of RTPS KeyHash for encrypted messages

• OpenDDS doesn’t use KeyHash, so it meets the spec requirements of not leaking secured data through
KeyHash

3. Immutability of Publisher’s Partition QoS, see OMG Issue DDSSEC12-49 (Member Link)

4. Use of multiple plugin configurations (with different Domain Participants)

5. CRL (RFC 5280) and OCSP (RFC 2560) support

6. Certain plugin operations not used by built-in plugins may not be invoked by middleware

7. Origin Authentication

8. PKCS#11 for certificates, keys, passwords

9. Relay as a permissions “action” (Publish and Subscribe are supported)

10. Legacy matching behavior of permissions based on Partition QoS (9.4.1.3.2.3.1.4 in spec)

11. 128-bit AES keys (256-bit is supported)

12. Configuration of Built-In Crypto’s key reuse (within the DataWriter) and blocks-per-session

170 Chapter 1. Developer’s Guide

https://issues.omg.org/issues/DDSSEC12-49
https://issues.omg.org/browse/DDSSEC12-49
https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc2560.html

OpenDDS, Release 3.24.0

13. Signing (without encrypting) at the payload level, see OMG Issue DDSSEC12-59 (Member Link)

1.15 Internet-Enabled RTPS

1.15.1 Overview

Like any specification, standard, or system, RTPS was designed with certain assumptions. Two of these assumptions
severely limit the ability to use RTPS in modern network environments. First, RTPS, or more specifically, SPDP uses
multicast for discovery. Multicast is not supported on the public Internet which precludes the use of RTPS for Internet
of Things (IoT) applications and Industrial Internet of Things (IIoT) applications. Second, SPDP and SEDP advertise
locators (IP and port pairs) for endpoints (DDS readers and writer). If the participant is behind a firewall that performs
network address translation, then the locators advertised by the participant are useless to participants on the public side
of the firewall.

This section describes different tools and techniques for getting around these limitations. First, we introduce the Rtp-
sRelay as a service for forwarding RTPS messages according to application-defined groups. The RtpsRelay can be
used to connect participants that are deployed in environments that don’t support multicast and whose packets are sub-
ject to NAT. Second, we introduce Interactive Connection Establishment (ICE) for RTPS. Adding ICE to RTPS is an
optimization that allows participants that are behind firewalls that perform NAT to exchange messages directly. ICE
requires a back channel for distributing discovery information and is typically used with the RtpsRelay.

1.15.2 The RtpsRelay

The RtpsRelay is designed to allow participants to exchange RTPS datagrams when separated by a firewall that per-
forms network address translation (NAT) and/or a network that does not support multicast like the public Internet. The
RtpsRelay supports both IPv4 and IPv6. A participant that uses an RtpsRelay Instance is a client of that instance. Each
RtpsRelay instance contains two participants: the Application Participant and the Relay Participant. The Application
Participant runs in the domain of the application. The RtpsRelay reads the built-in topics to discover Participants,
DataReaders, and DataWriters. It then shares this information with other RtpsRelay instances using the Relay Par-
ticipant. Each RtpsRelay instance maintains a map of associated readers and writers. When a client sends an RTPS
datagram to its RtpsRelay instance, the RtpsRelay instance uses the association table to forward the datagram to other
clients and other RtpsRelay instances so that they can deliver it to their clients. Clients send RTPS datagrams via
unicast which is generally supported and compatible with NAT. The RtpsRelay can be used in lieu of or in addition to
conventional RTPS discovery.

1.15. Internet-Enabled RTPS 171

https://issues.omg.org/issues/DDSSEC12-59
https://issues.omg.org/browse/DDSSEC12-59

OpenDDS, Release 3.24.0

The preceding diagram illustrates how the RtpsRelay can be used to connect participants that are behind firewalls that
may be performing NAT. First, a Participant sends an RTPS datagram to its associated RtpsRelay (1). This datagram is
intercepted by the firewall, the source address and port are replaced by the external IP address and port of the firewall,
and then the datagram is sent to the RtpsRelay (2). The relationship between the source address and external IP address
and port selected by the firewall is called a NAT binding. The RtpsRelay instance forwards the datagram to other
RtpsRelay instances (3). The RtpsRelays then forward the datagram to all of the destination participants (4). Firewalls
on the path to the participants intercept the packet and replace the destination address (which is the external IP and port
of the firewall) with the address of the Participant according to a previously created NAT binding (5).

The RTPS implementation in OpenDDS uses a port for SPDP, a port for SEDP, and a port for conventional RTPS
messages. The relay mirrors this idea and exposes three ports to handle each type of traffic.

To keep NAT bindings alive, clients send STUN binding requests and indications periodically to the RtspRelay ports.
Participants using ICE may use these ports as a STUN server for determining a server reflexive address. The timing
parameters for the periodic messages are controlled via the ICE configuration variables for server reflexive addresses.

Using the RtpsRelay

Support for the RtpsRelay is activated via configuration. See Table 7-5 RTPS Discovery Configuration Options and
Table 7-17 RTPS_UDP Configuration Options. As an example:

[common]
DCPSGlobalTransportConfig=$file

[domain/4]
DiscoveryConfig=rtps

[rtps_discovery/rtps]
SpdpRtpsRelayAddress=1.2.3.4:4444
SedpRtpsRelayAddress=1.2.3.4:4445

(continues on next page)

172 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

(continued from previous page)

UseRtpsRelay=1

[transport/the_rtps_transport]
transport_type=rtps_udp
DataRtpsRelayAddress=1.2.3.4:4446
UseRtpsRelay=1

Each participant should use a single RtpsRelay instance due to the way NAT bindings work. Most firewalls will only
forward packets received from the destination address that was originally used to create the NAT binding. That is, if
participant A is interacting with relay A and participant B is interacting with relay B, then a message from A to B
must go from A to relay A, to relay B, and finally to B. Relay A cannot send directly to B since that packet will not be
accepted by the firewall.

Usage

The RtpsRelay itself is an OpenDDS application. The source code is located in tools/rtpsrelay. Security must be
enabled to build the RtpsRelay. See Building OpenDDS with Security Enabled. Each RtpsRelay process has a set of
ports for exchanging RTPS messages with the participants called the “vertical” ports and a set of ports for exchanging
RTPS messages with other relays called the “horizontal” ports.

The RtpsRelay contains an embedded webserver called the meta discovery server. The webserver has the following
endpoints:

• /config

Responds with configured content and content type. See -MetaDiscovery options below. Potential client partic-
ipants can download the necessary configuration from this endpoint.

• /healthcheck

Responds with HTTP 200 (OK) or 503 (Service Unavailable) if thread monitoring is enabled and the RtpsRelay
is not admitting new client participants. Load balancers can use this endpoint to route new client participants to
an available RtpsRelay instance.

The command-line options for the RtpsRelay:

• -Id STRING

The Id option is mandatory and is a unique id associated with all topics published by the relay.

• -HorizontalAddress ADDRESS

Determines the base network address used for receiving RTPS message from other relays. By default, the relay
listens on the first IP network and uses port 11444 for SPDP messages, 11445 for SEDP messages, and 11446
for data messages.

• -VerticalAddress ADDRESS

Determines the base network address used for receiving RTPS messages from the participants. By default, the
relay listens on 0.0.0.0:4444 for SPDP messages, 0.0.0.0:4445 for SEDP messages, and 0.0.0.0.4446 for data
messages.

• -RelayDomain DOMAIN

Sets the DDS domain used by the Relay Participant. The default is 0.

• -ApplicationDomain DOMAIN

Sets the DDS domain used by the Application Participant. The default is 1.

1.15. Internet-Enabled RTPS 173

OpenDDS, Release 3.24.0

• -UserData STRING

Set the contents of the Application Participant’s UserData QoS policy to the provided string.

• -BufferSize INTEGER

Send of send and receive buffers in bytes

• -Lifespan SECONDS

RtpsRelay will only forward a datagram to a client if it has received a datagram from the client in this amount of
time. Otherwise, participant is marked as not alive. The default is 60 seconds.

• -InactivePeriod SECONDS

RtpsRelay will mark participant as not active if does not receive a datagram from the client in this amount of
time. The default is 60 seconds.

• -AllowEmptyPartitions 0|1

Allow client participants with no partitions. Defaults to 1 (true).

• -IdentityCA PATH

-PermissionsCA PATH

-IdentityCertificate PATH

-IdentityKey PATH

-Governance PATH

-Permissions PATH

Provide paths to the DDS Security documents. Requires a security-enabled build.

• -RestartDetection 0|1

Setting RestartDetction to 1 causes the relay to track clients by the first 6 bytes of their RTPS GUID and source
IP address and clean up older sessions with the same key. The default is 0 (false).

• -LogWarnings0|1

-LogDiscovery0|1

-LogActivity0|1

Enable/disable logging of the various event types.

• -LogRelayStatistics SECONDS

-LogHandlerStatistics SECONDS

-LogParticipantStatistics SECONDS

Write statistics for the various event types to the log at the given interval, defaults to 0 (disabled).

• -PublishRelayStatistics SECONDS

-PublishHandlerStatistics SECONDS

-PublishParticipantStatistics SECONDS

Configure the relay to publish usage statistics on DDS topics at the given interval, defaults to 0 (disabled).

• -LogThreadStatus 0|1

Log the status of the threads in the RtpsRelay, defaults to 0 (disabled).

174 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

• -ThreadStatusSafetyFactor INTEGER

Restart if thread monitoring is enabled and a thread has not checked in for this many reporting intervals, default
3.

• -UtilizationLimit DECIMAL

If thread monitoring is enabled, the RtpsRelay will not accept to new client participants if the CPU utilization of
any thread is above this limit, default .95.

• -PublishRelayStatus SECONDS

-PublishRelayStatusLiveliness SECONDS

Setting PublishRelayStatus to a positive integer causes the relay to publish its status at that interval. Setting
PublishRelayStatusLiveliness to a positive integer causes the relay to set the liveliness QoS on the relay status
topic.

• -MetaDiscoveryAddress ADDRESS

Listening address for the meta discovery server, default 0.0.0.0:8080.

• -MetaDiscoveryContentType CONTENT-TYPE

The HTTP content type to report for the meta discovery config endpoint, default application/json.

• -MetaDiscoveryContentPath PATH

-MetaDiscoveryContent CONTENT

The content returned by the meta discovery config endpoint, default {}. If a path is specified, the content of the
file will be used.

• -MaxAddrSetSize INTEGER

The maximum number addresses that the RtpsRelay will maintain for a client participant, defaults to 0 (infinite).

• -RejectedAddressDuration SECONDS

Amount of time to reject messages from client participants that show suspicious behavior, e.g., those that send
messages from the RtpsRelay back to the RtpsRelay. The default is 0 (disabled).

Deployment Considerations

Running an RtpsRelay relay cluster with RTPS in the cloud leads to a bootstrapping problem since multicast is not
supported in the cloud. One option is to not use RTPS for discovery. Another option is to run a single well-known relay
that allows the other relays to discover each other. A third option is to use a program translates multicast to unicast.

RTPS uses UDP which typically cannot be load balanced effectively due to the way NAT bindings work. Consequently,
each RtpsRelay server must have a public IP address. Load balancing can be achieved by having the participants choose
a relay according to a load balancing policy. To illustrate, each relay could also run an HTTP server which does nothing
but serve the public IP address of the relay. These simple web servers would be exposed via a centralized load balancer.
A participant, then, could access the HTTP load balancer to select a relay.

1.15. Internet-Enabled RTPS 175

OpenDDS, Release 3.24.0

1.15.3 Interactive Connectivity Establishment (ICE) for RTPS

Interactive Connectivity Establishment (ICE) is protocol for establishing connectivity between a pair of hosts that are
separated by at least one firewall that performs network address translation. ICE can be thought of as an optimization
for situations that require an RtpsRelay. The success of ICE depends on the firewall(s) that separate the hosts.

The ICE protocol has three steps. First, a host determines its public IP address by sending a STUN binding request
to a public STUN server. The STUN server sends a binding success response that contains the source address of the
request. If the host has a public IP address, then the address returned by STUN will match the IP address of the host.
Otherwise, the address will be the public address of the outermost firewall. Second, the hosts generate and exchange
candidates (which includes the public IP address determined in the first step) using a side channel. A candidate is an
IP and port that responds to STUN messages and sends datagrams. Third, the hosts send STUN binding requests to the
candidates in an attempt to generate the necessary NAT bindings and establish connectivity.

For OpenDDS, ICE can be used to potentially establish connectivity between SPDP endpoints, SEDP endpoints, and
ordinary RTPS endpoints. SPDP is used as the side channel for SEDP and SEDP is used as the side channel for the
ordinary RTPS endpoints. To this, we added two parameters to the RTPS protocol for sending general ICE informa-
tion and ICE candidates and added the ability to execute the ICE protocol and process STUN messages to the RTPS
transports.

ICE is defined in IETF RFC 8445. ICE utilizes the STUN protocol that is defined in IETF RFC 5389. The ICE
implementation in OpenDDS does not use TURN servers.

ICE is enabled through configuration. The minimum configuration involves setting the UseIce flag and providing
addresses for the STUN servers. See Table 7-5 RTPS Discovery Configuration Options and Table 7-17 RTPS_UDP
Configuration Options for details.

[common]
DCPSGlobalTransportConfig=$file
DCPSDefaultDiscovery=DEFAULT_RTPS

[transport/the_rtps_transport]
transport_type=rtps_udp
DataRtpsRelayAddress=5.6.7.8:4446
UseIce=1
DataStunServerAddress=1.2.3.4:3478

[domain/42]
DiscoveryConfig=DiscoveryConfig1
[rtps_discovery/DiscoveryConfig1]
SpdpRtpsRelayAddress=5.6.7.8:4444
SedpRtpsRelayAddress=5.6.7.8:4445
UseIce=1
SedpStunServerAddress=1.2.3.4:3478

1.15.4 Security Considerations

The purpose of this section is to inform users about potential security issues when using OpenDDS. Users of OpenDDS
are encouraged to perform threat modeling, security reviews, assessments, testing, etc. to ensure that their applications
meet their security objectives.

176 Chapter 1. Developer’s Guide

https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc5389

OpenDDS, Release 3.24.0

Use DDS Security

Most applications have common objectives with respect to data security:

• Authentication - The identity of every process that participates in the DDS domain can be established.

• Authorization - Only authorized writers of a topic may generate samples for a topic and only authorized readers
may consume samples for a topic.

• Integrity - The content of a sample cannot be altered without detection.

• Privacy - The content of a sample cannot be read by an unauthorized third party.

If an application is subject to any of these security objectives, then it should use the DDS Security features described
in DDS Security. Using a non-secure discovery mechanism or a non-secure transport leaves the application exposed to
data security breaches.

Understand the Weaknesses of (Secure) RTPS Discovery

Secure RTPS Discovery has a behavior that can be exploited to launch a denial of service attack (see https://www.
cisa.gov/news-events/ics-advisories/icsa-21-315-02). Basically, an attacker can send a fake SPDP message to a secure
participant which will cause it to begin authentication with a non-existent participant. The authentication messages are
repeated resulting in amplification. An attacker could manipulate a group of secure participants to launch a denial of
service attack against a specific host or group of hosts. RTPS (without security) has the same vulnerability except that
messages come from the other builtin endpoints. For this reason, consider the mitigation features below before making
an OpenDDS participant publicly accessible.

The weakness in RTPS Discovery can be mitigated but currently does not have a solution. OpenDDS includes the
following features for mitigation:

• Compare the source IP of the SPDP message to the locators. For most applications, the locators advertised by
SPDP should match the source IP of the SPDP message.

– See CheckSourceIp in Table 7-5 RTPS Discovery Configuration Options

• Use the participant lease time from secure discovery and bound it otherwise. By default, OpenDDS will attempt
authentication for the participant lease duration specified in the SPDP message. However, this data can’t be
trusted so a smaller maximum lease time can be specified to force authentication or discovery to terminate before
the lease time.

– See MaxAuthTime in Table 7-5 RTPS Discovery Configuration Options

• Limit the number of outstanding secure discoveries. The number of discovered but not-yet-authenticated partic-
ipants is capped when using secure discovery.

– See MaxParticipantsInAuthentication in Table 7-5 RTPS Discovery Configuration Options

Run Participants in a Secure Network

One approach to a secure application without DDS Security is to secure it at the network layer instead of the application
layer. A physically secure network satisfies this by construction. Another approach is to use a virtual private network
(VPN) or a secure overlay. These approaches have a simple security model when compared to DDS Security and are
not interoperable.

1.15. Internet-Enabled RTPS 177

https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02
https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02

OpenDDS, Release 3.24.0

1.16 XTypes

1.16.1 Overview

The DDS specification defines a way to build distributed applications using a data-centric publish and subscribe model.
In this model, publishing and subscribing applications communicate via Topics and each Topic has a data type. An
assumption built into this model is that all applications agree on data type definitions for each Topic that they use. This
assumption is not practical as systems must be able to evolve while remaining compatible and interoperable.

The DDS XTypes (Extensible and Dynamic Topic Types) specification loosens the requirement on applications to have
a common notion of data types. Using XTypes, the application developer adds IDL annotations that indicate where the
types may vary between publisher and subscriber and how those variations are handled by the middleware.

OpenDDS implements the XTypes specification version 1.3 at the Basic Conformance level, with a partial implemen-
tation of the Dynamic Language Binding. Some features described by the specification are not yet implemented in
OpenDDS - those are noted in Unimplemented Features. This includes IDL annotations that are not yet implemented
(Annotations). See Differences from the specification for situations where the implementation of XTypes in OpenDDS
departs from or infers something about the specification. Specification issues have been raised for these situations.

1.16.2 Features

Extensibility

There are 3 kinds of extensibility for types:

Appendable
Appendable denotes a constructed type which may have additional members added onto or removed from the
end, but not both at the same time. Appendable is the default extensibility. A type can be explicitly marked as
appendable with the @appendable annotation.

Mutable
Mutable denotes a constructed type that allows for members to be added, removed, and reordered so long as
the keys and the required members of the sender and receiver remain. Mutable extensibility is accomplished by
assigning a stable identifier to each member. A type can be marked as mutable with the @mutable annotation.

Final
Final denotes a constructed type that can not add, remove, or reorder members. This can be considered a non-
extensible constructed type, with behavior similar to that of a type created before XTypes. A type can be marked
as final with the @final annotation.

The default extensibility can be changed with the –default-extensibility opendds_idl option.

Structs, unions, and enums are the only types which can use any of the extensibilities.

The default extensibility for enums is “appendable” and is not governed by --default-extensibility. TypeObjects
for received enums that do not set any flags are treated as a wildcard.

178 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Assignability

Assignability describes the ability of values of one type to be coerced to values of a possibility different type.

Assignability between the type of a writer and reader is checked as part of discovery. If the types are assignable but
not identical, then the “try construct” mechanism will be used to coerce values of the writer’s type to values of the
reader’s type.

In order for two constructed types to be assignable they must

• Have the same extensibility.

• Have the same set of keys.

Each member of a constructed type has an identifier. This identifier may be assigned automatically or explicitly.

Union assignability depends on two dimensions. First, unions are only assignable if their discriminators are assignable.
Second, for any branch label or default that exists in both unions, the members selected by that branch label must be
assignable.

Interoperability with non-XTypes Implementations

Communication with a non-XTypes DDS (either an older OpenDDS or another DDS implementation which has RTPS
but not XTypes 1.2+) requires compatible IDL types and the use of RTPS Discovery. Compatible IDL types means
that the types are structurally equivalent and serialize to the same bytes using XCDR version 1.

Additionally, the XTypes-enabled participant needs to be set up as follows:

• Types cannot use mutable extensibility

• Data Writers must have their Data Representation QoS policy set to DDS::XCDR_DATA_REPRESENTATION

• Data Readers must include DDS::XCDR_DATA_REPRESENTATION in the list of data representations in their Data
Representation QoS (true by default)

Data Representation shows how to change the data representation. XCDR1 Support details XCDR1 support.

Dynamic Language Binding

Before the XTypes specification, all DDS applications worked by mapping the topic’s data type directly into the pro-
gramming language and having the data handling APIs such as read, write, and take, all defined in terms of that type. As
an example, topic type A (an IDL structure) caused code generation of IDL interfaces ADataWriter and ADataReader
while topic type B generated IDL interfaces BDataWriter and BDataReader. If an application attempted to pass an
object of type A to the BDataWriter, a compile-time error would occur (at least for statically typed languages includ-
ing C++ and Java). Advantages to this design include efficiency and static type safety, however, the code generation
required by this approach is not desirable for every DDS application.

The XTypes Dynamic Language Binding defines a generic data container DynamicData and the interfaces Dynam-
icDataWriter and DynamicDataReader. Applications can create instances of DynamicDataWriter and Dynamic-
DataReader that work with various topics in the domain without needing to incorporate the generated code for those
topics’ data types. The system is still type safe but the type checks occur at runtime instead of at compile time. The
Dynamic Language Binding is described in detail in Dynamic Language Binding.

1.16. XTypes 179

OpenDDS, Release 3.24.0

1.16.3 Examples and Explanation

Suppose you are in charge of deploying a set of weather stations that publish temperature, pressure, and humidity. The
following examples show how various features of XTypes may be applied to address changes in the schema published
by the weather station. Specifically, without XTypes, one would either need to create a new type with its own DataWrit-
ers/DataReaders or update all applications simultaneously. With proper planning and XTypes, one can simply modify
the existing type (within limits) and writers and readers using earlier versions of the topic type will remain compatible
with each other and be compatible with writers and readers using new versions of the topic type.

Mutable Extensibility

The type published by the weather stations can be made extensible with the @mutable annotation:

// Version 1
@topic
@mutable
struct StationData {
short temperature;
double pressure;
double humidity;

};

Suppose that some time in the future, a subset of the weather stations are upgraded to monitor wind speed and direction:

enum WindDir {N, NE, NW, S, SE, SW, W, E};
// Version 2
@topic
@mutable
struct StationData {
short temperature;
double pressure;
double humidity;
short wind_speed;
WindDir wind_direction;

};

When a Version 2 writer interacts with a Version 1 reader, the additional fields will be ignored by the reader. When a
Version 1 writer interacts with a Version 2 reader, the additional fields will be initialized to a “logical zero” value for
its type (empty string, FALSE boolean) - see Table 9 of the XTypes specification for details.

Assignability

The first and second versions of the StationData type are assignable meaning that it is possible to construct a version 2
value from a version 1 value and vice-versa. The assignability of non-constructed types (e.g., integers, enums, strings)
is based on the types being identical or identical up to parameterization, i.e., bounds of strings and sequences may
differ. The assignability of constructed types like structs and unions is based on finding corresponding members with
assignable types. Corresponding members are those that have the same id.

A type marked as @mutable allows for members to be added, removed, or reordered so long as member ids are preserved
through all of the mutations.

180 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Member IDs

Member ids are assigned using various annotations. A policy for a type can be set with either @autoid(SEQUENTIAL)
or @autoid(HASH):

// Version 3
@topic
@mutable
@autoid(SEQUENTIAL)
struct StationData {
short temperature;
double pressure;
double humidity;

};

// Version 4
@topic
@mutable
@autoid(HASH)
struct StationData {
short temperature;
double pressure;
double humidity;

};

SEQUENTIAL causes ids to be assigned based on the position in the type. HASH causes ids to be computed by hashing
the name of the member. If no @autoid annotation is specified, the policy is SEQUENTIAL.

Suppose that Version 3 was used in the initial deployment of the weather stations and the decision was made to switch
to @autoid(HASH) when adding the new fields for wind speed and direction. In this case, the ids of the pre-existing
members can be set with @id:

enum WindDir {N, NE, NW, S, SE, SW, W, E};

// Version 5
@topic
@mutable
@autoid(HASH)
struct StationData {

@id(0) short temperature;
@id(1) double pressure;
@id(2) double humidity;
short wind_speed;
WindDir wind_direction;

};

See the Member ID assignment for more details.

1.16. XTypes 181

OpenDDS, Release 3.24.0

Appendable Extensibility

Mutable extensibility requires a certain amount of overhead both in terms of processing and network traffic. A more
efficient but less flexible form of extensibility is appendable Appendable is limited in that members can only be added
to or removed from the end of the type. With appendable, the initial version of the weather station IDL would be:

// Version 6
@topic
@appendable
struct StationData {
short temperature;
double pressure;
double humidity;

};

And the subsequent addition of the wind speed and direction members would be:

enum WindDir {N, NE, NW, S, SE, SW, W, E};

// Version 7
@topic
@appendable
struct StationData {
short temperature;
double pressure;
double humidity;
short wind_speed;
WindDir wind_direction;

};

As with mutable, when a Version 7 Writer interacts with a Version 6 Reader, the additional fields will be ignored by
the reader. When a Version 6 Writer interacts with a Version 7 Reader, the additional fields will be initialized to default
values based on Table 9 of the XTypes specification.

Appendable is the default extensibility.

Final Extensibility

The third kind of extensibility is final. Annotating a type with @final means that it will not be compatible with
(assignable to/from) a type that is structurally different. The @final annotation can be used to define types for pre-
XTypes compatibility or in situations where the overhead of mutable or appendable is unacceptable.

Try Construct

From a reader’s perspective, there are three possible scenarios when attempting to initialize a member. First, the
member type is identical to the member type of the reader. This is the trivial case the value from the writer is copied to
the value for the reader. Second, the writer does not have the member. In this case, the value for the reader is initialized
to a default value based on Table 9 of the XTypes specification (this is the “logical zero” value for the type). Third, the
type offered by the writer is assignable but not identical to the type required by the reader. In this case, the reader must
try to construct its value from the corresponding value provided by the writer.

Suppose that the weather stations also publish a topic containing station information:

182 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

typedef string<8> StationID;
typedef string<256> StationName;

// Version 1
@topic
@mutable
struct StationInfo {

@try_construct(TRIM) StationID station_id;
StationName station_name;

};

Eventually, the pool of station IDs is exhausted so the IDL must be refined as follows:

typedef string<16> StationID;
typedef string<256> StationName;

// Version 2
@topic
@mutable
struct StationInfo {

@try_construct(TRIM) StationID station_id;
StationName station_name;

};

If a Version 2 writer interacts with a Version 1 reader, the station ID will be truncated to 8 characters. While perhaps
not ideal, it will still allow the systems to interoperate.

There are two other forms of try-construct behavior. Fields marked as @try_construct(USE_DEFAULT) will receive
a default value if value construction fails. In the previous example, this means the reader would receive an empty string
for the station ID if it exceeds 8 characters. Fields marked as @try_construct(DISCARD) cause the entire sample to
be discarded. In the previous example, the Version 1 reader will never see a sample from a Version 2 writer where the
original station ID contains more than 8 characters. @try_construct(DISCARD) is the default behavior.

1.16.4 Data Representation

Data representation is the way a data sample can be encoded for transmission. Writers can only encode samples using
one data representation, but readers can accept multiple data representations. Data representation can be XML, XCDR1,
XCDR2, or unaligned CDR.

XML
This isn’t currently supported and will be ignored.

The DataRepresentationId_t value is DDS::XML_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(XML).

XCDR1
This is the pre-XTypes standard CDR extended with XTypes features. Support is limited to non-XTypes features,
see XCDR1 Support for details.

The DataRepresentationId_t value is DDS::XCDR_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(XCDR1).

XCDR2
This is default for writers when using the RTPS-UDP transport and should be preferred in most cases. It is a
more robust and efficient version of XCDR1.

1.16. XTypes 183

OpenDDS, Release 3.24.0

The DataRepresentationId_t value is DDS::XCDR2_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(XCDR2).

Unaligned CDR
This is a OpenDDS-specific encoding that is the default for writers using only non-RTPS-UDP transports. It
can’t be used by a DataWriter using the RTPS-UDP transport.

The DataRepresentationId_t value is OpenDDS::DCPS::UNALIGNED_CDR_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(UNALIGNED_CDR).

Data representation is a QoS policy alongside the other QoS options. Its listed values represent allowed serialized
forms of the data sample. The DataWriter and DataReader need to have at least one matching data representation for
communication between them to be possible.

The default value of the DataRepresentationQosPolicy is an empty sequence. For RTPS-UDP this is interpreted
as XCDR2 for DataWriters and accepting XCDR1 and XCDR2 for DataReaders. For other transports it’s interpreted
as Unaligned CDR for DataWriters and accepting XCDR1, XCDR2, and Unaligned CDR for DataReaders. A writer or
reader without an explicitly-set DataRepresentationQosPolicy will therefore be able to communicate with another
reader or writer which is compatible with XCDR2. The example below shows a possible configuration for an XCDR1
DataWriter.

DDS::DataWriterQos qos;
pub->get_default_datawriter_qos(qos);
qos.representation.value.length(1);
qos.representation.value[0] = DDS::XCDR_DATA_REPRESENTATION;
DDS::DataWriter_var dw = pub->create_datawriter(topic, qos, 0, 0);

Note that the IDL constant used for XCDR1 is XCDR_DATA_REPRESENTATION (without the digit).

In addition to a DataWriter/DataReader QoS setting for data representation, each type defined in IDL can have its own
data representation specified via an annotation. This value restricts which data representations can be used for that
type. A DataWriter/DataReader must have at least one data representation in common with the type it uses.

The default value for an unspecified data representation annotation is to allow all forms of serialization.

The type’s set of allowed data representations can be specified by the user in IDL with the notation:
@OpenDDS::data_representation(XCDR2) where XCDR2 is replaced with the specific data representation.

1.16.5 Type Consistency Enforcement

TypeConsistencyEnforcementQosPolicy

The Type Consistency Enforcement QoS policy lets the application fine-tune details of how types may differ between
writers and readers. The policy only applies to data readers. This means that each reader can set its own policy for how
its type may vary from the types of the writers that it may match.

There are six members of the TypeConsistencyEnforcementQosPolicy struct defined by XTypes, but OpenDDS
only supports setting one of them: ignore_member_names. All other members should be kept at their default values.

ignore_member_names defaults to FALSE so member names (along with member IDs, see Member ID assignment) are
significant for type compatibility. Changing this to TRUE means that only member IDs are used for type compatibility.

184 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Type Compatibility

When a reader/writer match is happening, type consistency enforcement checks that the two types are compatible
according to the type objects if they are available. This check will not happen if OpenDDS has been configured not
to generate or use type objects or if the remote DDS doesn’t support type objects. The full type object compatibility
check is too detailed to reproduce here. It can be found in section 7.2.4 of the XTypes 1.3 specification. In general
though two topic types and their nested types are compatible if:

• Extensibilities of shared types match

• Extensibility rules haven’t been broken, for example:

– Changing a @final struct

– Adding a member in the middle of an @appendable struct

• Length bounds of strings and sequences are the same or greater

• Lengths of arrays are exactly the same

• The keys of the types match exactly

• Shared member IDs match when required, like when they are final or are being used as keys

If the type objects are compatible then the match goes ahead. If one or both type objects are not available, then
OpenDDS falls back to checking the names each entity’s TypeSupport was given. This is the name passed to the
register_type method of a TypeSupport object or if that string is empty then the name of the topic type in IDL.

An interesting side effect of these rules is when type objects are always available, then the topic type names passed to
register_type are only used within that process. This means they can be changed and remote readers and writers
will still match, assuming the new name is used consistently within the process and the types are still compatible.

1.16.6 IDL Annotations

Indicating Which Types Can Be Topic Types

@topic

Applies To: struct or union type declarations

The topic annotation marks a topic type for samples to be transmitted from a publisher or received by a subscriber. A
topic type may contain other topic and non-topic types. See Defining Data Types with IDL for more details.

@nested

Applies To: struct or union type declarations

The @nested annotation marks a type that will always be contained within another. This can be used to prevent a type
from being used as in a topic. One reason to do so is to reduce the amount of code generated for that type.

1.16. XTypes 185

OpenDDS, Release 3.24.0

@default_nested

Applies To: modules

The @default_nested(TRUE) or @default_nested(FALSE) sets the default nesting behavior for a module. Types
within a module marked with @default_nested(FALSE) can still set their own behavior with @nested.

Specifying allowed Data Representations

If there are @OpenDDS::data_representation annotations are on the topic type, then the representations are limited
to ones the specified in the annotations, otherwise all representations are allowed. Trying to create a reader or writer
with the disallowed representations will result in an error. See Data Representation for more information.

@OpenDDS::data_representation(XML)

Applies To: topic types

Limitations: XML is not currently supported

@OpenDDS::data_representation(XCDR1)

Applies To: topic types

Limitations: XCDR1 doesn’t support XTypes features See Data Representation for details

@OpenDDS::data_representation(XCDR2)

Applies To: topic types

XCDR2 is currently the recommended data representation for most cases.

@OpenDDS::data_representation(UNALIGNED_CDR)

Applies To: topic types

Limitations: OpenDDS specific, can’t be used with RTPS-UDP, and doesn’t support XTypes features See Data Repre-
sentation for details

Standard @data_representation

tao_idl doesn’t support bitset, which the standard @data_representation requires. Instead use
@OpenDDS::data_representation which is similar, but doesn’t support bitmask value chaining like
@data_representation(XCDR|XCDR2). The equivalent would require two separate annotations:

@OpenDDS::data_representation(XCDR1)
@OpenDDS::data_representation(XCDR2)

186 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Determining Extensibility

The extensibility annotations can explicitly define the extensibility of a type. If no extensibility annotation is used,
then the type will have the default extensibility. This will be appendable unless the –default-extensibility opendds_idl
option is to override the default.

@mutable

Alias: @extensibility(MUTABLE)

Applies To: type declarations

This annotation indicates a type may have non-key or non-must-understand members removed. It may also have addi-
tional members added.

@appendable

Alias: @extensibility(APPENDABLE)

Applies To: type declarations

This annotation indicates a type may have additional members added or members at the end of the type removed.

Limitations: Appendable is not currently supported when XCDR1 is used as the data representation.

@final

Alias: @extensibility(FINAL)

Applies To: type declarations

This annotation marks a type that cannot be changed and still be compatible. Final is most similar to pre-XTypes.

Customizing XTypes per-member

Try Construct annotations dictate how members of one object should be converted from members of a different but
assignable object. If no try construct annotation is added, it will default to discard.

@try_construct(USE_DEFAULT)

Applies to: structure and union members, sequence and array elements

The use_default try construct annotation will set the member whose deserialization failed to a default value which is
determined by the XTypes specification. Sequences will be of length 0, with the same type as the original sequence.
Primitives will be set equal to 0. Strings will be replaced with the empty string. Arrays will be of the same length but
have each element set to the default value. Enums will be set to the first enumerator defined.

1.16. XTypes 187

OpenDDS, Release 3.24.0

@try_construct(TRIM)

Applies to: structure and union members, sequence and array elements

The trim try construct annotation will, if possible, shorten a received value to one fitting the receiver’s bound. As such,
trim only makes logical sense on bounded strings and bounded sequences.

@try_construct(DISCARD)

Applies to: structure and union members, sequence and array elements

The discard try construct annotation will “throw away” the sample if an element fails to deserialize.

Member ID assignment

If no explicit id annotation is used, then member IDs will automatically be assigned sequentially.

@id(value)

Applies to: structure and union members

value is an unsigned 32-bit integer which assigns that member’s ID.

@autoid(value)

Applies to: module declarations, structure declarations, union declarations

The autoid annotation can take two values, HASH or SEQUENTIAL. SEQUENTIAL states that the identifier shall be com-
puted by incrementing the preceding one. HASH states that the identifier should be calculated with a hashing algorithm
- the input to this hash is the member’s name. HASH is the default value of @autoid.

@hashid(value)

Applies to: structure and union members

The @hashid sets the identifier to the hash of the value parameter, if one is specified. If the value parameter is
omitted or is the empty string, the member’s name is used as if it was the value.

Determining the Key Fields of a Type

@key

Applies to: structure members, union discriminator

The @key annotation marks a member used to determine the Instances of a topic type. See Keys for more details on
the general concept of a Key. For XTypes specifically, two types can only be compatible if each contains the members
that are keys within the other.

188 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

1.16.7 Dynamic Language Binding

For an overview of the Dynamic Language Binding, see Dynamic Language Binding. This section describes the features
of the Dynamic Language Binding that OpenDDS supports.

There are two main usage patterns supported:

• Applications can receive DynamicData from a Recorder object (Recorder and Replayer)

• Applications can use XTypes DynamicDataWriter and/or DynamicDataReader (DynamicDataWriters and Dy-
namicDataReaders)

To use DynamicDataWriter and/or DynamicDataReader for a given topic, the data type definition for that topic must
be available to the local DomainParticipant. There are a few ways this can be achieved, see Obtaining DynamicType
and Registering TypeSupport for details.

Representing Types with TypeObject and DynamicType

In XTypes, the types of the peers may not be identical, as in the case of appendable or mutable extensibility. In order
for a peer to be aware of its remote peer’s type, there must be a way for the remote peer to communicate its type.
TypeObject is an alternative to IDL for representing types, and one of the purposes of TypeObject is to communicate
the peers’ types.

There are two classes of TypeObject: MinimalTypeObject and CompleteTypeObject. A MinimalTypeObject object
contains minimal information about the type that is sufficient for a peer to perform type compatibility checking. How-
ever, MinimalTypeObject may not contain all information about the type as represented in the corresponding user IDL
file. In cases where the complete information about the type is required, CompleteTypeObject should be used. When
XTypes is enabled, peers communicate their TypeObject information during the discovery process automatically. In-
ternally, the local and received TypeObjects are stored in a TypeLookupService object, which is shared between the
entities in the same DomainParticipant.

In the Dynamic Language Binding, each type is represented using a DynamicType object, which has a TypeDescriptor
object that describes all the information needed to correctly process the type. Likewise, each member in a type is
represented using a DynamicTypeMember object, which has a MemberDescriptor object that describes any information
needed to correctly process the type member. DynamicType is converted from the corresponding CompleteTypeObject
internally by the system.

Enabling Use of CompleteTypeObjects

To enable use of CompleteTypeObject s needed for the dynamic binding, they must be generated and OpenDDS
must be configured to use them. To generate them, -Gxtypes-complete must be passed to opendds_idl (opendds_idl
Command Line Options). For MPC, this can be done by adding this to the opendds_idl arguments for idl files in the
project, like this:

TypeSupport_Files {
dcps_ts_flags += -Gxtypes-complete
Messenger.idl

}

To do the same for CMake:

OPENDDS_TARGET_SOURCES(target
Messenger.idl
OPENDDS_IDL_OPTIONS -Gxtypes-complete

)

1.16. XTypes 189

OpenDDS, Release 3.24.0

Once set up to be generated, OpenDDS has to be configured to send and receive the CompleteTypeObject s. This
can be done by setting the UseXTypes RTPS discovery configuration option (Configuring for DDSI-RTPS Discovery)
or programmatically using the OpenDDS::RTPS::RtpsDiscovery::use_xtypes() setter methods.

Interpreting Data Samples with DynamicData

Together with DynamicType, DynamicData allows users to interpret a received data sample and read individual fields
from it. Each DynamicData object is associated with a type, represented by a DynamicType object, and the data
corresponding to an instance of that type. Consider the following example:

@appendable
struct NestedStruct {
@id(1) short s_field;

};

@topic
@mutable
struct MyStruct {
@id(1) long l_field;
@id(2) unsigned short us_field;
@id(3) float f_field;
@id(4) NestedStruct nested_field;
@id(5) sequence<unsigned long> ul_seq_field;
@id(6) double d_field[10];

};

The samples for MyStruct are written by a normal, statically-typed DataWriter. The writer application needs to have
the IDL-generated code including the “complete” form of TypeObjects. Use a command-line option to opendds_idl
to enable CompleteTypeObjects since the default is to generate MinimalTypeObjects (opendds_idl Command Line
Options).

One way to obtain a DynamicData object representing a data sample received by the participant is using the Recorder
and RecorderListener classes (Recorder and Replayer). Recorder’s get_dynamic_data can be used to construct a Dy-
namicData object for each received sample from the writer. Internally, the CompleteTypeObjects received from dis-
covering that writer are converted to DynamicTypes and they are then used to construct the DynamicData objects.
Once a DynamicData object for a MyStruct sample is constructed, its members can be read as described in the fol-
lowing sections. Another way to obtain a DynamicData object is from a DynamicDataReader (Creating and Using a
DynamicDataWriter or DynamicDataReader).

Reading Basic Types

DynamicData provides methods for reading members whose types are basic such as integers, floating point numbers,
characters, boolean. See the XTypes specification for a complete list of basic types for which DynamicData provides
an interface. To call a correct method for reading a member, we need to know the type of the member as well as its id.
For our example, we first want to get the number of members that the sample contains. In these examples, the data
object is an instance of DynamicData.

DDS::UInt32 count = data.get_item_count();

Then, each member’s id can be read with get_member_id_at_index. The input for this function is the index of the
member in the sample, which can take a value from 0 to count - 1.

190 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

XTypes::MemberId id = data.get_member_id_at_index(0);

The MemberDescriptor for the corresponding member then can be obtained as follows.

XTypes::MemberDescriptor md;
DDS::ReturnCode_t ret = data.get_descriptor(md, id);

The returned MemberDescriptor allows us to know the type of the member. Suppose id is 1, meaning that the member
at index 0 is l_field, we now can get its value.

DDS::Int32 int32_value;
ret = data.get_int32_value(int32_value, id);

After the call, int32_value contains the value of the member l_field from the sample. The method returns
DDS::RETCODE_OK if successful.

Similarly, suppose we have already found out the types and ids of the members us_field and f_field, their values
can be read as follows.

DDS::UInt16 uint16_value;
ret = data.get_uint16_value(uint16_value, 2); // Get the value of us_field
DDS::Float32 float32_value;
ret = data.get_float32_value(float32_value, 3); // Get the value of f_field

Reading Collections of Basic Types

Besides a list of methods for getting values of members of basic types, DynamicData also defines methods for reading
sequence members. In particular, for each method that reads value from a basic type, there is a counterpart that reads a
sequence of the same basic type. For instance, get_int32_value reads the value from a member of type int32/long,
and get_int32_values reads the value from a member of type sequence<int32>. For the member ul_seq_field
in our example, its value can be read as follows.

DDS::UInt32Seq my_ul_seq;
ret = data.get_uint32_values(my_ul_seq, id); // id is 5

Because ul_seq_field is a sequence of unsigned 32-bit integers, the get_uint32_values method is used. Again,
the second argument is the id of the requested member, which is 5 for ul_seq_field. When successful, my_ul_seq
contains values of all elements of the member ul_seq_field in the sample.

To get the values of the array member d_field, we first need to create a separate DynamicData object for it, and then
read individual elements of the array using the new DynamicData object.

XTypes::DynamicData array_data;
DDS::ReturnCode_t ret = data.get_complex_value(array_data, id); // id is 6

const DDS::UInt32 num_items = array_data.get_item_count();
for (DDS::UInt32 i = 0; i < num_items; ++i) {
const XTypes::MemberId my_id = array_data.get_member_id_at_index(i);
DDS::Float64 my_double;
ret = array_data.get_float64_value(my_double, my_id);

}

In the example code above, get_item_count returns the number of elements of the array. Inside the for loop, the
index of each element is converted to an id within the array using get_member_id_at_index. Then, this id is used to

1.16. XTypes 191

OpenDDS, Release 3.24.0

read the element’s value into my_double. Note that the second parameter of the interfaces provided by DynamicData
must be the id of the requested member. In case of collection, elements are considered members of the collection.
However, the collection element doesn’t have a member id. And thus, we need to convert its index into an id before
calling a get_*_value (or get_*_values) method.

Reading Members of More Complex Types

For a more complex member such as a nested structure or union, the discussed DynamicData methods are not suit-
able. And thus, users first need to get a new DynamicData object that represents the sole data of the member with
get_complex_value. This new DynamicData object can then be used to get the values of the inner members of the
nested member. For example, a DynamicData object for the nested_field member of the MyStruct sample can be
obtained as follows.

XTypes::DynamicData nested_data;
DDS::ReturnCode_t ret = data.get_complex_value(nested_data, id); // id is 4

Recall that nested_field has type NestedStruct which has one member s_field with id 1. Now the value of s_field can
be read from nested_data using get_int16_value, since s_field has type short.

DDS::Int16 my_short;
ret = nested_data.get_int16_value(my_short, id); // id is 1

The get_complex_value method is also suitable for any other cases where the value of a member cannot be read directly
using the get_*_value or get_*_values methods. As an example, suppose we have a struct MyStruct2 defined as follows.

@appendable
struct MyStruct2 {
@id(1) sequence<NestedStruct> seq_field;

};

And suppose we already have a DynamicData object, called data, that represents a sample of MyStruct2. To read the
individual elements of seq_field, we first get a new DynamicData object for the seq_field member.

XTypes::DynamicData seq_data;
DDS::ReturnCode_t ret = data.get_complex_value(seq_data, id); // id is 1

Since the elements of seq_field are structures, for each of them we create another new DynamicData object to represent
it, which can be used to read its member.

const DDS::UInt32 num_elems = seq_data.get_item_count();
for (DDS::UInt32 i = 0; i < num_elems; ++i) {
const XTypes::MemberId my_id = seq_data.get_member_id_at_index(i);
XTypes::DynamicData elem_data; // Represent each element.
ret = seq_data.get_complex_value(elem_data, my_id);
DDS::Int16 my_short;
ret = elem_data.get_int16_value(my_short, 1);

}

192 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Populating Data Samples With DynamicData

DynamicData objects can be created by the application and populated with data so that they can be used as data samples
which are written to a DynamicDataWriter (Creating and Using a DynamicDataWriter or DynamicDataReader).

To create a DynamicData object, use the DynamicDataFactory API defined by the XTypes spec:

DDS::DynamicData_var dynamic =
DDS::DynamicDataFactory::get_instance()->create_data(type);

Like other data types defined by IDL interfaces (for example, the *TypeSupportImpl types), the “dynamic” object’s
lifetime is managed with a smart pointer - in this case DDS::DynamicData_var.

The “type” input parameter to create_data() is an object that implements the DDS::DynamicType interface. The
DynamicType representation of any type that’s supported as a topic data type is available from its corresponding Type-
Support object (Obtaining DynamicType and Registering TypeSupport) using the get_type() operation. Once the
application has access to that top-level type, the DynamicType interface can be used to obtain complete information
about the type including nested and referenced data types. See the file dds/DdsDynamicData.idl in OpenDDS for the
definition of the DynamicType and related interfaces.

Once the application has created the DynamicData object, it can be populated with data members of any type. The oper-
ations used for this include the DynamicData operations named “set_*” for the various data types. They are analogous
to the “get_*” operations that are described in Interpreting Data Samples with DynamicData. When populating the
DynamicData of complex data types, use get_complex_value() (Reading Members of More Complex Types) to navigate
from DynamicData representing containing types to DynamicData representing contained types.

Setting the value of a member of a DynamicData union using a set_* method implicitly 1) activates the branch
corresponding to the member and 2) sets the discriminator to a value corresponding to the active branch. After a
branch has been activated, the value of the discriminator can be changed using a set_* method. However, the new
value of the discriminator must correspond to the active branch. To set the discriminator, use DISCRIMINATOR_ID as
the member id for the call to set_* (see dds/DCPS/XTypes/TypeObject.h).

Unions start in an “empty” state meaning that no branch is active. At the point of serialization, the middleware will treat
an empty union according to the following procedure. The discriminator is assumed to have the default value for the
discriminator type and all members are assumed to have the default value for their type. There are three possibilities.
First, the discriminator selects a non-default branch in which case the serialized union will have the default discriminator
value and the default value for the implicitly selected member; Second, the discriminator selects a default branch in
which case the serialized union will have the default discriminator value and the default value for the default branch
member. Third, the discriminator selects no branch (and a default branch is not defined) in which case the serialized
union will have the default discriminator only.

DynamicDataWriters and DynamicDataReaders

DynamicDataWriters and DataReaders are designed to work like any other DataWriter and DataReader except that
their APIs are defined in terms of the DynamicData type instead of a type generated from IDL. Each DataWriter and
DataReader has an associated Topic and that Topic has a data type (represented by a TypeSupport object). Behavior
related to keys, QoS policies, discovery and built-in topics, DDS Security, and transport is not any different for a
DynamicDataWriter or DataReader. One exception is that in the current implementation, Content-Subscription features
(Content-Subscription Profile) are not supported for DynamicDataWriters and DataReaders.

1.16. XTypes 193

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DdsDynamicData.idl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/XTypes/TypeObject.h

OpenDDS, Release 3.24.0

Obtaining DynamicType and Registering TypeSupport

OpenDDS currently supports two usage patterns for obtaining a TypeSupport object that can be used with the Dynamic
Language Binding:

• Dynamically load a library that has the IDL-generated code

• Get the DynamicType of a peer DomainParticipant that has CompleteTypeObjects

The XTypes specification also describes how an application can construct a new type at runtime, but this is not yet
implemented in OpenDDS.

To use a shared library (*.dll on Windows, *.so on Linux, *.dylib on macOS, etc.) as a type support plug-in, an
application simply needs to load the library into its process. This can be done with the ACE cross-platform support
library that OpenDDS itself uses, or using a platform-specific function like LoadLibrary or dlopen. The application
code does not need to include any generated headers from this IDL. This makes the type support library a true plug-in,
meaning it can be loaded into an application that had no knowledge of it when that application was built.

Once the shared library is loaded, an internal singleton class in OpenDDS called Registered_Data_Types can be used
to obtain a reference to the TypeSupport object.

DDS::TypeSupport_var ts_static = Registered_Data_Types->lookup(0, "TypeName");

This TypeSupport object ts_static is not registered with the DomainParticipant and is not set up for the Dynamic
Language Binding. But, crucially, it does have the DynamicType object that we’ll need to set up a second TypeSupport
object which is registered with the DomainParticipant.

DDS::DynamicType_var type = ts_static->get_type();
DDS::DynamicTypeSupport_var ts_dynamic = new DynamicTypeSupport(type);
DDS::ReturnCode_t ret = ts_dynamic->register_type(participant, "");

Now the type support object ts_dynamic can be used in the usual DataWriter/DataReader setup sequence (creating a
Topic first, etc.) but the created DataWriters and DataReaders will be DynamicDataWriters and DynamicDataReaders
(Creating and Using a DynamicDataWriter or DynamicDataReader).

The other approach to obtaining TypeSupport objects for use with the Dynamic Language Binding is to have DDS dis-
covery’s built-in endpoints get TypeObjects from remote domain participants. To do this, use the get_dynamic_type
method on the singleton Service_Participant object.

DDS::DynamicType_var type; // NOTE: passed by reference below
DDS::ReturnCode_t ret = TheServiceParticipant->get_dynamic_type(type, participant, key);

The two input parameters to get_dynamic_type are the participant (an object reference to the DomainParticipant
that will be used to register our TypeSupport and create Topics, DataWriters, and/or DataReders) and the key which is
the DDS::BuiltinTopicKey_t that identifies the remote entity which has the data type that we’ll use. This key can
be obtained from the Built-In Publications topic (which identifies remote DataWriters) or the Built-In Subscriptions
topic (which identifies remote DataReaders). See Built-In Topics for details on using the Built-In Topics.

The type obtained from get_dynamic_type can be used to create and register a TypeSupport object.

DDS::DynamicTypeSupport_var ts_dynamic = new DynamicTypeSupport(type);
DDS::ReturnCode_t ret = ts_dynamic->register_type(participant, "");

194 Chapter 1. Developer’s Guide

OpenDDS, Release 3.24.0

Creating and Using a DynamicDataWriter or DynamicDataReader

Following the steps in Obtaining DynamicType and Registering TypeSupport, a DynamicTypeSupport object is regis-
tered with the domain participant. The type name used to register with the participant may be the default type name
(used when an empty string is passed to the register_type operation), or some other type name. If the default type
name was used, the application can access that name by invoking the get_type_name operation on the TypeSupport
object.

The registered type name is then used as one of the input parameters to create_topic, just like when creating a topic
for the Plain (non-Dynamic) Language Binding. Once a Topic object exists, create a DataWriter or DataReader using
this Topic. They can be narrowed to the DynamicDataWriter or DynamicDataReader IDL interface:

DDS::DynamicDataWriter_var w = DDS::DynamicDataWriter::_narrow(writer);
DDS::DynamicDataReader_var r = DDS::DynamicDataReader::_narrow(reader);

The IDL interfaces are defined in dds/DdsDynamicTypeSupport.idl in OpenDDS. They provides the same operations as
any other DataWriter or DataReader, but with DynamicData as their data type. See Populating Data Samples With Dy-
namicData for details on creating DynamicData objects for use with the DynamicDataWriter interface. See Interpreting
Data Samples with DynamicData for details on using DynamicData objects obtained from the DynamicDataReader
interface.

Limitations of the Dynamic Language Binding

The Dynamic Language Binding doesn’t currently support:

• Access from Java applications

• Content-Subscription Profile features (Content-Filtered Topics, Multi Topics, Query Conditions)

• XCDRv1 Data Representation

• Constructing types at runtime

1.16.8 Unimplemented Features

OpenDDS implements the XTypes specification version 1.3 at the Basic Conformance level, with a partial implemen-
tation of the Dynamic Language Binding (supported features of which are described in Dynamic Language Binding).
Specific unimplemented features listed below. The two optional profiles, XTypes 1.1 Interoperability (XCDR1) and
XML, are not implemented.

XCDR1 Support

Pre-XTypes standard CDR is fully supported, but the XTypes-specific features are not fully supported and should be
avoided. Types can be marked as final or appendable, but all types should be treated as if they were final. Nothing
should be marked as mutable. Readers and writers of topic types that are mutable or contain nested types that are
mutable will fail to initialize.

1.16. XTypes 195

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DdsDynamicTypeSupport.idl

OpenDDS, Release 3.24.0

Type System

• IDL map type

• IDL bitmask type

• Struct and union inheritance

Annotations

IDL4 defines many standardized annotations and XTypes uses some of them. The Annotations recognized by XTypes
are in Table 21 in XTypes 1.3. Of those listed in that table, the following are not supported in OpenDDS. They are
listed in groups defined by the rows of that table. Some annotations in that table, and not listed here, can only be used
with new capabilities of the Type System (Type System).

• Struct members

– @optional

– @must_understand

– @non_serialized

• Struct or union members

– @external

• Enums

– @bit_bound

– @default_literal

– @value

• @verbatim

• @data_representation

– See Standard @data_representation for details.

1.16.9 Differences from the specification

• Inconsistent topic status isn’t set for reader/reader or writer/writer in non-XTypes use cases

• Define the encoding and extensibility used by Type Lookup Service (Member Link)

• Enums must have the same “bit bound” to be assignable (Member Link)

• Default data representation is XCDR2 (Member Link)

• Type Lookup Service when using DDS Security (Member Link)

• Anonymous types in Strongly Connected Components (Member Link)

• Meaning of ignore_member_names in TypeConsistencyEnforcement (Member Link)

196 Chapter 1. Developer’s Guide

https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29
https://issues.omg.org/issues/DDSXTY14-33
https://issues.omg.org/browse/DDSXTY14-33
https://issues.omg.org/issues/DDSXTY14-27
https://issues.omg.org/browse/DDSXTY14-27
https://issues.omg.org/issues/DDSSEC12-86
https://issues.omg.org/browse/DDSSEC12-86
https://issues.omg.org/issues/DDSXTY14-35
https://issues.omg.org/browse/DDSXTY14-35
https://issues.omg.org/issues/DDSXTY14-40
https://issues.omg.org/browse/DDSXTY14-40

OpenDDS, Release 3.24.0

1.17 Common Terms

1.17.1 Environment Variables

ACE_ROOT

Root of the ACE source tree or installation prefix being used.

DDS_ROOT

Root of the OpenDDS source tree or installation prefix being used.

TAO_ROOT

Root of the TAO source tree or installation prefix being used.

1.17. Common Terms 197

OpenDDS, Release 3.24.0

198 Chapter 1. Developer’s Guide

CHAPTER

TWO

INTERNAL DOCUMENTATION

This documentation are for those who want to contribute to OpenDDS and those who are just curious!

2.1 OpenDDS Development Guidelines

This document organizes our current thoughts around development guidelines in a place that’s readable and editable
by the overall user and maintainer community. It’s expected to evolve as different maintainers get a chance to review
and contribute to it.

Although ideally all code in the repository would already follow these guidelines, in reality the code has evolved
over many years by a diverse group of developers. At one point an automated re-formatter was run on the codebase,
migrating from the GNU C style to the current, more conventional style, but automated tools can only cover a subset
of the guidelines.

2.1.1 Repository

The repository is hosted on Github at OpenDDS/OpenDDS and is open for pull requests.

2.1.2 Automated Build Systems

Pull requests will be tested automatically and full CI builds of the master branch can be found at http://scoreboard.
ociweb.com/oci-dds.html.

See Running Tests for how tests are run in general. See GitHub Actions Summary and FAQ for how building and testing
is done with GitHub Actions.

2.1.3 Doxygen

Doxygen is run on OpenDDS regularly. There are two hosted versions of this:

• Latest Release

– Based on the current release of OpenDDS.

• Master

– Based on the master branch in the repository. To access it, go to the scoreboard and click the green “Doxy-
gen” link near the top.

– Depending on the activity in the repository this might be unstable because of the time it takes to get the
updated Doxygen on to the web sever. Prefer latest release unless working with newer code.

199

https://www.gnu.org/prep/standards/html_node/Writing-C.html
https://github.com/OpenDDS/OpenDDS
http://scoreboard.ociweb.com/oci-dds.html
http://scoreboard.ociweb.com/oci-dds.html
http://download.opendds.org/doxygen
http://scoreboard.ociweb.com/oci-dds.html

OpenDDS, Release 3.24.0

See Documenting Code for Doxygen to see how to take advantage of Doxygen when writing code in OpenDDS.

2.1.4 Dependencies

• MPC is the build system, used to configure the build and generate platform specific build files (Makefiles, VS
solution files, etc.).

• ACE is a library used for cross-platform compatibility, especially networking and event loops. It is used both
directly and through TAO.

• TAO is a C++ CORBA implementation built on ACE.

– It’s used to communicate with DCPSInfoRepo, which is one option for Discovery.

– TAO’s data types and support for the OMG IDL-to-C++ mapping are also used in the End User DDS API.

– The TAO IDL compiler is used internally and by the end user to allow OpenDDS to use user-defined IDL
types as topic data.

• Perl is an interpreted language used in the configure script, the tests, and any other scripting in OpenDDS code-
base.

• Google Test is required for OpenDDS tests. By default, CMake will be used to build a specific version of Google
Test that we have as a submodule. An appropriate prebuilt or system Google Test can also be used.

See docs/dependencies.md for all dependencies and details on how these are used in OpenDDS.

2.1.5 Text File Formatting

All text files in the source code repository follow a few basic rules. These apply to C++ source code, Perl scripts, MPC
files, and any other plaintext file.

• A text file is a sequence of lines, each ending in the “end-of-line” character (AKA Unix line endings).

• Based on this rule, all files end with the end-of-line character.

• The character before end-of-line is a non-whitespace character (no trailing whitespace).

• Tabs are not used.

– One exception, MPC files may contain literal text that’s inserted into Makefiles which could require tabs.

– In place of a tab, use a set number of spaces (depending on what type of file it is, C++ uses 2 spaces).

• Keep line length reasonable. I don’t think it makes sense to strictly enforce an 80-column limit, but overly long
lines are harder to read. Try to keep lines to roughly 80 characters.

2.1.6 C++ Standard

The base C++ standard used in OpenDDS is C++03. There are some optional features that are only built when a newer
C++ standard level is used. See uses of the MPC feature no_cxx11 and the base project opendds_cxx11.mpb. Avoid
using implementation-defined extensions (including #pragma). Exceptions are: * #pragma once which only impacts
preprocessing and is understood across all supported compilers, or harmlessly ignored if not understood * #pragma
pack can only be used on POD structs to influence alignment/padding

Use the C++ standard library as much as possible. The standard library should be preferred over ACE, which in
turn should be preferred over system-specific libraries. The C++ standard library includes the C standard library by
reference, making those identifiers available in namespace std. Using C’s standard library identifiers in namespace std is
preferred over the global namespace – #include <cstring> instead of #include <string.h>. Not all supported

200 Chapter 2. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/docs/dependencies.md

OpenDDS, Release 3.24.0

platforms have standard library support for wide characters (wchar_t) but this is rarely needed. Preprocessor macro
DDS_HAS_WCHAR can be used to detect those platforms.

2.1.7 C++ Coding Style

• C++ code in OpenDDS must compile under the compilers listed in the README.md file.

• Commit code in the proper style from the start, so follow-on commits to adjust style don’t clutter history.

• C++ source code is a plaintext file, so the guidelines in “Text File Formatting” apply.

• A modified Stroustrup style is used (see tools/scripts/style).

– Warning: not everything in tools/scripts/style represents the current guidelines.

• Sometimes the punctuation characters are given different names, this document will use:

– Parentheses ()

– Braces { }

– Brackets []

Example

template<typename T>
class MyClass : public Base1, public Base2 {
public:
bool method(const OtherClass& parameter, int idx = 0) const;

};

template<typename T>
bool MyClass<T>::method(const OtherClass& parameter, int) const
{
if (parameter.foo() > 42) {
return member_data_;

} else {
for (int i = 0; i < some_member_; ++i) {
other_method(i);

}
return false;

}
}

Punctuation

The punctuation placement rules can be summarized as:

• Open brace appears as the first non-whitespace character on the line to start function definitions.

• Otherwise the open brace shares the line with the preceding text.

• Parentheses used for control-flow keywords (if, while, for, switch) are separated from the keyword by a
single space.

• Otherwise parentheses and brackets are not preceded by spaces.

2.1. OpenDDS Development Guidelines 201

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md#compilers
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tools/scripts/style
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tools/scripts/style

OpenDDS, Release 3.24.0

Whitespace

• Each “tab stop” is two spaces.

• Namespace scopes that span most or all of a file do not cause indentation of their contents.

• Otherwise lines ending in { indicate that subsequent lines should be indented one more level until }.

• Continuation lines (when a statement spans more than one line) can either be indented one more level, or indented
to nest “under” an (or similar punctuation.

• Add space around binary operators and after commas: a + b, c

• Do not add space around parentheses for function calls, a properly formatted function call looks like func(arg1,
arg2, arg3);

• Do not add space around brackets for indexing, instead it should look like: mymap[key]

• For code that includes multiple braces appearing together in the same expression (such as initializer lists),
there are two approved styles: * spaces between braces and their enclosed (non-empty) sub-expression: const
GUID_t GUID_UNKNOWN = { { 0 }, { { 0 }, 0 } }; or { a + b, {} } * no such spaces: const
GUID_t GUID_UNKNOWN = {{0}, {{0}, 0}}; or {a + b, {}}

• Do not add extra spaces to make syntax elements (that span lines/statements) line up; this only causes unnecessary
changes in adjacent lines as the code evolves.

• In general, do not add extra spaces unless doing so is covered by the rules above.

Language Usage

• Add braces following control-flow keywords even when they are optional.

• this-> is not used unless required for disambiguation or to access members of a template-dependent base class.

• Declare local variables at the latest point possible.

• const is a powerful tool that enables the compiler to help the programmer find bugs. Use const everywhere
possible, including local variables.

• Modifiers like const appear left of the types they modify, like: const char* cstring = char const*
is equivalent but not conventional.

• For function arguments that are not modified by the callee, pass by value for small objects (8 bytes?) and pass
by const-reference for everything else.

• Arguments unused by the implementation have no names (in the definition that is, the declarations still have
names), or a /*commented-out*/ name.

• Use explicit constructors unless implicit conversions are intended and desirable.

• Use the constructor initializer list and make sure its order matches the declaration order.

• Prefer pre-increment/decrement (++x) to post-increment/decrement (x++) for both objects and non-objects.

• All currently supported compilers use the template inclusion mechanism. Thus function/method template defi-
nitions may not be placed in normal *.cpp files, instead they can go in _T.cpp (which are #included and not
separately compiled), or directly in the *.h. In this case, *_T.cpp takes the place of *.inl (except it is always
inlined). See ACE for a description of *.inl files.

202 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

Pointers and References

Pointers and references go along with the type, not the identifier. For example:

int* intPtr = &someInt;

Watch out for multiple declarations in one statement. int* c, b; does not declare two pointers! It’s best just to break
these into separate statements:

int* c;
int* b;

In code targeting C++03, 0 should be used as the null pointer. For C++11 and later, nullptr should be used instead.
NULL should never be used.

Naming

(For library code that the user may link to)

• Preprocessor macros visible to user code must begin with OPENDDS_

• C++ identifiers are either in top-level namespace DDS (OMG spec defined) or OpenDDS (otherwise)

• Within the OpenDDS namespace there are some nested namespaces:

– DCPS: anything relating to the implementation of the DCPS portion of the DDS spec

– RTPS: types directly tied to the RTPS spec

– Federator: DCPSInfoRepo federation

– FileSystemStorage: reusable component for persistent storage

• Naming conventions

– ClassesAreCamelCaseWithInitialCapital

– methodsAreCamelCaseWithInitialLower OR methods_are_lower_case_with_underscores

– member_data_use_underscores_and_end_with_an_underscore_

– ThisIsANamespaceScopedOrStaticClassMemberConstant

Comments

• Add comments only when they will provide MORE information to the reader.

• Describing the code verbatim in comments doesn’t add any additional information.

• If you start out implementation with comments describing what the code will do (or pseudocode), review all
comments after implementation is done to make sure they are not redundant.

• Do not add a comment before the constructor that says // Constructor. We know it’s a constructor. The same
note applies to any redundant comment.

2.1. OpenDDS Development Guidelines 203

OpenDDS, Release 3.24.0

Documenting Code for Doxygen

Doxygen is run on the codebase with each change in master and each release. This is a simple guide showing the way
of documenting in OpenDDS.

Doxygen supports multiple styles of documenting comments but this style should be used in non-trivial situations:

/**
* This sentence is the brief description.
*
* Everything else is the details.
*/
class DoesStuff {
// ...
};

For simple things, a single line documenting comment can be made like:

/// Number of bugs in the code
unsigned bug_count = -1; // Woops

The extra * on the multiline comment and / on the single line comment are important. They inform Doxygen that
comment is the documentation for the following declaration.

If referring to something that happens to be a namespace or other global object (like DDS, OpenDDS, or RTPS), you
should precede it with a %. If not it will turn into a link to that object.

For more information, see the Doxygen manual.

Preprocessor

• If possible, use other language features things like inlining and constants instead of the preprocessor.

• Prefer #ifdef and #ifndef to #if defined and #if !defined when testing if a single macro is defined.

• Leave parentheses off preprocessor operators. For example, use #if defined X && defined Y instead of
#if defined(X) && defined(Y).

• As stated before, preprocessor macros visible to user code must begin with OPENDDS_.

• See section C++ Standard above for notes on #pragma.

• Ignoring the header guard if there is one, preprocessor statements should be indented using two spaces starting
at the pound symbol, like so:

#if defined X && defined Y
if X > Y
define Z 1
else
define Z 0
endif
#else
define Z -1
#endif

204 Chapter 2. Internal Documentation

https://www.doxygen.nl/manual/

OpenDDS, Release 3.24.0

Includes

Order

As a safeguard against headers being dependant on a particular order, includes should be ordered based on a hierarchy
going from local headers to system headers, with spaces between groups of includes. Generated headers from the same
directory should be placed last within these groups. This order can be generalized as the following:

1. Pre-compiled header if it is required for a .cpp file by Visual Studio.

2. The corresponding header to the source file (Foo.h if we were in Foo.cpp).

3. Headers from the local project.

4. Headers from external OpenDDS-based libraries.

5. Headers from dds/DCPS.

6. dds/*C.h Headers

7. Headers from external TAO-based libraries.

8. Headers from TAO.

9. Headers from external ACE-based libraries.

10. Headers from ACE.

11. Headers from external non-ACE-based libraries.

12. Headers from system and C++ standard libraries.

There can be exceptions to this list. For example if a header from ACE or the system library was needed to decide if
another header should be included.

Path

Headers should only use local includes (#include "foo/Foo.h") if the header is relative to the file. Otherwise system
includes (#include <foo/Foo.h>) should be used to make it clear that the header is on the system include path.

In addition to this, includes for a file that will always be relative to the including file should have a relative include path.
For example, a dds/DCPS/bar.cpp should include dds/DCPS/bar.h using #include "bar.h", not #include
<dds/DCPS/bar.h> and especially not #include "dds/DCPS/bar.h".

Example

For a Doodad.cpp file in dds/DCPS, the includes could look like:

#include <DCPS/DdsDcps_pch.h>

#include "Doodad.h"

#include <ace/config-lite.h>
#ifndef ACE_CPP11
include "ConditionVariable.h"
#endif
#include "ReactorTask.h"
#include "transport/framework/DataLink.h"

(continues on next page)

2.1. OpenDDS Development Guidelines 205

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/dds/DCPS
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/dds/DCPS

OpenDDS, Release 3.24.0

(continued from previous page)

#include <dds/DdsDcpsCoreC.h>

#include <tao/Version.h>

#include <ace/Version.h>

#include <openssl/opensslv.h>

#include <unistd.h>
#include <stdlib.h>

2.1.8 Initialization

Note that OpenDDS applications require ACE to be initialized to work correctly. For many OpenDDS applications,
ACE::init() and ACE::fini() will be called automatically, either by interaction with the ACE or TAO libraries,
or due to ACE’s redefinition of executable entry points (e.g. main) which wrap normal execution with calls to those
functions. However, be advised that on some platforms, the helper macros to catch entry points may change names
to suit compiler options. For example, for Visual C++ builds on Windows with wide-character support enabled, the
helper macro changes from main to wmain. Applications either need to handle these differences in order to correctly
ensure initialization or they need to use an entrypoint helper macro such as ACE_TMAIN which isn’t vulnerable to this
issue.

2.1.9 Time

Measurements of time can be broken down into two basic classes: A specific point in time (Ex: 00:00 January 1, 1970)
and a length or duration of time without context (Ex: 134 Seconds). In addition, a computer can change its clock while
a program is running, which could mess up any time lapses being measured. To solve this problem, operating systems
provide what’s called a monotonic clock that runs independently of the normal system clock.

ACE can provide monotonic clock time and has a class for handling time measurements, ACE_Time_Value, but it
doesn’t differentiate between specific points in time and durations of time. It can differentiate between the system
clock and the monotonic clock, but it does so poorly. OpenDDS provides three classes that wrap ACE_Time_Value
to fill these roles: TimeDuration, MonotonicTimePoint, and SystemTimePoint. All three can be included using
dds/DCPS/TimeTypes.h. Using ACE_Time_Value is discouraged unless directly dealing with ACE code which requires
it and using ACE_OS::gettimeofday() or ACE_Time_Value().now() in C++ code in dds/DCPS treated as an error
by the lint.pl linter script.

MonotonicTimePoint should be used when tracking time elapsed internally and when dealing with
ACE_Time_Values being given by the ACE_Reactor in OpenDDS. ACE_Conditions, like all ACE code, will
default to using system time. Therefore the Condition class wraps it and makes it so it always uses monotonic time
like it should. Like ACE_OS::gettimeofday(), referencing ACE_Condition in dds/DCPS will be treated as an
error by lint.pl.

More information on using monotonic time with ACE can be found here.

SystemTimePoint should be used when dealing with the DDS API and timestamps on incoming and outgoing mes-
sages.

206 Chapter 2. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/TimeTypes.h
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/dds/DCPS
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/dds/DCPS
http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/docs/ACE-monotonic-timer.html

OpenDDS, Release 3.24.0

2.1.10 Logging

ACE Logging

Logging is done via ACE’s logging macro functions, ACE_DEBUG and ACE_ERROR, defined in ace/Log_Msg.h. The
logging macros arguments to both are:

• A ACE_Log_Priority value

– This is an enum defined in ace/Log_Priority.h to say what the priority or severity of the message is.

• The format string

– This is similar to the format string for the standard printf, where it substitutes sequences starting with %,
but the format of theses sequences is different. For example char* values are substituted using %C instead
of %s. See the documenting comment for ACE_Log_Msg::log in ace/Log_Msg.h for what the format of
the string is.

• The variable number of arguments

– Like printf the variable arguments can’t be whole objects, like a std::string value. In the case of
std::string, the format and arguments would look like: "%C", a_string.c_str().

Note that all the ACE_DEBUG and ACE_ERROR arguments must be surrounded by two sets of parentheses.

ACE_DEBUG((LM_DEBUG, "Hello, %C!\n", "world"));

ACE logs to stderr by default on conventional platforms, but can log to other places.

Usage in OpenDDS

Logging Conditions and Priority

In OpenDDS ACE_DEBUG and ACE_ERROR are used directly most of the time, but sometimes they are used indirectly,
like with the transport framework’s VDBG and VDBG_LVL. They also should be conditional on one of the logging control
systems in OpenDDS. See section 7.6 of the OpenDDS Developer’s Guide for user perspective.

The logging conditions are as follows:

Message Kind Macro Priority Condition
Unrecoverable error ACE_ERROR LM_ERROR log_level >= LogLevel::Error
Unreportable recover-
able error

ACE_ERROR LM_WARNINGlog_level >= LogLevel::Warning

Reportable recoverable
error

ACE_ERROR LM_NOTICE log_level >= LogLevel::Notice

Informational message ACE_DEBUG LM_INFO log_level >= LogLevel::Info
Debug message ACE_DEBUG LM_DEBUG Based on DCPS_debug_level or one of the other debug sys-

tems listed below1

An unrecoverable error indicates that OpenDDS is in a state where it cannot function as intended. This may be the
result of a defect, misconfiguration, or interference.

A recoverable error indicates that OpenDDS could not perform a desired action but remains in a state where it can
function as intended.

1 Debug messages don’t rely on both LogLevel::Debug and a debug control system. The reason is that it results in a simpler check and the log
level already loosely controls all the debug control systems. See the LogLevel::set function in dds/DCPS/debug.cpp for exactly what it does.

2.1. OpenDDS Development Guidelines 207

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/debug.cpp

OpenDDS, Release 3.24.0

A reportable error indicates that OpenDDS can report the error via the API through something like an exception or
return value.

An informational message gives high level information mostly at startup, like the version of OpenDDS being used.

A debug message gives lower level information, such as if a message is being sent. These are directly controlled by
one of a few debug logging control systems.

• DCPS_debug_level should be used for all debug logging that doesn’t fall under the other systems. It is an
unsigned integer value which ranges from 0 to 10. See dds/DCPS/debug.h for details.

• Transport_debug_level should be used in the transport layer. It is an unsigned integer value which ranges
from 0 to 6. See dds/DCPS/transport/framework/TransportDebug.h for details.

• security_debug should be used for logging in related to DDS Security. It is an object with bool members that
make up categories of logging messages that allow fine control. See dds/DCPS/debug.h for details.

For number-based conditions like DCPS_debug_level and Transport_debug_level, the number used should be the
log level the message starts to become active at. For example for DCPS_debug_level >= 6 should be used instead
of DCPS_debug_level > 5.

Message Content

• Log messages should take the form:

(%P|%t) [ERROR:|WARNING:|NOTICE:|INFO:] FUNCTION_NAME: MESSAGE\n

– Use ERROR:, WARNING:, NOTICE:, and INFO: if using the corresponding log priorities.

– CLASS_NAME::METHOD_NAME should be used instead of just the function name if it’s part of a class. It’s
at the developer’s discretion to come up with a meaningful name for members of overload sets, templates,
and other more complex cases.

– security_debug and transport_debug log messages should indicate the category name, for example:

if (security_debug.access_error) {
ACE_ERROR((LM_ERROR, "(%P|%t) ERROR: {access_error} example_function: Hello,␣

→˓World!\n"));
}

• Format strings should not be wrapped in ACE_TEXT. We shouldn’t go out of our way to replace it in existing
logging points, but it should be avoided it in new ones.

– ACE_TEXT’s purpose is to wrap strings and characters in L on builds where uses_wchar=1, so they become
the wide versions.

– While not doing it might result in a performance hit for character encoding conversion at runtime, the builds
where this happens are rare, so it’s outweighed by the added visual noise to the code and the possibility of
bugs introduced by improper use of ACE_TEXT.

• Avoid new usage of ACE_ERROR_RETURN in order to not hide the return statement within a macro.

208 Chapter 2. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/debug.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/transport/framework/TransportDebug.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/dds/DCPS/debug.h

OpenDDS, Release 3.24.0

Examples

if (log_level >= LogLevel::Error) {
ACE_ERROR((LM_ERROR, "(%P|%t) ERROR: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Warning) {
ACE_ERROR((LM_WARNING, "(%P|%t) WARNING: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Notice) {
ACE_ERROR((LM_NOTICE, "(%P|%t) NOTICE: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Info) {
ACE_DEBUG((LM_INFO, "(%P|%t) INFO: example_function: Hello, World!\n"));

}

if (DCPS_debug_level >= 1) {
ACE_DEBUG((LM_DEBUG, "(%P|%t) example_function: Hello, World!\n"));

}

2.2 Documentation Guidelines

This Sphinx-based documentation is hosted on Read the Docs and can be located here. It can also be built locally. To
do this follow the steps in the following section.

2.2.1 Building

Run docs/build.py, passing the kinds of documentation desired. Multiple kinds can be passed, and they are documented
in the following sections.

Requirements

The script requires Python 3.6 or later and an internet connection if the script needs to download dependencies or check
the validity of external links.

You might receive a message like this when running for the first time:

build.py: Creating venv...
The virtual environment was not created successfully because ensurepip is not
available. On Debian/Ubuntu systems, you need to install the python3-venv
package using the following command.

apt install python3.9-venv

If you do, then follow the directions it gives, remove the docs/.venv directory, and try again.

2.2. Documentation Guidelines 209

https://www.sphinx-doc.org/en/master/
https://readthedocs.org
https://opendds.readthedocs.io/en/latest/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/docs/build.py

OpenDDS, Release 3.24.0

HTML

HTML documentation can be built and viewed using ./docs/build.py -o html. If it was built successfully, then
the front page will be at ./docs/_build/html/index.html.

A single page variant is also available using ./docs/build.py -o singlehtml If it was built successfully, then the
page will be at ./docs/_build/singlehtml/index.html.

PDF

Note: This has additional dependencies on LaTeX that are documented here.

PDF documentation can be built and viewed using ./docs/build.py -o pdf. If it was built successfully, then the
PDF file will be at ./docs/_build/latex/opendds.pdf.

Dash

Documentation can be built for Dash, Zeal, and other Dash-compatible applications using doc2dash. The command for
this is ./docs/build.py dash. This will create a docs/_build/OpenDDS.docset directory that must be manually
moved to where other docsets are stored.

Strict Checks

docs/build.py strict will promote Sphinx warnings to errors and check to see if links resolve to a valid web page.

Note: The documentation includes dynamic links to files in the GitHub repo created by ghfile. These links will be
invalid until the git commit they were built under is pushed to a Github fork of OpenDDS. This also means running
will cause those links to marked as broken. A workaround for this is to pass -c master or another commit, branch,
or tag that is desired.

Building Manually

It is recommended to use build.py to build the documentation as it will handle dependencies automatically. If nec-
essary though, Sphinx can be ran directly.

To build the documentation the dependencies need to be installed first. Run this from the docs directory to do this:

pip3 install -r requirements.txt

Then sphinx-build can be ran. For example to build the HTML documentation:

sphinx-build -M html . _build

210 Chapter 2. Internal Documentation

https://www.sphinx-doc.org/en/master/usage/builders/index.html#sphinx.builders.latex.LaTeXBuilder
https://kapeli.com/dash
https://zealdocs.org/
https://github.com/hynek/doc2dash

OpenDDS, Release 3.24.0

2.2.2 RST/Sphinx Usage

• See Sphinx reStructuredText Primer for basic RST usage.

• Inline code such as class names like DataReader and other symbolic text such as commands like ls should use
double backticks: ``TEXT``. This distinguishes it as code, makes it easier to distinguish characters, and reduces
the chance of needing to escape characters if they happen to be special for RST.

• One sentence per line should be perfered. This makes it easier to see what changed in a git diff or GitHub
PR and easier to move sentences around in editors like Vim. It also avoids inconsistencies involving what the
maximum line length is. This might make it more annoying to read the documentation raw, but that’s not the
intended way to do so anyway.

Special Links

There are a few shortcuts for linking to GitHub and OMG that are custom to OpenDDS. These come in the form of
RST roles and are implemented in docs/sphinx_extensions/links.py.

ghfile

:ghfile:`README.md`

:ghfile:`the \`\`README.md\`\` File <README.md>`

:ghfile:`the support section of the \`\`README.md\`\` File <README.md#support>`

:ghfile:`check out the available support <README.md#support>`

Turns into:

README.md#support

README.md

the README.md File

the support section of the README.md File

check out the available support

The path passed must exist, be relative to the root of the repository, and will have to be committed, if it’s not already.
If there is a URL fragment in the path, like README.md#support, then it will appear in the link URL.

It will try to point to the most specific version of the file:

• If -c or --gh-links-commit was passed to build.py, then it will use the commit, branch, or tag that was
passed along with it.

• Else if the OpenDDS is a release it will calculate the release tag and use that.

• Else if the OpenDDS is in a git repository it will use the commit hash.

• Else it will use master.

2.2. Documentation Guidelines 211

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://rhodesmill.org/brandon/2012/one-sentence-per-line/
https://docutils.sourceforge.io/docs/ref/rst/roles.html
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/docs/sphinx_extensions/links.py
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md#support
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md#support
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/README.md#support

OpenDDS, Release 3.24.0

ghissue

:ghissue:`213`

:ghissue:`this is the issue <213>`

:ghissue:`this is **the issue** <213>`

Turns into:

Issue #213 on GitHub

this is the issue

this is the issue

ghpr

:ghpr:`1`

:ghpr:`this is the PR <1>`

:ghpr:`this is **the PR** <1>`

Turns into:

Pull Request #1 on GitHub

this is the PR

this is the PR

omgissue

:omgissue:`DDSXTY14-29`

:omgissue:`this is the issue <DDSXTY14-29>`

:omgissue:`this is **the issue** <DDSXTY14-29>`

Turns into:

OMG Issue DDSXTY14-29 (Member Link)

this is the issue (Member Link)

this is the issue (Member Link)

212 Chapter 2. Internal Documentation

https://github.com/OpenDDS/OpenDDS/issues/213
https://github.com/OpenDDS/OpenDDS/issues/213
https://github.com/OpenDDS/OpenDDS/issues/213
https://github.com/OpenDDS/OpenDDS/pull/1
https://github.com/OpenDDS/OpenDDS/pull/1
https://github.com/OpenDDS/OpenDDS/pull/1
https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29
https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29
https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29

OpenDDS, Release 3.24.0

2.3 Unit Tests

2.3.1 The Goals of Unit Testing

The primary goal of a unit test is to provide informal evidence that a piece of code performs correctly. An alternative
to unit testing is writing formal proofs. However, formal proofs are difficult, expensive, and unmaintainable given the
changing nature of software. Unit tests, while necessarily incomplete, are a practical alternative.

Unit tests document how to use various algorithms and data structures and serve as an informal set of requirements. As
such, a unit test should be developed with the idea that it will serve as a reference for future developers. Clarity in unit
tests serve to accomplish their primary goal of establishing correctness. That is, a unit test that is difficult to understand
casts doubt that the code being tested is correct. Consequently, unit tests should be clear and concise.

The confidence one has in a piece of code is often related to the number of code paths explored in it. This is often
approximated by “code coverage.” That is, one can run the unit test with a coverage tool to see which code paths were
exercised by the unit test. Code with higher coverage tends to have fewer bugs because the tester has often considered
various corner-cases. Consequently, unit tests should aim for high code coverage.

Unit tests should be executed frequently to provide developers with instant feedback. This applies to the feature under
development and the system as a whole. That is, developers should frequently execute all of the unit tests to make
sure they haven’t broken functionality elsewhere in the system. The more frequently the tests are run, the smaller the
increment of development and the easier it is to identify a breaking change. Thus, unit tests should execute quickly.

Code that is difficult to test will most likely be difficult to use. Code that is difficult to use correctly will lead to bugs
in code that uses it. Consequently, unit tests are vital to the design of useful software as developing a unit test provides
feedback on the design of the code under test. Often, when developing a unit test, one will find parts of the design that
can be improved.

Unit tests should promote and not inhibit development. A robust set of unit tests allows a developer to aggressively
refactor since the correctness of the system can be checked after the refactoring. However, unit tests do produce drag on
development since they must be maintained as the code evolves. Thus, it is important that the unit test code be properly
maintained so that they are an asset and not a liability.

Some of the goals mentioned above are in conflict. Adding code to increase coverage may make the tests less main-
tainable, slower, and more difficult to understand. The following metrics can be generated to measure the utility of the
unit tests:

• Code coverage

• Test compilation time

• Test execution time

• Test code size vs. code size

• Defect rate vs. code coverage (Are bugs appearing in code that is not tested as well?)

2.3.2 Unit Test Organization

The most basic unit when testing is the test case. A test case typically has four phases.

1. Setup - The system is initialized to a known state.

2. Exercise - The code under test is invoked.

3. Check - The resulting state of the system and outputs are checked.

4. Teardown - Any resources allocated in the test are deallocated.

2.3. Unit Tests 213

OpenDDS, Release 3.24.0

Test cases are grouped into a test suite.

Test suites are organized into a test plan.

We adopt file boundaries for organizing the unit tests for OpenDDS. That is, the unit tests for a file group dds/
DCPS/SomeFile.(h|cpp) will be located in tests/unit-tests/dds/DCPS/SomeFile.cpp. The file tests/
unit-tests/dds/DCPS/SomeFile.cpp is a test suite containing all of the test cases for dds/DCPS/SomeFile.
(h|cpp). The test plan for OpenDDS will execute all of the test suites under tests/unit-tests. When the complete test
plan takes too much time to execute, it will be sub-divided along module boundaries.

In regards to coverage, the coverage of dds/DCPS/SomeFile.(h|cpp) is measured by executing the tests in its test
suite tests/unit-tests/dds/DCPS/SomeFile.cpp. The purpose of this is to avoid indirect testing where a piece
of code may get full coverage without ever being intentionally tested.

2.3.3 Unit Test Scope

A unit test should be completely deterministic with respect to the code paths that it exercises. This means the test
code must have control over all relevant inputs, i.e., inputs that influence the code paths. To illustrate, the current time
is relevant when testing algorithms that perform date related functions, e.g., code that is conditioned on a certificate
being expired, while it is not relevant if it is only used when printing log messages. Sources of non-determinism include
time, random numbers, schedulers, and the network. A dependency on the time is typically mitigated by mocking the
service that return the time. Random numbers can be handled the same way. A unit test should never sleep. Avoiding
schedulers means a unit test should not have multiple processes and should not have multiple threads unless they cannot
impact the code paths being tested. The network can be avoided by defining a suitable abstraction and mocking.

Code that relies on event dispatching may use a mock dispatcher to control the sequence of events. One design that
makes it possible to unit test in this way is to organize a module as a set of atomic event handlers around a plain old
data structure core. The core should be easy to test. Event handlers are called for timers, I/O readiness, and method
calls into the module. Event handlers update the core and can perform I/O and call into other modules. Inter-module
calls are problematic in that they create the possibility for deadlock and other hazards. In the simplest designs, each
module has a single lock that is acquired at the beginning of each event handler. The non-deterministic part of the
module can be tested by isolating its dependencies on the operating system and other modules; typically by providing
mock objects.

To illustrate the other side of determinism, consider other kinds of tests. Integration tests often use operating system
services, e.g., threads and networking, to test partial or whole system functionality. A stress test executes the same
code over and over hoping that non-determism results in a different outcome. Performance tests may or may not admit
non-determinism and focuses on aggregate behavior as opposed to code-level correctness. Unit tests should focus on
code-level correctness.

2.3.4 Isolating Dependencies

More often than not, the code under test will have dependencies on other objects. For each dependency, the test can
either pass in a real object or a stand-in. Test stand-ins have a variety of names including mocks, spies, dummies, etc.
depending on their function. Some take the position that everything should be mocked. The author takes the position
that real objects should be preferred for the following reasons:

• Less code to maintain

• The design of the real objects improves to accommodate testing

• Tests break in a more meaningful way when dependencies change, i.e., over time, a test stand-in may no longer
behave in a realistic way

However, there are cases when a test stand-in is justified:

• It is difficult to configure the real object

214 Chapter 2. Internal Documentation

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/unit-tests

OpenDDS, Release 3.24.0

• The real object lacks the necessary API for testing and adding it cannot be justified

The use of a mock assumes that an interface exists for the stand-in.

2.3.5 Writing a New Unit Test

1. Add the test to the appropriate file under tests/unit-tests.

2. Name the test after the code it is meant to cover. For example, the tests/unit-tests/dds/
DCPS/security/AccessControlBuiltInImpl.cpp unit test covers the dds/DCPS/security/
AccessControlBuiltInImpl.(h|cpp) files.

3. Update the tests/unit-tests/UnitTests.mpc file if necessary.

2.3.6 Using GTest

The main unit test driver is based on GTest. GTest provides you with many helpful tools to simplify the writing of unit
tests. To use GTest in a test, add #include <gtest/gtest.h> to the unit test source file. A basic unit test has the
following form

TEST(TestModule, TestSubmodule)
{
}

All tests in a unit test source file must have the same TestModule which is name of the unit under test with underscores,
e.g., dds_DCPS_security_AccessControlBuiltInImpl. This naming convention is required for intentional unit
test coverage. The TestSubmodule can be any identifier, however, it should typical describe the class, function, or
scenario being tested.

Each test contains evaluators. The most common evaluators are EXPECT_EQ, EXPECT_TRUE, EXPECT_FALSE.

EXPECT_EQ(X, 2)
EXPECT_EQ(Y, 3)

This will mark the test as a failure if either X does not equal 2, or Y does not equal 3.

EXPECT_TRUE and EXPECT_FALSE are equivalence checks to a boolean value. In the following examples we pass X to
a function is_even that returns true if the passed value is an even number and returns false otherwise.

EXPECT_TRUE(is_even(X));

This will mark the test as a failure if is_even(X) returns false.

EXPECT_FALSE(is_even(X));

This will mark the test as a failure if is_even(X) returns true.

There are more EXPECT_* and ASSERT_*, but these are the most common ones. The difference between EXPECT
and ASSERT is that an ASSERT will cease the test upon failure, whereas EXPECTS continue to run. For example if
you have multiple EXPECT_EQ, they will all always run.

For more information, visit the google test documentation: https://github.com/google/googletest/blob/main/docs/
primer.md.

2.3. Unit Tests 215

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/unit-tests
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/unit-tests/UnitTests.mpc
https://github.com/google/googletest/blob/main/docs/primer.md
https://github.com/google/googletest/blob/main/docs/primer.md

OpenDDS, Release 3.24.0

2.3.7 Code Coverage

To enable code coverage, one needs to disable the dds_non_coverage feature, e.g., ./configure ...
--features=dds_non_coverage=0.

The script $DDS_ROOT/tools/scripts/unit_test_coverage.sh will execute unit tests and generate an inten-
tional unit test coverage report. It can be called with no arguments to generate a report for all of the units or it can be
called with a list of units to test. For example, $DDS_ROOT/tools/scripts/unit_test_coverage.sh dds/DCPS/
Serializer.

2.3.8 Final Word

Ignore anything in this document that prevents you from writing unit tests.

2.4 GitHub Actions Summary and FAQ

2.4.1 Overview

GitHub Actions is the continuous integration solution currently being used to evaluate the readiness of pull requests.
It builds OpenDDS and runs the test suite across a wide variety of operation systems and build configurations.

2.4.2 Legend for GitHub Actions Build Names

Operating System

• u20/u22 - Ubuntu 20.04/22.04

• w19/w22 - Windows Server 2019/Windows Server 2022

• m11/m12 - macOS 11/12

See also:

GitHub Runner Images <https://github.com/actions/runner-images>

Build Configuration

• x86 - Windows 32 bit. If not specified, x64 is implied.

• re - Release build. If not specified, Debug is implied.

• clangX/gccY - compiler used to build OpenDDS. If not specified, the default system compiler is used. Windows
Server 2019 uses Visual Studio 2019 Windows Server 2022 uses Visual Studio 2022

216 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

Build Type

• stat - Static build

• bsafe/esafe - Base Safety/Extended Safety build

• sec - Security build

• asan/tsan - Address/Thread Sanitizer build

Build Options

• o1 - enables --optimize

• d0 - enables --no-debug

• i0 - enables --no-inline

• p1 - enables --ipv6

• w1 - enables wide characters

• v1 - enables versioned namespace

• cpp03 - --std=c++03

• j/j<N> - Java version default/N

• ace7 - uses ace7tao3 rather than ace6tao2

• xer0 - disables xerces

• qt - enables --qt

• ws - enables --wireshark

• js0 - enables --no-rapidjson

• a1 - enables TAO’s Anys using --features=dds_suppress_anys=0

Feature Mask

This is a mask in an attempt to keep names shorter.

• FM-08

– --no-built-in-topics

– --no-content-subscription

– --no-ownership-profile

– --no-object-model-profile

– --no-persistence-profile

• FM-1f

– --no-built-in-topics

• FM-2c

– --no-content-subscription

– --no-object-model-profile

2.4. GitHub Actions Summary and FAQ 217

OpenDDS, Release 3.24.0

– --no-persistence-profile

• FM-2f

– --no-content-subscription

• FM-37

– --no-content-filtered-topics

2.4.3 build_and_test.yml Workflow

Our main workflow which dictates our GitHub Actions run is .github/workflows/build_and_test.yml. It defines jobs,
which are the tasks that are run by the CI.

Triggering the Build And Test Workflow

There are a couple ways in which a run of build and test workflow can be started.

Any pull request targeting master will automatically run the OpenDDS workflows. This form of workflow run will
simulate a merge between the branch and master.

Push events on branches prefixed gh_wf_ will trigger workflow runs on the fork in which the branch resides. These
fork runs of GitHub Actions can be viewed in the “Actions” tab. Runs of the workflow on forks will not simulate a
merge between the branch and master.

Job Types

There are a number of job types that are contained in the file build_and_test.yml. Where possible, a configuration will
contain 3 jobs. The first job that is run is ACE_TAO_. This will create an artifact which is used later by the OpenDDS
build. The second job is build_, which uses the previous ACE_TAO_ job to configure and build OpenDDS. This job
will then export an artifact to be used in the third step. The third step is the test_ job, which runs the appropriate tests
for the associated OpenDDS configuration.

Certain builds do not follow this 3 step model. Static and Release builds have a large footprint and therefore cannot fit
the entire test suite onto a GitHub Actions runner. As a result, they only build and run a subset of the tests in their final
jobs, but then have multiple final jobs to increase test coverage. These jobs are prefixed by:

• compiler_ (and for some build configurations, compiler2_) which runs the tests/DCPS/Compiler tests.

• unit_ which runs the unit tests located in tests/unit-tests.

• messenger_ which runs the tests in tests/DCPS/Messenger and tests/DCPS/C++11/Messenger.

To shorten the runtime of the continuous integration, some other builds will not run the test suite.

All builds with safety profile disabled and ownership profile enabled, will run the tests/cmake tests. Test runs which
only contain CMake tests are prefixed by cmake_.

218 Chapter 2. Internal Documentation

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/.github/workflows/build_and_test.yml
https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/DCPS/Compiler
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/unit-tests
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/DCPS/Messenger
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/DCPS/C++11/Messenger
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/tests/cmake

OpenDDS, Release 3.24.0

.lst Files

.lst files contain a list of tests with configuration options that will turn tests on or off. The test_ jobs pass in
tests/dcps_tests.lst. MacOS, Windows 22, Static, and Release builds instead use tests/core_ci_tests.lst. The Thread
Sanatizer build uses tests/tsan_tests.lst. This separation of .lst files is due to how excluding all but a few tests in the
dcps_tests.lstwould require adding a new config option to every test we didn’t want to run. There is a separate secu-
rity test list, tests/security/security_tests.lst, which governs the security tests which are run when --security is passed
to auto_run_tests.pl. The last list file used by build_and_test.yml is tools/modeling/tests/modeling_tests.lst,
which is included by passing --modeling to auto_run_tests.pl.

To disable a test in GitHub Actions, !GH_ACTIONS must be added next to the test in the .lst file. There are similar test
blockers which only block for specific GitHub Actions configurations from running marked tests:

• !GH_ACTIONS_OPENDDS_SAFETY_PROFILE blocks Safety Profile builds

• !GH_ACTIONS_M10 blocks the MacOS10 runners

This option currently does nothing because GitHub sees MacOS runners as unresponsive when they attempt to run
some of the more intensive tests in dcps_tests.lst.

• !GH_ACTIONS_ASAN blocks the Address Sanitizer builds

• !GH_ACTIONS_W22 blocks the Windows Server 2022 runner

These blocks are necessary because certain tests cannot properly run on GitHub Actions due to how the runners are
configured. -Config GH_ACTIONS is assumed by auto_run_tests.pl when running on GitHub Actions, but the
other test configurations must be passed using -Config.

See also:

Running Tests
For how auto_run_tests.pl and the lst files work in general.

Workflow Checks

The .github/workflows/lint.yml workflow runs .github/workflows/lint_build_and_test.pl, which checks that the
.github/workflows/build_and_test.yml workflow has gcc-problem-matcher and msvc-problem-matcher in the correct
places.

Running this script requires the YAML CPAN module. As a safety measure, it has some picky rules about how steps
are named and ordered. In simplified terms, these rules include:

• If used, the problem matcher must be appropriate for the platform the job is running on.

• The problem matcher must not be declared before steps that are named “setup gtest” or named like “build
ACE/TAO”. This should reduce any warnings from Google Test or ACE/TAO.

• A problem matcher should be declared before steps that start with “build” or contain “make”. These steps should
also contain cmake --build, make, or msbuild in their run string.

2.4. GitHub Actions Summary and FAQ 219

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/dcps_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/core_ci_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/tsan_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/security/security_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tools/modeling/tests/modeling_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/.github/workflows/lint.yml
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/.github/workflows/lint_build_and_test.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/.github/workflows/build_and_test.yml
https://github.com/ammaraskar/gcc-problem-matcher
https://github.com/ammaraskar/msvc-problem-matcher
https://metacpan.org/pod/YAML

OpenDDS, Release 3.24.0

Blocked Tests

Certain tests are blocked from GitHub actions because their failures are either unfixable, or are not represented on the
scoreboard. If this is the case, we have to assume that the failure is due to some sort of limitation caused by the GitHub
Actions runners.

Only Failing on CI

• tests/DCPS/SharedTransport/run_test.pl multicast

– Multicast times out waiting for remote peer. Fails on test_u20_p1_j8_FM-1f and test_u20_p1_sec.

• tests/DCPS/Thrasher/run_test.pl high/aggressive/medium XXXX XXXX

– The more intense thrasher tests cause consistent failures due to the increased load from ASAN. GitHub
Actions fails these tests very consistently compared to the scoreboard which is more intermittent. Fails on
test_u20_p1_asan_sec.

Failing Both CI and scoreboard

These tests fail on the CI as well as the scoreboard, but will remain blocked on the CI until fixed. Each test has a list of
the builds it was failing on before being blocked.

• tests/DCPS/BuiltInTopicTest/run_test.pl

– test_u18_esafe_js0

• tests/DCPS/CompatibilityTest/run_test.pl rtps_disc

– test_m10_o1d0_sec

• tests/DCPS/Federation/run_test.pl

– test_u18_w1_sec

– test_u18_j_cft0_FM-37

– test_u18_w1_j_FM-2f

– test_u20_ace7_j_qt_ws_sec

– test_u20_p1_asan_sec

– test_u20_p1_asan_sec

• tests/DCPS/MultiDPTest/run_test.pl

– test_u18_bsafe_js0_FM-1f

– test_u18_esafe_js0

• tests/DCPS/NotifyTest/run_test.pl

– test_u18_esafe_js0

• tests/DCPS/Reconnect/run_test.pl restart_pub

– test_w22_x86_i0_sec

• tests/DCPS/Reconnect/run_test.pl restart_sub

– test_w22_x86_i0_sec

• tests/DCPS/TimeBasedFilter/run_test.pl -reliable

220 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

– test_u18_bsafe_js0_FM-1f

– test_u18_esafe_js0

Test Results

The tests are run using autobuild which creates a number of output files that are turned into a GitHub artifact. This
artifact is processed by the “check results” step which uses the script tools/scripts/autobuild_brief_html_to_text.pl to
catch failures and print them in an organized manner. Due to this being a part of the “test” jobs, the results of each run
will appear as soon as the job is finished.

Artifacts

Artifacts from the continuous integration run can be downloaded by clicking details on one of the Build & Test runs.
Once all jobs are completed, a dropdown will appear on the bar next to “Re-run jobs”, called “Artifacts” which lists
each artifact that can be downloaded.

Alternatively, clicking the “Summary” button at the top of the list of jobs will list all the available artifacts at the bottom
of the page.

Using Artifacts to Replicate Builds

You can download the ACE_TAO_ and build_ artifacts then use them for a local build, so long as your operating system
is the same as the one on the runner.

1. git clone the ACE_TAO branch which is targeted by the build. This is usually going to be ace6tao2.

2. git clone --recursive the OpenDDS branch on which the CI was run.

3. Merge OpenDDS master into your cloned branch.

4. run tar xvfJ from inside the cloned ACE_TAO, targeting the ACE_TAO_*.tar.xz file.

5. run tar xvfJ from inside the cloned OpenDDS, targeting the build_*.tar.xz file.

6. Adjust the setenv.sh located inside OpenDDS to match the new locations for your ACE_TAO, and OpenDDS.
The word “runner” should not appear within the setenv.sh once you are finished.

You should now have a working duplicate of the build that was run on GitHub Actions. This can be used for debugging
as a way to quickly set up a problematic build.

Using Artifacts to View More Test Information

Tests failures which are recorded on GitHub only contain a brief capture of output surrounding a failure. This is useful
for some tests, but it can often be helpful to view more of a test run. This can be done by downloading the artifact for
a test step you are viewing. This test step artifact contains a number of files including output.log_Full.html. This
is the full log of all output from all test runs done for the corresponding job. It should be opened in either a text editor
or Firefox, as Chrome will have issues due to the length of the file.

2.4. GitHub Actions Summary and FAQ 221

https://github.com/DOCGroup/autobuild
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tools/scripts/autobuild_brief_html_to_text.pl

OpenDDS, Release 3.24.0

Caching

The OpenDDS workflows create .tar.xz archives of certain build artifacts which can then be up uploaded and shared
between jobs (and the user) as part of GitHub Actions’ “artifact” API. A cache key comparison made using the relevant
git commit SHA will determine whether to rebuild the artifact, or to use the cached artifact.

2.5 Running Tests

2.5.1 Main Test Suite

Building

Tests are not built by default, --tests must be passed to the configure script. This will build all the tests. There are
a few ways to only have specific tests built:

• If using Make, specify the targets instead of leaving it default to the all target.

• Run MPC on the test directory and build separately. Make sure to also build the test’s dependencies.

• Create a custom workspace with the tests and pass it to the configure script using the --workspace option.
Also make sure to include the test’s dependencies.

Running

Note: Make sure ACE_ROOT and DDS_ROOT are set, which can be done by running source setenv.sh on Linux and
macOS or call setenv.cmd on Windows.

OpenDDS’ main suite of tests is ran by the tests/auto_run_tests.pl Perl script that reads lists of tests from files and
selectively runs based on how the script has been configured.

For Unixes (Linux, macOS, BSDs, etc)

Run this in DDS_ROOT:

./bin/auto_run_tests.pl

For Windows

Run this in DDS_ROOT:

bin\auto_run_tests.pl

If OpenDDS was built in Release mode add -ExeSubDir Release. If it was built as static libraries add -ExeSubDir
Static_Debug or -ExeSubDir Static_Release.

222 Chapter 2. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/auto_run_tests.pl

OpenDDS, Release 3.24.0

Manual Configuration

Manual configuration is done by passing -Config, -Exclude, and test list files arguments to the script.

To manually configure what tests to run:

• See the --list-all-configs or --show-all-configs options to see the existing configurations used by all
test list files.

• See the --list-configs or --show-configs options to see the existing configurations used by specific test
list files.

• See the test list files for the tests themselves:

– tests/dcps_tests.lst

∗ This is included by default. Use --no-dcps to exclude this list.

∗ If --no-auto-config was passed, then --dcps will have to be passed to include this.

– tests/security/security_tests.lst

∗ Use --security to include this list.

– java/tests/dcps_java_tests.lst

∗ Use --java to include this list.

– tools/modeling/tests/modeling_tests.lst

∗ Use --modeling to include this list.

• In a test list file each of the-space delimited words after the colon determines when the test is ran.

• Passing -Config RTPS will run tests that have RTPS and leave out tests with !RTPS.

• Passing -Exclude RTPS will exclude all tests that have RTPS in the entry. This option matches using RegEx, so
a test with SUPER_DUPER_RTPS will also be excluded. It also ignores inverse entries, so it will not exclude a test
with !SUPER_DUPER_RTPS.

• There are -Config options that are added automatically if --no-auto-config wasn’t passed:

– -Config RTPS

– -Config GH_ACTIONS if running on GitHub Actions

– These are based on the OS auto_run_tests.pl is running under:

∗ -Config Win32

∗ -Config macOS

∗ -Config Linux

• Assuming they were built, CMake tests are ran if --cmake is passed. This uses CTest, which is a system that is
separate from the one previously described.

• See --help for all the available options.

Note: For those editing and creating test list files: The ConfigList code in ACE can’t properly handle mutiple test
list entries with the same command. It will run all those entries if the last one will run, even if based on the configs
only one entry should run. auto_run_tests.pl will warn about this if it’s using a test list file that has this problem.

2.5. Running Tests 223

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/dcps_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tests/security/security_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/java/tests/dcps_java_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/tools/modeling/tests/modeling_tests.lst

OpenDDS, Release 3.24.0

2.6 Bench Performance & Scalability Test Framework

2.6.1 Motivation

The Bench framework (version 2) grew out of a desire to be able to test the performance and scalability of OpenDDS
in large and heterogeneous deployments, along with the ability to quickly develop and deploy new test scenarios across
a potentially-unspecified number of machines.

2.6.2 Overview

The resulting design of the Bench framework depends on three primary test applications: worker processes, one or
more node controllers, and a test controller.

Fig. 2.1: Bench Overview

Worker

The worker application, true to its name, performs most of the work associated with any given test scenario. It creates
and exercises the DDS entities specified in its configuration file and gathers performance statistics related to discov-
ery, data integrity, and performance. The worker’s configuration file contains regions that may be used to represent
OpenDDS’s configuration sections as well as individual DDS entities and the QoS policies to be for their creation.
In addition, the worker configuration contains test timing values and descriptions of test actions to be taken (e.g.
publishing and forwarding data read from subscriptions). Upon test completion, the worker can write out a report file
containing the performance statistics gathered during its run.

224 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

Node Controller

Each machine in the test environment will run (at least) one node_controller application which acts as a daemon
and, upon request from a test_controller, will spawn one or more worker processes. Each request will contain
the configuration to use for the spawned workers and, upon successful exit, the workers’ report files will be read and
sent back to the test_controller which requested it. Failed workers processes (aborts, crashes) will be noted and
have their output logs sent back to the requesting test_controller. In addition to collecting worker reports, the
node controller also gathers general system resource statistics during test execution (CPU and memory utilization) to
be returned to the test controller at the end of the test.

Test Controller

Each execution of the test framework will use a test_controller to read in a scenario configuration file (an anno-
tated collection of worker configuration file names) before listening for available node_controller’s and parceling
out the scenario’s worker configurations to the individual node_controller’s. The test_controller may also
optionally adjust certain worker configuration values for the sake of the test (assigning a unique DDS partition to avoid
collisions, coordinating worker test times, etc.). After sending the allocated scenario to each of the available node
controllers, the test controller waits to receive reports from each of the node controllers. After receiving all the reports,
the test_controller coalesces the performance statistics from each of the workers and presents the final results to
the user (both on screen & in a results file).

2.6.3 Building Bench

Required Features

The primary requirements for building OpenDDS such that Bench also gets built:

• C++11 Support, either with a compiler that defaults to C++11 (or later) support or by manually specifying a
compatible standard (e.g. --std=c++11)

• RapidJSON present and enabled (--rapidjson)

• Tests are being built (--tests)

Required Targets

If these elements are present, you can either build the entire test suite (slow) or use these 3 targets (faster), which also
cover all the required libraries:

• Bench_Worker

• Bench_node_controller

• Bench_test_controller

2.6. Bench Performance & Scalability Test Framework 225

OpenDDS, Release 3.24.0

2.6.4 Running Bench

Environment Variables

To run Bench executables with dynamically linked or shared libraries, you’ll want to make sure the Bench libraries are
in your library path.

Linux/Unix

Add ${DDS_ROOT}/performance-tests/bench/lib to your LD_LIBRARY_PATH

Windows

Add %DDS_ROOT%\performance-tests\bench\lib to your PATH

Assuming DDS_ROOT is already set on your system (from the configure script or from sourcing setenv.sh), there
are convenience scripts to do this for you in the performance-tests/bench directory (set_bench_env[.sh/.cmd])

Running a Bench CI Test

In the event that you’re debugging a failing Bench CI test, you can use performance-tests/bench/run_test.pl to execute
the full scenario without first setting the environment as listed above. This is because the perl script sets the appropriate
environment variables automatically before launching its processes (a single node_controller in the background, as
well as the test controller with the requested scenario). The perl script can be inspected in order to determine which
scenarios have been made available in this way. The script can be modified to easily run other available scenarios (see
performance-tests/bench/example/config/scenario) against a single node controller with relative ease.

Running Scenarios Manually

Assuming you already have scenario and worker configuration files defined, the general approach to running a scenario
is to start one or more node_controllers (across one or more hosts) and then execute the test_controller with the
desired scenario configuration.

2.6.5 Configuration Files

As a general rule, Bench uses JSON configuration files that directly map onto the C++ Platform Specific Model (PSM)
of the IDL found in performance-tests/bench/idl and the IDL used in the DDS specification. This allows the test
applications to easily convert between configuration files and the C++ structures used for the configuration of DDS
entities.

226 Chapter 2. Internal Documentation

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/performance-tests/bench
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.24/performance-tests/bench/run_test.pl
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/performance-tests/bench/example/config/scenario
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.24/performance-tests/bench/idl
https://www.omg.org/spec/DDS/About-DDS/

OpenDDS, Release 3.24.0

Scenario Configuration Files

Scenario configuration files are used by the test controller to determine the number and type (configuration) of worker
processes required for a particular test scenario. In addition, the scenario file may specify certain sets of workers to be
run on the same node by placing them together in a node “prototype” (see below).

IDL Definition

struct WorkerPrototype {
// Filename of the JSON Serialized Bench::WorkerConfig
string config;
// Number of workers to spawn using this prototype (Must be >=1)
unsigned long count;

};

typedef sequence<WorkerPrototype> WorkerPrototypes;

struct NodePrototype {
// Assign to a node controller with a name that matches this wildcard
string name_wildcard;
WorkerPrototypes workers;
// Number of Nodes to spawn using this prototype (Must be >=1)
unsigned long count;
// This NodePrototype must have a Node to itself
boolean exclusive;

};

typedef sequence<NodePrototype> NodePrototypes;

// This is the root type of the scenario configuration file
struct ScenarioPrototype {
string name;
string desc;
// Workers that must be deployed in sets
NodePrototypes nodes;
// Workers that can be assigned to any node
WorkerPrototypes any_node;
/*
* Number of seconds to wait for the scenario to end.
* 0 means never timeout.
*/
unsigned long timeout;

};

2.6. Bench Performance & Scalability Test Framework 227

OpenDDS, Release 3.24.0

Annotated Example

{
"name": "An Example",
"desc": "This shows the structure of the scenario configuration",
"nodes": [
{
"name_wildcard": "example_nc_*",
"workers": [
{
"config": "daemon.json",
"count": 1

},
{
"config": "spawn.json",
"count": 1

}
],
"count": 2,
"exclusive": false

}
],
"any_node": [

{
"config": "master.json",
"count": 1

}
],
"timeout": 120

}

This scenario configuration will launch 5 worker processes. It will launch 2 pairs of “daemon” / “spawn” processes, with
each member of each pair being kept together on the same node (i.e. same node_controller). The pairs themselves
may be split across nodes, but each “daemon” will be with at least one “spawn” and vice-versa. They may also wind
up all together on the same node, depending on the number of available nodes. And finally, one “master” process will
be started wherever there is room available.

The “name_wildcard” field is used to filter the node_controller instances that can be used to host the nodes in
the current node config - only the node_controller instances with names matching the wildcard can be used. If
the “name_wildcard” is omitted or its value is empty, any node_controller can be used. If node “prototypes” are
marked exclusive, the test controller will attempt to allocate them exclusively to their own node controllers. If not
enough node controllers exist to honor all the exclusive nodes, the test controller will fail with an error message.

Worker Configuration Files

QoS Masking

In a typical DDS application, default QoS objects are often supplied by the entity factory so that the application devel-
oper can make required changes locally and not impact larger system configuration choices. As such, the QoS objects
found within the JSON configuration file should be treated as a “delta” from the default configuration object of a parent
factory class. So while the JSON “qos” element names will directly match the relevant IDL element names, there will
also be an additional “qos_mask” element that lives alongside the “qos” element in order to specify which elements
apply. For each QoS attribute “attribute” within the “qos” object, there will also be a boolean “has_attribute” within

228 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

the “qos_mask” which informs the builder library that this attribute should indeed be applied against the default QoS
object supplied by the parent factory class before the entity is created.

IDL Definition

struct TimeStamp {
long sec;
unsigned long nsec;

};

typedef sequence<string> StringSeq;
typedef sequence<double> DoubleSeq;

enum PropertyValueKind { PVK_TIME, PVK_STRING, PVK_STRING_SEQ, PVK_STRING_SEQ_SEQ, PVK_
→˓DOUBLE, PVK_DOUBLE_SEQ, PVK_ULL };
union PropertyValue switch (PropertyValueKind) {
case PVK_TIME:
TimeStamp time_prop;

case PVK_STRING:
string string_prop;

case PVK_STRING_SEQ:
StringSeq string_seq_prop;

case PVK_STRING_SEQ_SEQ:
StringSeqSeq string_seq_seq_prop;

case PVK_DOUBLE:
double double_prop;

case PVK_DOUBLE_SEQ:
DoubleSeq double_seq_prop;

case PVK_ULL:
unsigned long long ull_prop;

};

struct Property {
string name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

struct ConfigProperty {
string name;
string value;

};
typedef sequence<ConfigProperty> ConfigPropertySeq;

// ConfigSection

struct ConfigSection {
string name;
ConfigPropertySeq properties;

};
typedef sequence<ConfigSection> ConfigSectionSeq;

// Writer

(continues on next page)

2.6. Bench Performance & Scalability Test Framework 229

OpenDDS, Release 3.24.0

(continued from previous page)

struct DataWriterConfig {
string name;
string topic_name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::DataWriterQos qos;
DataWriterQosMask qos_mask;

};
typedef sequence<DataWriterConfig> DataWriterConfigSeq;

// Reader

struct DataReaderConfig {
string name;
string topic_name;
string listener_type_name;
unsigned long listener_status_mask;
PropertySeq listener_properties;
string transport_config_name;
DDS::DataReaderQos qos;
DataReaderQosMask qos_mask;
StringSeq tags;

};
typedef sequence<DataReaderConfig> DataReaderConfigSeq;

// Publisher

struct PublisherConfig {
string name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::PublisherQos qos;
PublisherQosMask qos_mask;
DataWriterConfigSeq datawriters;

};
typedef sequence<PublisherConfig> PublisherConfigSeq;

// Subscription

struct SubscriberConfig {
string name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::SubscriberQos qos;
SubscriberQosMask qos_mask;
DataReaderConfigSeq datareaders;

};
typedef sequence<SubscriberConfig> SubscriberConfigSeq;

(continues on next page)

230 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

(continued from previous page)

// Topic

struct ContentFilteredTopic {
string cft_name;
string cft_expression;
DDS::StringSeq cft_parameters;

};

typedef sequence<ContentFilteredTopic> ContentFilteredTopicSeq;

struct TopicConfig {
string name;
string type_name;
DDS::TopicQos qos;
TopicQosMask qos_mask;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
ContentFilteredTopicSeq content_filtered_topics;

};
typedef sequence<TopicConfig> TopicConfigSeq;

// Participant

struct ParticipantConfig {
string name;
unsigned short domain;
DDS::DomainParticipantQos qos;
DomainParticipantQosMask qos_mask;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
StringSeq type_names;
TopicConfigSeq topics;
PublisherConfigSeq publishers;
SubscriberConfigSeq subscribers;

};
typedef sequence<ParticipantConfig> ParticipantConfigSeq;

// TransportInstance

struct TransportInstanceConfig {
string name;
string type;
unsigned short domain;

};
typedef sequence<TransportInstanceConfig> TransportInstanceConfigSeq;

// Discovery

struct DiscoveryConfig {
string name;

(continues on next page)

2.6. Bench Performance & Scalability Test Framework 231

OpenDDS, Release 3.24.0

(continued from previous page)

string type; // "rtps" or "repo"
string ior; // "repo" URI (e.g. "file://repo.ior")
unsigned short domain;

};
typedef sequence<DiscoveryConfig> DiscoveryConfigSeq;

// Process

struct ProcessConfig {
ConfigSectionSeq config_sections;
DiscoveryConfigSeq discoveries;
TransportInstanceConfigSeq instances;
ParticipantConfigSeq participants;

};

// Worker

// This is the root structure of the worker configuration
// For the sake of readability, module names have been omitted
// All structures other than this one belong to the Builder module
struct WorkerConfig {

TimeStamp create_time;
TimeStamp enable_time;
TimeStamp start_time;
TimeStamp stop_time;
TimeStamp destruction_time;
PropertySeq properties;
ProcessConfig process;
ActionConfigSeq actions;
ActionReportSeq action_reports;

};

Annotated Example

{
"create_time": { "sec": -1, "nsec": 0 },

Since the timestamp is negative, this treats the time as relative and waits one second.

"enable_time": { "sec": -1, "nsec": 0 },
"start_time": { "sec": 0, "nsec": 0 },

Since the time is zero and thus neither absolute nor relative, this treats the time as indefinite and waits for keyboard
input from the user.

"stop_time": { "sec": -10, "nsec": 0 },

Again, a relative timestamp. This time, it waits for 10 seconds for the test actions to run before stopping the test.

"destruction_time": { "sec": -1, "nsec": 0 },

(continues on next page)

232 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

(continued from previous page)

"process": {

This is the primary section where all the DDS entities are described, along with configuration of OpenDDS.

"config_sections": [

The elements of this section are functionally identical to the sections of an OpenDDS .ini file with the same name.
Each config section is created programmatically within the worker process using the name provided and made avail-
able to the OpenDDS ServiceParticipant during entity creation. The example here sets the value of both the
DCPSSecurity and DCPSDebugLevel keys to 0 within the [common] section of the configuration.

{ "name": "common",
"properties": [
{ "name": "DCPSDefaultDiscovery",
"value":"rtps_disc"

},
{ "name": "DCPSGlobalTransportConfig",
"value":"$file"

},
{ "name": "DCPSDebugLevel",
"value": "0"

},
{ "name": "DCPSPendingTimeout",
"value": "3"

}
]

},
{ "name": "rtps_discovery/rtps_disc",
"properties": [
{ "name": "ResendPeriod",
"value": "5"

}
]

},
{ "name": "transport/rtps_transport",
"properties": [
{ "name": "transport_type",
"value": "rtps_udp"

}
]

}
],
"participants": [

The list of participants to create.

{ "name": "participant_01",
"domain": 7,
"transport_config_name": "rtps_instance_01",

The transport config that gets bound to this participant

2.6. Bench Performance & Scalability Test Framework 233

OpenDDS, Release 3.24.0

"qos": { "entity_factory": { "autoenable_created_entities": false } },
"qos_mask": { "entity_factory": { "has_autoenable_created_entities": false } },

An example of QoS masking. Note that in this example, the boolean flag is false, so the QoS
mask is not actually applied. In this case, both lines here were added to make switching back and
forth between autoenable_created_entities easier (simply change the value of the bottom element
"has_autoenable_created_entities" to "true").

"topics": [

List of topics to register for this participant

{ "name": "topic_01",
"type_name": "Bench::Data"

Note the type name. "Bench::Data" is currently the only topic type supported by the Bench framework. That said, it
contains a variably sized array of octets, allowing a configurable range of data payload sizes (see write_action below).

"content_filtered_topics": [
{
"cft_name": "cft_1",
"cft_expression": "filter_class > %0",
"cft_parameters": ["2"]

}
]

List of content filtered topics. Note "cft_name". Its value can be used in DataReader "topic_name" to use the
content filter.

}
],
"subscribers": [

List of subscribers

{ "name": "subscriber_01",
"datareaders": [

List of DataReaders

{ "name": "datareader_01",
"topic_name": "topic_01",
"listener_type_name": "bench_drl",
"listener_status_mask": 4294967295,

Note the listener type and status mask. "bench_drl" is a listener type registered by the Bench Worker application that
does most of the heavy lifting in terms of stats calculation and reporting. The mask is a fully-enabled bitmask for all
listener events (i.e. 2^32 - 1).

"qos": { "reliability": { "kind": "RELIABLE_RELIABILITY_QOS" } },
"qos_mask": { "reliability": { "has_kind": true } },

DataReaders default to best effort QoS, so here we are setting the reader to reliable QoS and flagging the qos_mask
appropriately in order to get a reliable datareader.

234 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

"tags": ["my_topic", "reliable_transport"]

The config can specify a list of tags associated with each data reader. The statistics for each tag is computed in addition
to the overall statistics and can be printed out at the end of the run by the test_controller.

}
]

}
],
"publishers": [

List of publishers within this participant

{ "name": "publisher_01",
"datawriters": [

List of DataWriters within this publisher

{ "name": "datawriter_01",

Note that each DDS entity is given a process-entity-unique name, which can be used below to locate / identify this
entity.

"topic_name": "topic_01",
"listener_type_name": "bench_dwl",
"listener_status_mask": 4294967295

}
]

}
]

}
]

},
"actions": [

A list of worker ‘actions’ to start once the test ‘start’ period begins.

{
"name": "write_action_01",
"type": "write",

Current valid types are "write", "forward", and "set_cft_parameters".

"writers": ["datawriter_01"],

Note the datawriter name defined above is passed into the action’s writer list. This is used to locate the writer within
the process.

"params": [
{ "name": "data_buffer_bytes",

The size of the octet array within the Bench::Data message. Note, actual messages will be slightly larger than this
value.

2.6. Bench Performance & Scalability Test Framework 235

OpenDDS, Release 3.24.0

"value": { "$discriminator": "PVK_ULL", "ull_prop": 512 }
},
{ "name": "write_frequency",

The frequency with which the write action attempts to write a message. In this case, twice a second.

"value": { "$discriminator": "PVK_DOUBLE", "double_prop": 2.0 }
},

{ "name": "filter_class_start_value",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

},
{ "name": "filter_class_stop_value",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

},
{ "name": "filter_class_increment",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

}

Value range and increment for "filter_class" data variable, used when writing data. This variable is an unsigned
integer intended to be used for content filtered topics “set_cft_parameters” actions.

]
},

{ "name": "cft_action_01",
"type": "set_cft_parameters",
"params": [
{ "name": "content_filtered_topic_name",
"value": { "$discriminator": "PVK_STRING", "string_prop": "cft_1" }

},
{ "name": "max_count",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 3 }

},

Maximum count of “Set” actions to be taken.

{ "name": "param_count",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 1 }

},

Number of parameters to be set

{ "name": "set_frequency",
"value": { "$discriminator": "PVK_DOUBLE", "double_prop": 2.0 }

},

The frequency for set action, per second

{ "name": "acceptable_param_values",
"value": { "$discriminator": "PVK_STRING_SEQ_SEQ", "string_seq_seq_prop": [["1", "2",

→˓"3"]] }
},

236 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

Lists of allowed values to set to, for each parameter. Worker will iterate thought the list sequentially unless
"random_order" flag (below) is specified

{ "name": "random_order",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 1 }

}
]

}

]
}

2.6.6 Detailed Application Descriptions

test_controller

As mentioned above, the test_controller application is the application responsible for running test scenarios and, as
such, will probably wind up being the application most frequently run directly by testers. The test_controller needs
network visibility to at least one node_controller configured to run on the same domain. It expects, as arguments,
the path to a directory containing config files (both scenario & worker) and the name of a scenario configuration file
to run (without the .json extension). For historical reasons, the config directory is often simply called example.
The test_controller application also supports a number of optional configuration parameters, some of which are
described in the section below.

Usage

test_controller CONFIG_PATH SCENARIO_NAME [OPTIONS]

test_controller --help|-h

This is a subset of the options. Use --help option to see all the options.

CONFIG_PATH

Path to the directory of the test configurations and artifacts

SCENARIO_NAME

Name of the scenario file in the test context without the .json extension.

--domain N

The DDS Domain to use. The default is 89.

--wait-for-nodes N

The number of seconds to wait for nodes before broadcasting the scenario to them. The default is 10 seconds.

--timeout N

The number of seconds to wait for a scenario to complete. Overrides the value defined in the scenario. If N is 0,
there is no timeout.

--override-create-time N

Overwrite individual worker configs to create their DDS entities N seconds from now (absolute time reference)

--override-start-time N

Overwrite individual worker configs to start their test actions (writes & forwards) N seconds from now (absolute
time reference)

2.6. Bench Performance & Scalability Test Framework 237

OpenDDS, Release 3.24.0

--tag TAG

Specify a tag for which the performance statistics will be printed out (and saved to a results file). Multiple
instances of this option can be specified, each for a single tag.

--json-result-id ID

Specify a name to store the raw JSON report under. By default, this not enabled. These results will contain the
full raw Bench::TestController report, including all node controller and worker reports (and DDS entity
reports)

node_controller

The node controller application is best thought of as a daemon, though the application can be run both in a long-
running daemon mode and also a one-shot mode more appropriate for testing. The daemon-exit-on-error mode
additionally has the ability to exit the process every time an error is encountered, which is useful for restarting the
application when errors are detected, if run as a part of an OS system environment (systemd, supervisord, etc).

Usage

node_controller [OPTIONS] one-shot|daemon|daemon-exit-on-error

one-shot

Run a single batch of worker requests (configs > processes > reports) and report the results before exiting. Useful
for one-off and local testing.

daemon

Act as a long-running process that continually runs batches of worker requests, reporting the results. Attempts
to recover from errors.

daemon-exit-on-error

Act as a long-running process that continually runs batches of worker requests, reporting the results. Does not
attempt to recover from errors.

--domain N

The DDS Domain to use. The default is 89.

--name STRING

Human friendly name for the node. Will be used by the test controller for referring to the node. During allocation
of node controllers, the name is used to match against the “name_wildcard” fields of the node configs. Only node
controllers whose names match the “name_wildcard” of a given node config can be allocated to that node config.
Multiple nodes could have the same name.

worker

The worker application is meant to mimic the behavior of a single arbitrary OpenDDS test application. It uses the Bench
builder library along with its JSON configuration file to first configure OpenDDS (including discovery & transports)
and then create all required DDS entities using any desired DDS QoS attributes. Additionally, it allows the user to
configure several test phase timing parameters, using either absolute or relative times:

• DDS entity creation (create_time)

• DDS entity “enabling” (enable_time) (only relevant if autoenable_created_entitiesQoS setting is false)

• test actions start time (start_time)

• test actions stop time (stop_time)

238 Chapter 2. Internal Documentation

OpenDDS, Release 3.24.0

• DDS entity destruction (destruction_time)

Finally, it also allows for the configuration and execution of test “actions” which take place between the “start” and
“stop” times indicated in configuration.These may make use of the created DDS entities in order to simulate application
behavior. At the time of this writing, the three actions are “write”, which will write to a datawriter using data of
a configurable size and frequency (and maximum count), “forward”, which will pass along the data read from one
datareader to a datawriter, allowing for more complex test behaviors (including round-trip latency & jitter calculations),
and "set_cft_parameters", which will change the content filtered topic parameter values dynamically. In addition
to reading a JSON configuration file, the worker is capable of writing a JSON report file that contains various test
statistics gathered from listeners attached to the created DDS entities. This report is read by the node_controller
after the worker process ends and is then sent back to the waiting test_controller.

Usage

worker [OPTIONS] CONFIG_FILE

--log LOG_FILE

The log file path. Will log to stdout if not passed.

--report REPORT_FILE

The report file path.

2.6. Bench Performance & Scalability Test Framework 239

OpenDDS, Release 3.24.0

240 Chapter 2. Internal Documentation

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

241

OpenDDS, Release 3.24.0

242 Chapter 3. Indices and tables

INDEX

Symbols
--domain

node_controller command line option, 238
test_controller command line option, 237

--json-result-id
test_controller command line option, 238

--log
worker command line option, 239

--name
node_controller command line option, 238

--override-create-time
test_controller command line option, 237

--override-start-time
test_controller command line option, 237

--report
worker command line option, 239

--tag
test_controller command line option, 237

--timeout
test_controller command line option, 237

--wait-for-nodes
test_controller command line option, 237

A
ACE_ROOT, 222

C
CONFIG_PATH

test_controller command line option, 237

D
daemon

node_controller command line option, 238
daemon-exit-on-error

node_controller command line option, 238
DDS_ROOT, 222, 226

E
environment variable

ACE_ROOT, 197, 222
DDS_ROOT, 197, 222, 226

TAO_ROOT, 197

N
node_controller command line option

--domain, 238
--name, 238
daemon, 238
daemon-exit-on-error, 238
one-shot, 238

O
one-shot

node_controller command line option, 238

R
RFC

RFC 2560, 170
RFC 5280, 170

S
SCENARIO_NAME

test_controller command line option, 237

T
test_controller command line option

--domain, 237
--json-result-id, 238
--override-create-time, 237
--override-start-time, 237
--tag, 237
--timeout, 237
--wait-for-nodes, 237
CONFIG_PATH, 237
SCENARIO_NAME, 237

W
worker command line option

--log, 239
--report, 239

243

	Developer’s Guide
	Introduction
	What is OpenDDS?
	Licensing Terms
	About This Guide
	Highlights of the 3.23 Release
	ACE/TAO Version Compatibility
	Conventions

	Examples
	Related Documents
	Supported Platforms
	Data-Centric Publish-Subscribe (DCPS) Overview
	Basic Concepts
	Domain
	DomainParticipant
	Topic
	DataWriter
	Publisher
	Subscriber
	DataReader

	Built-In Topics
	Quality of Service Policies
	Listeners
	Conditions

	OpenDDS Implementation
	Compliance
	DDS Compliance
	DDSI-RTPS Compliance
	OpenDDS RTPS Implementation Notes

	IDL Compliance

	Extensions to the DDS Specification
	OpenDDS Architecture
	Design Philosophy
	Extensible Transport Framework (ETF)
	DDS Discovery
	Centralized Discovery with DCPSInfoRepo
	Peer-to-Peer Discovery with RTPS

	Threading
	Configuration

	Installation
	Building With a Feature Enabled or Disabled
	Disabling the Building of Built-In Topic Support
	Disabling the Building of Compliance Profile Features
	Content-Subscription Profile
	Persistence Profile
	Ownership Profile
	Object Model Profile

	Building Applications that use OpenDDS
	MPC: The Makefile, Project, and Workspace Creator
	CMake
	Custom Build systems

	Getting Started
	Using DCPS
	Defining Data Types with IDL
	Identifying Topic Types
	Keys
	Union Topic Types
	Topic Types vs. Nested Types

	Processing the IDL
	A Simple Message Publisher
	Initializing the Participant
	Registering the Data Type and Creating a Topic
	Creating a Publisher
	Creating a DataWriter and Waiting for the Subscriber
	Sample Publication

	Setting up the Subscriber
	Initializing the Participant
	Registering the Data Type and Creating a Topic
	Creating the subscriber
	Creating a DataReader and Listener

	The Data Reader Listener Implementation
	Cleaning up in OpenDDS Clients
	Running the Example
	Running Our Example with RTPS

	Data Handling Optimizations
	Registering and Using Instances in the Publisher
	Reading Multiple Samples
	Zero-Copy Read

	Quality of Service
	Introduction
	QoS Policies
	Default QoS Policy Values
	LIVELINESS
	RELIABILITY
	HISTORY
	DURABILITY
	DURABILITY_SERVICE
	RESOURCE_LIMITS
	PARTITION
	DEADLINE
	LIFESPAN
	USER_DATA
	TOPIC_DATA
	GROUP_DATA
	TRANSPORT_PRIORITY
	LATENCY_BUDGET
	ENTITY_FACTORY
	PRESENTATION
	DESTINATION_ORDER
	WRITER_DATA_LIFECYCLE
	READER_DATA_LIFECYCLE
	TIME_BASED_FILTER
	OWNERSHIP
	OWNERSHIP_STRENGTH

	Policy Example

	Conditions and Listeners
	Introduction
	Communication Status Types
	Topic Status Types
	Inconsistent Topic Status

	Subscriber Status Types
	Data On Readers Status

	Data Reader Status Types
	Sample Rejected Status
	Liveliness Changed Status
	Requested Deadline Missed Status
	Requested Incompatible QoS Status
	Data Available Status
	Sample Lost Status
	Subscription Matched Status

	Data Writer Status Types
	Liveliness Lost Status
	Offered Deadline Missed Status
	Offered Incompatible QoS Status
	Publication Matched Status

	Listeners
	Topic Listener
	Data Writer Listener
	Publisher Listener
	Data Reader Listener
	Subscriber Listener
	Domain Participant Listener

	Conditions
	Status Condition
	Status Condition Example

	Additional Condition Types
	Read Conditions
	Query Conditions
	Guard Conditions

	Content-Subscription Profile
	Introduction
	Content-Filtered Topic
	Filter Expressions
	Expression Parameters
	Filtering and Dispose/Unregister Samples
	Content-Filtered Topic Example

	Query Condition
	Query Expressions
	Query Condition Example

	Multi Topic
	Topic Expressions
	Usage Notes
	Join Keys and DCPS Data Keys
	How Resulting Samples are Constructed
	Use with Subscriber Listeners

	Multi Topic Example
	IDL and Topic Expression
	Creating the Multi Topic Data Reader
	Reading Data with the Multi Topic Data Reader

	Built-In Topics
	Introduction
	Built-In Topics for DCPSInfoRepo Configuration
	DCPSParticipant Topic
	DCPSTopic Topic
	DCPSPublication Topic
	DCPSSubscription Topic
	Built-In Topic Subscription Example
	OpenDDS-specific Built-In Topics
	OpenDDSParticipantLocation Topic
	OpenDDSConnectionRecord Topic
	OpenDDSInternalThread Topic

	Run-time Configuration
	Configuration Approach
	Common Configuration Options
	Discovery Configuration
	Domain Configuration
	Configuring Applications for DCPSInfoRepo
	Configuring for Multiple DCPSInfoRepo Instances

	Configuring for DDSI-RTPS Discovery
	Additional DDSI-RTPS Discovery Features

	Configuring for Static Discovery

	Transport Configuration
	Overview
	Transport Concepts
	How OpenDDS Selects a Transport

	Configuration File Examples
	Single Transport Configuration
	Using Mixed Transports
	Using Multiple Configurations

	Transport Registry Example
	Transport Configuration Options
	Transport Instance Options
	Configuration Options Common to All Transports
	TCP/IP Transport Configuration Options
	TCP/IP Reconnection Options

	UDP/IP Transport Configuration Options
	IP Multicast Transport Configuration Options
	RTPS_UDP Transport Configuration Options
	Additional RTPS_UDP Features

	Shared-Memory Transport Configuration Options

	Discovery and Transport Configuration Templates
	Configuring Discovery for a Set of Similar Domains
	Configuring a Set of Similar Transports
	Adding Customizations
	Example Config.ini

	Logging
	DCPS Layer Debug Logging
	Transport Layer Debug Logging
	Security Debug Logging

	opendds_idl
	opendds_idl Command Line Options
	Using the IDL-to-C++11 Mapping

	The DCPS Information Repository
	DCPS Information Repository Options
	Repository Federation
	Federation Management
	Federation Example
	Configuring the Federation Example
	Running the Federation Example

	Java Bindings
	Introduction
	IDL and Code Generation
	Setting up an OpenDDS Java Project
	A Simple Message Publisher
	Initializing the Participant
	Registering the Data Type and Creating a Topic
	Creating a Publisher
	Creating a DataWriter and Registering an Instance

	Setting up the Subscriber
	Creating a Subscriber
	Creating a DataReader and Listener

	The DataReader Listener Implementation
	Cleaning up OpenDDS Java Clients
	Configuring the Example
	Running the Example
	Java Message Service (JMS) Support

	Modeling SDK
	Overview
	Model Capture
	Code Generation
	Programming

	Installation and Getting Started
	Prerequisites
	Installation
	Getting Started

	Developing Applications
	Modeling Support Library
	The Application Class
	The Service Class

	Generated Code
	The DCPS Model Class
	The Traits Class
	The Service Typedef
	Data Library Generated Code
	QoS Policy Library Generated Code

	Application Code Requirements
	Required headers
	Exception Handling
	Instantiation
	Publisher Code
	Subscriber Code
	MPC Projects
	Dependencies Between Models

	Alternate Interfaces to Data
	Recorder and Replayer
	API Structure
	Usage Model
	QoS Processing
	Durability details

	Recorder With XTypes Dynamic Language Binding

	Observer
	Attaching Observers to Entities
	Writing Observer-Derived Classes
	The Observer::Sample structure

	Safety Profile
	Overview
	Safety Profile Subset of OpenDDS
	Safety Profile Configurations of ACE
	Run-time Configurable Options
	Running ACE and OpenDDS Tests
	Using the Memory Pool in Applications

	DDS Security
	Building OpenDDS with Security Enabled
	Prerequisites
	Building OpenDDS with Security on Windows
	Building OpenDDS with Security on Linux
	Building OpenDDS with Security on macOS
	Building OpenDDS with Security for Android

	Architecture of the DDS Security Specification
	Terms and Background Info
	Required DDS Security Artifacts
	Per-Domain Artifacts
	Per-Participant Artifacts

	Required OpenDDS Configuration
	DDS Security Configuration via PropertyQosPolicy
	PropertyQosPolicy Example Code
	Identity Certificates and Certificate Authorities
	Identity, Permissions, and Subject Names
	Examples in the OpenDDS Source Code Repository
	Using OpenSSL Utilities for OpenDDS
	Creating Self-Signed Certificate Authorities
	Creating Signed Certificates with an Existing CA
	Signing Documents with SMIME

	Domain Governance Document
	Global Governance Model
	Key Governance Elements
	Domain Rule Configuration Options
	Topic Rule Configuration Options
	Governance XML Example

	Participant Permissions Document
	Key Permissions Elements
	Permissions XML Example

	DDS Security Implementation Status

	Internet-Enabled RTPS
	Overview
	The RtpsRelay
	Using the RtpsRelay
	Usage
	Deployment Considerations

	Interactive Connectivity Establishment (ICE) for RTPS
	Security Considerations
	Use DDS Security
	Understand the Weaknesses of (Secure) RTPS Discovery
	Run Participants in a Secure Network

	XTypes
	Overview
	Features
	Extensibility
	Assignability
	Interoperability with non-XTypes Implementations
	Dynamic Language Binding

	Examples and Explanation
	Mutable Extensibility
	Assignability
	Member IDs
	Appendable Extensibility
	Final Extensibility
	Try Construct

	Data Representation
	Type Consistency Enforcement
	TypeConsistencyEnforcementQosPolicy
	Type Compatibility

	IDL Annotations
	Indicating Which Types Can Be Topic Types
	@topic
	@nested
	@default_nested

	Specifying allowed Data Representations
	@OpenDDS::data_representation(XML)
	@OpenDDS::data_representation(XCDR1)
	@OpenDDS::data_representation(XCDR2)
	@OpenDDS::data_representation(UNALIGNED_CDR)
	Standard @data_representation

	Determining Extensibility
	@mutable
	@appendable
	@final

	Customizing XTypes per-member
	@try_construct(USE_DEFAULT)
	@try_construct(TRIM)
	@try_construct(DISCARD)

	Member ID assignment
	@id(value)
	@autoid(value)
	@hashid(value)

	Determining the Key Fields of a Type
	@key

	Dynamic Language Binding
	Representing Types with TypeObject and DynamicType
	Enabling Use of CompleteTypeObjects

	Interpreting Data Samples with DynamicData
	Reading Basic Types
	Reading Collections of Basic Types
	Reading Members of More Complex Types

	Populating Data Samples With DynamicData
	DynamicDataWriters and DynamicDataReaders
	Obtaining DynamicType and Registering TypeSupport
	Creating and Using a DynamicDataWriter or DynamicDataReader
	Limitations of the Dynamic Language Binding

	Unimplemented Features
	XCDR1 Support
	Type System
	Annotations

	Differences from the specification

	Common Terms
	Environment Variables

	Internal Documentation
	OpenDDS Development Guidelines
	Repository
	Automated Build Systems
	Doxygen
	Dependencies
	Text File Formatting
	C++ Standard
	C++ Coding Style
	Example
	Punctuation
	Whitespace
	Language Usage
	Pointers and References
	Naming
	Comments
	Documenting Code for Doxygen
	Preprocessor
	Includes
	Order
	Path
	Example

	Initialization
	Time
	Logging
	ACE Logging
	Usage in OpenDDS
	Logging Conditions and Priority
	Message Content
	Examples

	Documentation Guidelines
	Building
	Requirements
	HTML
	PDF
	Dash
	Strict Checks
	Building Manually

	RST/Sphinx Usage
	Special Links
	ghfile
	ghissue
	ghpr
	omgissue

	Unit Tests
	The Goals of Unit Testing
	Unit Test Organization
	Unit Test Scope
	Isolating Dependencies
	Writing a New Unit Test
	Using GTest
	Code Coverage
	Final Word

	GitHub Actions Summary and FAQ
	Overview
	Legend for GitHub Actions Build Names
	Operating System
	Build Configuration
	Build Type
	Build Options
	Feature Mask

	build_and_test.yml Workflow
	Triggering the Build And Test Workflow
	Job Types
	.lst Files
	Workflow Checks
	Blocked Tests
	Only Failing on CI
	Failing Both CI and scoreboard

	Test Results
	Artifacts
	Using Artifacts to Replicate Builds
	Using Artifacts to View More Test Information

	Caching

	Running Tests
	Main Test Suite
	Building
	Running
	For Unixes (Linux, macOS, BSDs, etc)
	For Windows

	Manual Configuration

	Bench Performance & Scalability Test Framework
	Motivation
	Overview
	Worker
	Node Controller
	Test Controller

	Building Bench
	Required Features
	Required Targets

	Running Bench
	Environment Variables
	Linux/Unix
	Windows

	Running a Bench CI Test
	Running Scenarios Manually

	Configuration Files
	Scenario Configuration Files
	IDL Definition
	Annotated Example

	Worker Configuration Files
	QoS Masking
	Annotated Example

	Detailed Application Descriptions
	test_controller
	Usage

	node_controller
	Usage

	worker
	Usage

	Indices and tables
	Index

