
OpenDDS
Release 3.28.1

OpenDDS Foundation

May 02, 2024





CONTENTS

1 Release Notes 1
1.1 v3.28.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 v3.28.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 v3.27.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 v3.26.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 v3.26.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 v3.25.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 v3.24.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 v3.24.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 v3.24.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10 Older Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Developer’s Guide 13
2.1 About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Quick Start Guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Introduction to DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Shapes Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Introduction to OpenDDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Building and Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.8 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.9 Conditions and Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.10 Content-Subscription Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2.11 Built-in Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2.12 Run-time Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
2.13 opendds_idl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2.14 The DCPS Information Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
2.15 Java Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
2.16 Modeling SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2.17 Alternate Interfaces to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.18 Safety Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
2.19 DDS Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
2.20 Internet-Enabled RTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
2.21 XTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
2.22 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
2.23 Annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

3 Internal Documentation 315
3.1 OpenDDS Development Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
3.2 Documentation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

i



3.3 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
3.4 GitHub Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
3.5 Running Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
3.6 Bench Performance & Scalability Test Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
3.7 Release Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

4 Glossary 375
4.1 Common Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
4.2 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

5 Using OpenDDS 379

6 Other Documentation 381

Index 383

ii



CHAPTER

ONE

RELEASE NOTES

These are all the recent releases of OpenDDS.

1.1 v3.28.1

Released 2024-05-02

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.1.1 Additions

• Added OPENDDS_COMPILE_WARNINGS and configure option --compile-warnings=[WARNING|ERROR] to
enable additional compiler warnings and treating them as errors. (PR #4558)

• Add a configure script option for MPC options requiring a value. (PR #4574)

– For example, ./configure --mpc:value_template build_flags+="-Wall -Werror".

1.1.2 Platform Support and Dependencies

• Building with CMake

– Fixed CMake saying it’s missing the ACE library when using OPENDDS_ACE_TAO_SRC with an ACE/TAO
outside of the build directory. (PR #4604)

1.1.3 Removals

• Values passed to the configure script via --mpcopts are no longer split on spaces. (PR #4574)

– For example, ./configure --mpcopts="-value_template build_flags+=-Wall -Werror" must
now be written as ./configure --mpcopts=-value_template --mpcopts="build_flags+=-Wall
-Werror".

1

https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.28.1
https://opendds.readthedocs.io/en/dds-3.28.1
https://github.com/OpenDDS/OpenDDS/pull/4558
https://github.com/OpenDDS/OpenDDS/pull/4574
https://github.com/OpenDDS/OpenDDS/pull/4604
https://github.com/OpenDDS/OpenDDS/pull/4574


OpenDDS, Release 3.28.1

1.1.4 Fixes

• Fixed incorrect usage of OpenSSL in gov_gen application. (PR #4591)

• Fix bug where Service_Participant::type_object_encoding doesn’t return configured value. (PR
#4593)

• Do not send heartbeats during a fragmented send in rtps_udp. (PR #4603)

1.1.5 Documentation

• Added [transport] send_buffer_size (rtps_udp) and [transport] rcv_buffer_size
(rtps_udp). (PR #4602)

1.2 v3.28.0

Released 2024-04-16

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.2.1 Additions

• Added an XCDR2 value writer that can be used to serialize static and dynamic samples to XCDR2 encoding
format. (PR #4421)

• Added utility to flatten the index to a multi-dimensional array represented by dynamic data. (PR #4421)

• A new header, dds/OpenDDSConfig.h is generated by configure or CMake. (PR #4482, PR #4498)

– Users manually configuring a build will need to create this file, which may be empty, or add #define
OPENDDS_IGNORE_OPENDDSCONFIG_H_FILE to their ace/config.h file.

– See dds/OpenDDSConfig.h.in for details.

• ConfigStore

– Converted the transport and discovery loading and domain section to use ConfigStore. (PR #4488, PR
#4475, PR #4469, PR #4454)

– OpenDDS can now be configured with environment variables. (PR #4491)

* See Configuration with Environment Variables for details.

– OpenDDS now supports multiple config files. (PR #4505)

* See Configuration Approach for details.

– The ConfigStore is available in Java. (PR #4515)

• The @value(x) annotation is now supported on IDL enumerators when using the IDL-to-C++11 mapping. (PR
#4519)

– See @value(v) for details.

• The IDL for the Shapes example was updated for interoperability. (PR #4528)

• Added [rtps_discovery] SpdpUserTag. (PR #4533)

2 Chapter 1. Release Notes

https://github.com/OpenDDS/OpenDDS/pull/4591
https://github.com/OpenDDS/OpenDDS/pull/4593
https://github.com/OpenDDS/OpenDDS/pull/4593
https://github.com/OpenDDS/OpenDDS/pull/4603
https://github.com/OpenDDS/OpenDDS/pull/4602
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.28
https://opendds.readthedocs.io/en/dds-3.28
https://github.com/OpenDDS/OpenDDS/pull/4421
https://github.com/OpenDDS/OpenDDS/pull/4421
https://github.com/OpenDDS/OpenDDS/pull/4482
https://github.com/OpenDDS/OpenDDS/pull/4498
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/OpenDDSConfig.h.in
https://github.com/OpenDDS/OpenDDS/pull/4488
https://github.com/OpenDDS/OpenDDS/pull/4475
https://github.com/OpenDDS/OpenDDS/pull/4475
https://github.com/OpenDDS/OpenDDS/pull/4469
https://github.com/OpenDDS/OpenDDS/pull/4454
https://github.com/OpenDDS/OpenDDS/pull/4491
https://github.com/OpenDDS/OpenDDS/pull/4505
https://github.com/OpenDDS/OpenDDS/pull/4515
https://github.com/OpenDDS/OpenDDS/pull/4519
https://github.com/OpenDDS/OpenDDS/pull/4519
https://github.com/OpenDDS/OpenDDS/pull/4528
https://github.com/OpenDDS/OpenDDS/pull/4533


OpenDDS, Release 3.28.1

• The data type for the OpenDDS-specific Built-in ParticipantLocation Topic now includes the lease duration. (PR
#4545)

– See OpenDDSParticipantLocation Topic for details.

• Allow compile-time configuration of CLOCK_BOOTTIME as the clock used for timers (PR #4568)

– If the platform supports it, this can be done using --boottime when building with the configure script or
OPENDDS_BOOTTIME_TIMERS when building with CMake.

1.2.2 Platform Support and Dependencies

• Building with CMake

– Fixed building with CMake and Apple Clang on macOS without setting -DCMAKE_CXX_STANDARD=14 or
using ACE 6. (PR #4481, PR #4487)

– Added support for C++03 and some support for building ACE/TAO with the same compiler and C++ stan-
dard as OpenDDS. (PR #4481, PR #4487)

– Fixed building release builds on Windows at the same time as ACE/TAO (PR #4535)

– Fixed ACE/TAO build not getting Xerces path when using OPENDDS_XERCES3. (PR #4572)

1.2.3 Fixes

• The ValueReader and ValueWriter interfaces now use ACE_CDR::Fixed as the type of IDL fixed values (PR
#4466)

• CMake Config Package

– Made opendds_target_sources(INCLUDE_BASE) work correctly in more cases, specifically involving
generating an export header. (PR #4489)

* Added opendds_target_sources(EXPORT_HEADER_DIR) and opendds_export_header(DIR)
as part of these changes.

• Fixed bug so ConfigStore entries generated by SEDP are cleaned up. (PR #4540, PR #4485)

• Fixed bug where various RtpsDiscoveryConfig setters didn’t set. (PR #4540, PR #4485)

• Fixed bug where vread for unions used uninitialized memory. (PR #4544)

• Fixed bug where an RTPS Reader gets stuck when heartbeat advances. (PR #4548)

• XCDR2 KeyOnly serialization of union that has no key now has a delimiter for appendable and mutable exten-
sibility. (PR #4554)

1.2.4 Documentation

• Run-time Configuration (PR #4464, PR #4570, PR #4467, PR #4588)

– Restructured configuration properties so they can be linked to directly. Also reviewed each property de-
scription to correct or add missing context as needed.

• Introduction to OpenDDS (PR #4467)

– Added Plugins to explain generally how discovery, transports, and security libraries must be initialized
when statically linking these libraries.

– Added summaries of important information needed to use the discovery and transport libraries.

1.2. v3.28.0 3

https://github.com/OpenDDS/OpenDDS/pull/4545
https://github.com/OpenDDS/OpenDDS/pull/4545
https://github.com/OpenDDS/OpenDDS/pull/4568
https://github.com/OpenDDS/OpenDDS/issues/4478
https://github.com/OpenDDS/OpenDDS/pull/4481
https://github.com/OpenDDS/OpenDDS/pull/4487
https://github.com/OpenDDS/OpenDDS/pull/4481
https://github.com/OpenDDS/OpenDDS/pull/4487
https://github.com/OpenDDS/OpenDDS/issues/4531
https://github.com/OpenDDS/OpenDDS/pull/4535
https://github.com/OpenDDS/OpenDDS/issues/4375
https://github.com/OpenDDS/OpenDDS/pull/4572
https://github.com/OpenDDS/OpenDDS/pull/4466
https://github.com/OpenDDS/OpenDDS/pull/4466
https://github.com/OpenDDS/OpenDDS/pull/4489
https://github.com/OpenDDS/OpenDDS/pull/4540
https://github.com/OpenDDS/OpenDDS/pull/4485
https://github.com/OpenDDS/OpenDDS/pull/4540
https://github.com/OpenDDS/OpenDDS/pull/4485
https://github.com/OpenDDS/OpenDDS/pull/4544
https://github.com/OpenDDS/OpenDDS/pull/4548
https://github.com/OpenDDS/OpenDDS/pull/4554
https://github.com/OpenDDS/OpenDDS/pull/4464
https://github.com/OpenDDS/OpenDDS/pull/4570
https://github.com/OpenDDS/OpenDDS/pull/4467
https://github.com/OpenDDS/OpenDDS/pull/4588
https://github.com/OpenDDS/OpenDDS/pull/4467


OpenDDS, Release 3.28.1

• Quality of Service (PR #4520)

– Added Property QoS, Data Representation QoS, and Type Consistency Enforcement QoS.

– Every policy now has a box that says if it’s mutable, if it affects writer-reader association, and a link to the
spec definition. Also removed large default value tables and put the default values in these boxes.

– Added links to the QoS policies.

• Added definitions for instance, unregister, and dispose to the glossary. (PR #4520)

• DDS Security

– Added summary of important information needed to use the security library. (PR #4467)

– Moved Fnmatch Expressions into an “annex” file so it can be common between security and partitions QoS.
(PR #4520)

• ConfigStore

– Add configuration capabilities to DevGuide. (PR #4556)

1.3 v3.27.0

Released 2024-02-07

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.3.1 Additions

• Complete interfaces for dealing with DynamicData and DynamicTypes. (PR #4320, PR #4339)

• It is now possible to specify the validity for individual publish/subscribe actions in DDS Security Permission
documents. This is an OpenDDS extension. (PR #4344)

• Building with CMake

– Added new options for how to get ACE/TAO. (PR #4346)

• CMake Config Package

– Added OPENDDS_ACE_VERSION and OPENDDS_TAO_VERSION. (PR #4346)

• Add a warning that @optional is not supported. (PR #4355)

• Convert discovery configurations (repository, static discovery, rtps_discovery including templates) to key-
value store. (PR #4360, PR #4361, PR #4426, PR #4411, PR #4276, PR #4347)

• Convert ICE configuration to key-value store. (PR #4360, PR #4361, PR #4426, PR #4411, PR #4276, PR #4347)

• Change transport_template and rtps_discovery template processing to not generate new keys. (PR
#4360, PR #4361, PR #4426, PR #4411, PR #4276, PR #4347)

4 Chapter 1. Release Notes

https://github.com/OpenDDS/OpenDDS/pull/4520
https://github.com/OpenDDS/OpenDDS/pull/4520
https://github.com/OpenDDS/OpenDDS/pull/4467
https://github.com/OpenDDS/OpenDDS/pull/4520
https://github.com/OpenDDS/OpenDDS/pull/4556
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.27
https://opendds.readthedocs.io/en/dds-3.27
https://github.com/OpenDDS/OpenDDS/pull/4320
https://github.com/OpenDDS/OpenDDS/pull/4339
https://github.com/OpenDDS/OpenDDS/pull/4344
https://github.com/OpenDDS/OpenDDS/pull/4346
https://github.com/OpenDDS/OpenDDS/pull/4346
https://github.com/OpenDDS/OpenDDS/pull/4355
https://github.com/OpenDDS/OpenDDS/pull/4360
https://github.com/OpenDDS/OpenDDS/pull/4361
https://github.com/OpenDDS/OpenDDS/pull/4426
https://github.com/OpenDDS/OpenDDS/pull/4411
https://github.com/OpenDDS/OpenDDS/pull/4276
https://github.com/OpenDDS/OpenDDS/pull/4347
https://github.com/OpenDDS/OpenDDS/pull/4360
https://github.com/OpenDDS/OpenDDS/pull/4361
https://github.com/OpenDDS/OpenDDS/pull/4426
https://github.com/OpenDDS/OpenDDS/pull/4411
https://github.com/OpenDDS/OpenDDS/pull/4276
https://github.com/OpenDDS/OpenDDS/pull/4347
https://github.com/OpenDDS/OpenDDS/pull/4360
https://github.com/OpenDDS/OpenDDS/pull/4360
https://github.com/OpenDDS/OpenDDS/pull/4361
https://github.com/OpenDDS/OpenDDS/pull/4426
https://github.com/OpenDDS/OpenDDS/pull/4411
https://github.com/OpenDDS/OpenDDS/pull/4276
https://github.com/OpenDDS/OpenDDS/pull/4347


OpenDDS, Release 3.28.1

1.3.2 Platform Support and Dependencies

• Improved support for configure script detection of clang on Linux (PR #4449)

• When using Visual C++, OpenDDS can now be configured using --std=c++NN (NN = 17 or 20). (PR #4452)

1.3.3 Fixes

• Updated the read and write semantics of DynamicData for union, expandable collections (sequence and string),
and optional member of an aggregated type. (PR #4278)

• Fixed memory leak where instances were not cleaned up with exclusive ownership. (PR #4343)

• Removed the special handling for sequence members with length code of 5,6, or 7. (PR #4376)

• Reading data from a dynamic data object for a primitive type now must use MEMBER_ID_INVALID id. (PR #4376)

• create_datawriter and create_datareader check if the topic belongs to the same participant as the pub-
lisher/subscriber. (PR #4398)

• Fixed uninitialized durability_service in Topic QoS when using QoS-XML. (PR #4424)

• Fixed a bug where compiling IDL with -Lc++11 -Gequality produced code outside of a namespace that didn’t
compile. (PR #4450)

• SedpLocalAddress now defaults to [common] DCPSDefaultAddress to behave like SpdpLocalAddress
and local_address. (PR #4451)

1.3.4 Notes

• TheParticipantFactory* will now return a null pointer when Configuration with a File doesn’t exist. (PR
#4372)

1.4 v3.26.1

Released 2023-11-14

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.4.1 Fixes

• Building with CMake

– Fixed Issue #4328, where each run of CMake effectively always appended the MPC features to default.
features in ACE. (PR #4330)

• Fixed a corner case in RTPS ParameterList parsing (PR #4336)

• Reject some types of invalid RTPS DataFrag submessages (PR #4348)

1.4. v3.26.1 5

https://github.com/OpenDDS/OpenDDS/pull/4449
https://github.com/OpenDDS/OpenDDS/pull/4452
https://github.com/OpenDDS/OpenDDS/pull/4278
https://github.com/OpenDDS/OpenDDS/pull/4343
https://github.com/OpenDDS/OpenDDS/pull/4376
https://github.com/OpenDDS/OpenDDS/pull/4376
https://github.com/OpenDDS/OpenDDS/pull/4398
https://github.com/OpenDDS/OpenDDS/pull/4424
https://github.com/OpenDDS/OpenDDS/pull/4450
https://github.com/OpenDDS/OpenDDS/pull/4451
https://github.com/OpenDDS/OpenDDS/pull/4372
https://github.com/OpenDDS/OpenDDS/pull/4372
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.26.1
https://opendds.readthedocs.io/en/dds-3.26.1
https://github.com/OpenDDS/OpenDDS/issues/4328
https://github.com/OpenDDS/OpenDDS/pull/4330
https://github.com/OpenDDS/OpenDDS/pull/4336
https://github.com/OpenDDS/OpenDDS/pull/4348


OpenDDS, Release 3.28.1

1.5 v3.26.0

Released 2023-10-23

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.5.1 Additions

• OpenDDS can now be built using CMake for most common scenarios. (PR #4203, PR #4214)

– This is still considered somewhat experimental as it doesn’t support everything that an MPC-built OpenDDS
currently can.

– See Building OpenDDS Using CMake for details.

• Convert transport configurations (rtps_udp, multicast, shmem, tcp, udp) uses key-value store. (PR #4162,
PR #4270, PR #4272, PR #4241, PR #4242, PR #4243, PR #4249, PR #4255)

• CMake Config Package

– Added opendds_install_interface_files to help install IDL files and the files generated from them.
(PR #4203, PR #4214)

– Added OPENDDS_HOST_TOOLS and OPENDDS_ACE_TAO_HOST_TOOLS to allow cross compiling applica-
tions with both MPC and CMake-built OpenDDS. (PR #4203, PR #4214)

– opendds_target_sources:

* Added opendds_target_sources(INCLUDE_BASE) to preserve the directory structure of
the IDL files for compiling the resulting generated files and installing everything using
opendds_install_interface_files. (PR #4203, PR #4214)

* Added opendds_target_sources(USE_VERSIONED_NAMESPACE) as a shortcut to the -Wb,
versioning_* IDL compiler options. (PR #4203, PR #4214)

• Support sending DynamicDataAdapter sample via DynamicDataWriter (PR #4226)

• Added export macro to ConditionImpl (PR #4295)

1.5.2 Deprecations

• Deprecated OPENDDS_FILENAME_ONLY_INCLUDES in favor of opendds_target_sources(INCLUDE_BASE).
(PR #4203, PR #4214)

1.5.3 Fixes

• Improved the subject name parsing to better conform to the DDS Security spec. (PR #4201)

– The order of attributes in subject names is now significant when comparing them.

• Remove from TypeLookupService when remote endpoint is removed from SEDP (PR #4216)

• WaitSet is now notified when DataWriter liveliness is lost. (PR #4223)

• ICE doesn’t use IPv4-mapped IPv6 addresses anymore. (PR #4230)

• Efficiency: Remove per-element locking in JobQueue (PR #4253)

6 Chapter 1. Release Notes

https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.26
https://opendds.readthedocs.io/en/dds-3.26
https://github.com/OpenDDS/OpenDDS/pull/4203
https://github.com/OpenDDS/OpenDDS/pull/4214
https://github.com/OpenDDS/OpenDDS/pull/4162
https://github.com/OpenDDS/OpenDDS/pull/4270
https://github.com/OpenDDS/OpenDDS/pull/4272
https://github.com/OpenDDS/OpenDDS/pull/4241
https://github.com/OpenDDS/OpenDDS/pull/4242
https://github.com/OpenDDS/OpenDDS/pull/4243
https://github.com/OpenDDS/OpenDDS/pull/4249
https://github.com/OpenDDS/OpenDDS/pull/4255
https://github.com/OpenDDS/OpenDDS/pull/4203
https://github.com/OpenDDS/OpenDDS/pull/4214
https://github.com/OpenDDS/OpenDDS/pull/4203
https://github.com/OpenDDS/OpenDDS/pull/4214
https://github.com/OpenDDS/OpenDDS/pull/4203
https://github.com/OpenDDS/OpenDDS/pull/4214
https://github.com/OpenDDS/OpenDDS/pull/4203
https://github.com/OpenDDS/OpenDDS/pull/4214
https://github.com/OpenDDS/OpenDDS/pull/4226
https://github.com/OpenDDS/OpenDDS/pull/4295
https://github.com/OpenDDS/OpenDDS/pull/4203
https://github.com/OpenDDS/OpenDDS/pull/4214
https://github.com/OpenDDS/OpenDDS/pull/4201
https://github.com/OpenDDS/OpenDDS/pull/4216
https://github.com/OpenDDS/OpenDDS/pull/4223
https://github.com/OpenDDS/OpenDDS/pull/4230
https://github.com/OpenDDS/OpenDDS/pull/4253


OpenDDS, Release 3.28.1

• RtpsRelay: fixed bug in record_activity’s use of remove in GuidAddrSet (PR #4254)

• Fix warnings in typeobject_generator when using TAO 3 (PR #4262)

• Fix null pointer when participant is absent when updating locators (PR #4265)

• Initialize variables in TypeObject to silence warnings (PR #4292)

• RtpsRelay: Use ACE_Message_Block’s locking strategy for cached SPDP to fix tsan warning (PR #4293)

• Fix tsan warning in ReactorTask (PR #4298)

1.5.4 Documentation

• Removed documentation for -Grapidjson option of opendds_idl that was removed in 3.20.0 (PR #4231)

• Remove reference to mailing lists (PR #4234)

• Restructured parts of DDS Security page and expanded documentation of some XML security document ele-
ments. (PR #4281)

• OS-specific instructions will now be automatically selected based on the browser’s user agent. (PR #4281)

• OMG specification section references are now links to that section in the specification PDF. (PR #4281)

• Move build and install instructions to DevGuide (PR #4294)

• Incorporate the quick start guides, FAQ, and shapes demo into the DevGuide. (PR #4297)

1.5.5 Notes

• Using Perl 5.38.0 might prevent TAO from building properly, see here for details.

1.6 v3.25.0

Released 2023-07-20

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.6.1 Additions

• The Observer interface now has support for dispose and unregister. (PR #4137)

• OpenDDS now stores configuration information in a key-value store. (PR #4138, PR #4134, PR #4151)

– Configuration values can be set via API, config file, or command line.

* Currently applies to the common section and common transport configuration.

• Added encode_to_string, encode_to_bytes, decode_from_string, and decode_from_bytes to
TypeSupport. (PR #4144, PR #4122, PR #4133, PR #4135)

– These methods convert samples to and from other formats.

– Currently only OpenDDS::DCPS::JSON_DATA_REPRESENTATION is supported.

• Add -Gequality option to opendds_idl to generate == and != for structs and unions. (PR #4154)

1.6. v3.25.0 7

https://github.com/OpenDDS/OpenDDS/pull/4254
https://github.com/OpenDDS/OpenDDS/pull/4262
https://github.com/OpenDDS/OpenDDS/pull/4265
https://github.com/OpenDDS/OpenDDS/pull/4292
https://github.com/OpenDDS/OpenDDS/pull/4293
https://github.com/OpenDDS/OpenDDS/pull/4298
https://github.com/OpenDDS/OpenDDS/pull/4231
https://github.com/OpenDDS/OpenDDS/pull/4234
https://github.com/OpenDDS/OpenDDS/pull/4281
https://github.com/OpenDDS/OpenDDS/pull/4281
https://github.com/OpenDDS/OpenDDS/pull/4281
https://github.com/OpenDDS/OpenDDS/pull/4294
https://github.com/OpenDDS/OpenDDS/pull/4297
https://github.com/DOCGroup/ACE_TAO/issues/2148
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.25
https://opendds.readthedocs.io/en/dds-3.25
https://github.com/OpenDDS/OpenDDS/pull/4137
https://github.com/OpenDDS/OpenDDS/pull/4138
https://github.com/OpenDDS/OpenDDS/pull/4134
https://github.com/OpenDDS/OpenDDS/pull/4151
https://github.com/OpenDDS/OpenDDS/pull/4144
https://github.com/OpenDDS/OpenDDS/pull/4122
https://github.com/OpenDDS/OpenDDS/pull/4133
https://github.com/OpenDDS/OpenDDS/pull/4135
https://github.com/OpenDDS/OpenDDS/pull/4154


OpenDDS, Release 3.28.1

– The members of the struct or union must have a type that could appear in a DDS topic and be supported by
opendds_idl.

– The motivation for this change was to make the generated code more useful as many users go on to define
these operators.

• CMake Config Package

– Added executable targets. (PR #4160)

– OPENDDS_CMAKE_VERBOSE output has been expanded, but now accepts a list of categories to control how
much is logged. (PR #4160)

– Added opendds_export_header to generate an export header. (PR #4160)

– opendds_target_sources:

* Added opendds_target_sources(GENERATE_SERVER_SKELETONS) to allow tao_idl to generate
code for CORBA servers. (PR #4140)

* Added opendds_target_sources(AUTO_LINK) as a fine-grained version of
OPENDDS_AUTO_LINK_DCPS. (PR #4140)

* Added opendds_target_sources(SKIP_TAO_IDL) to disable tao_idl. (PR #4140)

* Added opendds_target_sources(SKIP_OPENDDS_IDL) to disable opendds_idl. (PR #4140)

* Added opendds_target_sources(USE_EXPORT) to allow overriding the generated export header
with an existing one. (PR #4160)

– Libraries and features can be passed to find_package(OpenDDS COMPONENTS) to change what is re-
quired. (PR #4160, PR #4140)

* See Components for details.

1.6.2 Security

• Fixed null pointer exception caused by RTPS Parameters with incorrect zero size. (PR #4197)

1.6.3 Fixes

• CMake Config Package

– Made linking dependencies and macro definitions closer match using MPC with OpenDDS and TAO. (PR
#4140)

– Fixed issues with passing OPENDDS_IDL_OPTIONS -SI to opendds_target_sources. (PR #4140)

• Fixed issue deserializing bounded sequences with JSON (PR #4150)

– The deserialization will fail if the JSON input contains more elements than the bounded sequence can hold.

• Updated the RtpsRelay’s tracking of client IP addresses so they are removed when no longer used. (PR #4202)

– The RtpsRelay configuration option -MaxAddrSetSize was renamed to -MaxIpsPerClient

8 Chapter 1. Release Notes

https://github.com/OpenDDS/OpenDDS/pull/4160
https://github.com/OpenDDS/OpenDDS/pull/4160
https://github.com/OpenDDS/OpenDDS/pull/4160
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4160
https://github.com/OpenDDS/OpenDDS/pull/4160
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4197
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/pull/4150
https://github.com/OpenDDS/OpenDDS/pull/4202


OpenDDS, Release 3.28.1

1.6.4 Documentation

• Moved various markdown files into the Sphinx documentation so that they are now included along with the
Developer’s Guide: (PR #4139)

– INSTALL.md is now Building and Installing.

– docs/dependencies.md is now Dependencies.

– docs/cmake.md is now Using OpenDDS in a CMake Project.

– docs/android.md is now Android.

– docs/ios.md is now iOS.

• Restructured how the documentation is presented to cleanly separate the Developer’s Guide and internal docu-
mentation. (PR #4139)

• Added a proper main page. (PR #4139)

• Added Glossary. (PR #4139)

• In addition to NEWS.md, started adding release notes to Release Notes. (PR #4125)

1.6.5 Notes

• CMake Config Package

– OPENDDS_TARGET_SOURCES is now called opendds_target_sources. (PR #4140)

* CMake macros and functions names are case insensitive, so this should have no effect on CMake code.

1.7 v3.24.2

Released 2023-06-30

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.7.1 Security

• Fixed a vulnerability in the rtps_udp transport where an acknowledgement sequence number beyond the maxi-
mum expected by the writer leads to an assert and incorrect state. (PR #4155)

– Thanks to Seulbae Kim (@squizz617) for discovering this.

1.7.2 Fixes

• Fixed leaked shared memory by the shared memory transport. (PR ##4171)

– For a 100% fix, a new ACE version including https://github.com/DOCGroup/ACE_TAO/pull/2077 must
be used.

• Fixed bug introduced by PR #4120 (PR #4180, PR #4184)

1.7. v3.24.2 9

https://github.com/OpenDDS/OpenDDS/pull/4139
https://github.com/OpenDDS/OpenDDS/pull/4139
https://github.com/OpenDDS/OpenDDS/pull/4139
https://github.com/OpenDDS/OpenDDS/pull/4139
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/NEWS.md
https://github.com/OpenDDS/OpenDDS/pull/4125
https://github.com/OpenDDS/OpenDDS/pull/4140
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.24.2
https://opendds.readthedocs.io/en/dds-3.24.2
https://github.com/OpenDDS/OpenDDS/pull/4155
https://github.com/OpenDDS/OpenDDS/pull/#4171
https://github.com/DOCGroup/ACE_TAO/pull/2077
https://github.com/OpenDDS/OpenDDS/pull/4120
https://github.com/OpenDDS/OpenDDS/pull/4180
https://github.com/OpenDDS/OpenDDS/pull/4184


OpenDDS, Release 3.28.1

– The fix introduced in #4120 causes the TransportClient to silently drop messages when the client’s guid is
not initialized. This causes issues for TransportClients that send messages to the transport before associ-
ation. One such example is a DataWriter with liveliness configured. The DataWriter will send liveliness
messages to the transport (which will be dropped) and hang waiting for them to be delivered.

– The solution was set the guid for a TransportClient before calling any method that uses the guid.

1.7.3 Notes

• PR #4180 required changes in InfoRepoDiscovery’s IDL, so InfoRepo compatibility with older versions has been
broken.

1.8 v3.24.1

Released 2023-04-22

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

1.8.1 Fixes

• Fixed compile warnings in TypeSupport that can happen with GCC and -O2 or higher (PR #4117)

• Fixed compile error in TypeSupport for IDL that contains a typedef of a typedef (PR #4117)

• Fixed bug in the tcp transport where readers and writers can fail to associate (PR #4120)

• Fixed issue in some headers that could leak #pragma pack (push, 8) into user code on Visual Studio (PR
#4123)

• Fixed theoretical infinite loop in rtps_udp transport code (PR #4124)

1.8.2 Documentation

• Removed invalid links and references in README and the Developer’s Guide and fixed other minor issues (PR
#4115, PR #4116, PR #4121, PR #4126)

• Changed theme used by the Sphinx documentation to make the Developer’s Guide easier to navigate (PR #4127)

• Added copy buttons to embedded code and code-like examples (PR #4127)

1.9 v3.24.0

Released 2023-04-11

Download this release on GitHub.

Read the documentation for this release on Read the Docs.

10 Chapter 1. Release Notes

https://github.com/OpenDDS/OpenDDS/pull/4180
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.24.1
https://opendds.readthedocs.io/en/dds-3.24.1
https://github.com/OpenDDS/OpenDDS/pull/4117
https://github.com/OpenDDS/OpenDDS/pull/4117
https://github.com/OpenDDS/OpenDDS/pull/4120
https://github.com/OpenDDS/OpenDDS/pull/4123
https://github.com/OpenDDS/OpenDDS/pull/4123
https://github.com/OpenDDS/OpenDDS/pull/4124
https://github.com/OpenDDS/OpenDDS/pull/4115
https://github.com/OpenDDS/OpenDDS/pull/4115
https://github.com/OpenDDS/OpenDDS/pull/4116
https://github.com/OpenDDS/OpenDDS/pull/4121
https://github.com/OpenDDS/OpenDDS/pull/4126
https://github.com/OpenDDS/OpenDDS/pull/4127
https://github.com/OpenDDS/OpenDDS/pull/4127
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.24
https://opendds.readthedocs.io/en/dds-3.24


OpenDDS, Release 3.28.1

1.9.1 Additions

• The OpenDDS Developer’s Guide is now available at https://opendds.readthedocs.io/ (PR #4100, PR #4101, PR
#4102, PR #4103, PR #4104, PR #4105, PR #4051, PR #4092, PR #4094, PR #4095)

– The Sphinx/reStructuredText source for this new format is now located in the repo at docs/devguide

• DOCGroup ACE6/TAO2 is now the default ACE/TAO for OpenDDS, OCI ACE/TAO is no longer supported (PR
#4069)

• Dynamic content subscription (PR #3988)

– This allows DynamicDataReaders to use QueryCondition and ContentFilteredTopic
and allows DynamicDataWriters to do filtering on behalf of matched DataReaders that use
ContentFilteredTopic.

• DynamicData

– Can now read and write enum members as strings (PR #4022)

– DynamicDataImpl now uses lazy initialization to reduce memory usage (PR #4024)

– get_int64_value and get_uint64_value can now cast from different types (PR #4078)

• Added aliases for IDL types from XTypes spec such as DDS::UInt32 (PR #3394)

– See dds/DdsDcpsCore.idl for all of them.

• Added PublicationMatchedStatus Current Count To RtpsRelay Statistics (PR #4006)

• Allow reassembly of overlapping fragment ranges in RTPS (PR #4035, PR #4047)

• Added hardening features to RtpsRelay (PR #4045)

– These are configured with the new options -MaxAddrSetSize and -RejectedAddressDuration.

• Can now cross-compile on macOS (PR #4048)

• Added OPENDDS_AUTO_LINK_DCPS and OPENDDS_USE_CORRECT_INCLUDE_SCOPE global options to the
CMake package (PR #4071)

• Expanded support for using C++ keywords in IDL (PR #4073)

• IDL file and generated TypeSupport.idl can now be in different directories (PR #4077)

• Improved support for anonymous types in unions branches (PR #4078)

1.9.2 Fixes

• Fixed rtps_relay_address_change deadlocks (PR #3989)

• Fixed RtpsUdpTransport data race from relay_stun_mutex_ (PR #3990)

• Fixed invalid socket handles in RtpsUdpTransport (PR #4002)

• Fixed index increment in GuidPartitionTable::prepare_relay_partitions (PR #4005)

• Improved reliability of the shared memory transport (PR #4028)

• Fixed a bug in content filtering with enum comparisons on serialized samples (PR #4038)

• Secure writers and readers in same participant can now associate (PR #4041)

• Fixed transport config and transport instance derived from template conflicting (PR #4058)

1.9. v3.24.0 11

https://opendds.readthedocs.io/
https://github.com/OpenDDS/OpenDDS/pull/4100
https://github.com/OpenDDS/OpenDDS/pull/4101
https://github.com/OpenDDS/OpenDDS/pull/4102
https://github.com/OpenDDS/OpenDDS/pull/4102
https://github.com/OpenDDS/OpenDDS/pull/4103
https://github.com/OpenDDS/OpenDDS/pull/4104
https://github.com/OpenDDS/OpenDDS/pull/4105
https://github.com/OpenDDS/OpenDDS/pull/4051
https://github.com/OpenDDS/OpenDDS/pull/4092
https://github.com/OpenDDS/OpenDDS/pull/4094
https://github.com/OpenDDS/OpenDDS/pull/4095
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/devguide
https://github.com/OpenDDS/OpenDDS/pull/4069
https://github.com/OpenDDS/OpenDDS/pull/4069
https://github.com/OpenDDS/OpenDDS/pull/3988
https://github.com/OpenDDS/OpenDDS/pull/4022
https://github.com/OpenDDS/OpenDDS/pull/4024
https://github.com/OpenDDS/OpenDDS/pull/4078
https://github.com/OpenDDS/OpenDDS/pull/3394
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DdsDcpsCore.idl
https://github.com/OpenDDS/OpenDDS/pull/4006
https://github.com/OpenDDS/OpenDDS/pull/4035
https://github.com/OpenDDS/OpenDDS/pull/4047
https://github.com/OpenDDS/OpenDDS/pull/4045
https://github.com/OpenDDS/OpenDDS/pull/4048
https://github.com/OpenDDS/OpenDDS/pull/4071
https://github.com/OpenDDS/OpenDDS/pull/4073
https://github.com/OpenDDS/OpenDDS/pull/4077
https://github.com/OpenDDS/OpenDDS/pull/4078
https://github.com/OpenDDS/OpenDDS/pull/3989
https://github.com/OpenDDS/OpenDDS/pull/3990
https://github.com/OpenDDS/OpenDDS/pull/4002
https://github.com/OpenDDS/OpenDDS/pull/4005
https://github.com/OpenDDS/OpenDDS/pull/4028
https://github.com/OpenDDS/OpenDDS/pull/4038
https://github.com/OpenDDS/OpenDDS/pull/4041
https://github.com/OpenDDS/OpenDDS/pull/4058


OpenDDS, Release 3.28.1

• Fixed issue with using -o in tao_idl/opendds_idl options in OPENDDS_TARGET_SOURCES and those directo-
ries are now automatically included (PR #4071)

• XTypes (PR #4078)

– TypeObjects struct and union members used to be sorted by member ID, but they are now sorted by
declaration order as the XTypes spec calls for.

By default member IDs increment starting at 0, and in that case the TypeObjects will be the same. If
@autoid(hash), --default-autoid hash, or @id(ID) are being used then the order could be different.
This could cause some reader/writer matching incompatibility with older versions of OpenDDS:

* Topics with final and appendable structs will no longer match.

* If DISALLOW_TYPE_COERCIONQoS is being used, then all topics where the order differ will not longer
match. Note that this is true for any time the type hash changes.

* Pass the opendds_idl --old-typeobject-member-order to use the non-standard order.

– The size of XCDR2 member parameters in mutable structs and unions is now correctly interpreted when
the “length code” is 5, 6, or 7.

* This is an optimization that OpenDDS doesn’t serialize samples with, so this could only be an issue
when dealing with samples from other DDS implementations.

– DynamicDataImpl (DynamicData made by DynamicDataFactory that can be passed to
DynamicDataWriter):

* get_member_id_at_index now returns ids for members that haven’t been initialized yet.

* Fixed incorrect serialization of keyed unions for instance registration, disposal, and unregistration sam-
ples.

* Fixed errors from serializing some cases of arrays and sequences.

1.9.3 Notes

• Release files will only be uploaded to GitHub from now on

• OpenDDS::DCPS::RepoId has been removed, if needed use OpenDDS::DCPS::GUID_t instead (PR #3972)

1.10 Older Releases

Older releases can be found in NEWS.md

12 Chapter 1. Release Notes

https://github.com/OpenDDS/OpenDDS/pull/4071
https://github.com/OpenDDS/OpenDDS/pull/4078
https://github.com/OpenDDS/OpenDDS/pull/3972
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/NEWS.md


CHAPTER

TWO

DEVELOPER’S GUIDE

The Developer’s Guide explains how to use OpenDDS.

2.1 About This Guide

This Developer’s Guide corresponds to OpenDDS version 3.28.1. This guide is primarily focused on the specifics
of using and configuring OpenDDS to build distributed publish-subscribe applications. While it does give a general
overview of the OMG Data Distribution Service, this guide is not intended to provide comprehensive coverage of the
specification. The intent of this guide is to help you become proficient with OpenDDS as quickly as possible. Readers
are encouraged to submit corrections to this guide using a GitHub pull request. The source for this guide can be found
at docs/devguide and Documentation Guidelines contains guidance for editing and building it.

2.1.1 Conventions

This guide uses the following conventions:

Fixed pitch text Indicates example code or information a user would enter using a keyboard.
Italic text Indicates a point of emphasis.
. . . An ellipsis indicates a section of omitted text.

2.1.2 DDS_ROOT

This guide refers to the DDS_ROOT environment variable which should point to the base directory of the OpenDDS
distribution. Often, this will be written as $DDS_ROOT indicating the value of the environment variable.

2.1.3 Examples

The examples in this guide are intended for the learning of the reader and should not be considered to be “production-
ready” code. In particular, error handling is sometimes kept to a minimum to help the reader focus on the particular
feature or technique that is being presented in the example. The source code for all these examples is available as
part of the OpenDDS source code distribution in the DevGuideExamples directory. MPC files are provided with the
examples for generating build-tool specific files, such as GNU Makefiles or Visual C++ project and solution files. To
run an example, execute the run_test.pl Perl script.

13

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/devguide
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/DevGuideExamples


OpenDDS, Release 3.28.1

2.2 Quick Start Guides

2.2.1 Windows

The goal of this guide is help you download and compile OpenDDS and run a simple example.

Build Directions

1. Ensure that your environment has:

• Visual Studio

• Perl

• Optional Java SDK 1.5 or greater for Java JNI binding support

See Dependencies for a complete list of dependencies and README.md#supported-platforms for supported
platforms.

2. Download and extract the latest zip from the download site

3. Start a Visual Studio Command Prompt

4. Enter the OpenDDS-<version> directory

5. configure

To enable Java support, use

configure --java

6. Determine the solution to build from the output of the configure script. The solution will have a .sln extension.

7. Start Visual Studio by executing the solution from the command prompt, e.g., DDS_TAOv2_all.sln

8. Select Build -> Build Solution

See Support if you encounter problems with configuration or building.

Run the Messenger Example

1. setenv

2. For the C++ example

cd DevGuideExamples\DCPS\Messenger

For the Java example

cd java\tests\messenger

3. perl run_test.pl

The Messenger Example starts an InfoRepo, publisher, and subscriber. The InfoRepo allows the publisher and sub-
scriber to find each other. Once the publisher finds the subscriber, it sends 10 messages to the subscriber and waits 30
seconds for the subscriber to acknowledge the messages.

14 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#supported-platforms
https://github.com/OpenDDS/OpenDDS/releases/latest/
https://opendds.org/support.html


OpenDDS, Release 3.28.1

Important: The setenv.cmd script sets various environment variables needed for building, linking, and running
with OpenDDS. Be sure to execute setenv.cmd if you start a new Visual Studio Command Prompt.

Next Steps

See Getting Started for a detailed explanation of the Messenger C++ Example or Java Bindings for the Java Example.

2.2.2 Linux/macOS

The goal of this guide is help you download and compile OpenDDS and run a simple example.

Build Directions

1. Ensure that your environment has:

• a C++ compiler (GCC or Clang)

• GNU Make

• Perl

• Optional Java SDK 1.5 or greater for Java JNI binding support

See Dependencies for a complete list of dependencies and README.md#supported-platforms for supported
platforms.

2. Download and extract the latest tar.gz file from the download site

3. Enter the OpenDDS-<version> directory

4. ./configure

To enable Java bindings, use

./configure --java

5. make

See Support if you encounter problems with configuration or building.

Run the Messenger Example

1. source setenv.sh

2. For the C++ example

cd DevGuideExamples/DCPS/Messenger

For the Java example

cd java/tests/messenger

2.2. Quick Start Guides 15

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#supported-platforms
https://github.com/OpenDDS/OpenDDS/releases/latest/
https://opendds.org/support.html


OpenDDS, Release 3.28.1

3. ./run_test.pl

The Messenger Example starts an InfoRepo, publisher, and subscriber. The InfoRepo allows the publisher and sub-
scriber to find each other. Once the publisher finds the subscriber, it sends 10 messages to the subscriber and waits 30
seconds for the subscriber to acknowledge the messages.

Important: The setenv.sh script sets various environment variables needed for running OpenDDS tests. Be sure
to source setenv.sh if you start a new terminal session.

Next Steps

See Getting Started for a detailed explanation of the Messenger C++ Example or Java Bindings for the Java Example.

2.2.3 Raspberry Pi

The goal of this guide is help you download and compile OpenDDS for Linux on the Raspberry Pi and run a simple
example.

Build Directions

For this guide you need a Raspberry Pi set up with Raspbian Bullseye Linux (the Lite variant works) and connected
to a local network. You will also need a Linux host system (or virtual machine) connected to the same network where
we will build OpenDDS. We have tested with Ubuntu 20.04.3 LTS x86_64 and CentOS Stream 8 x86_64. This guide
assumes you know the address and user credentials of the Pi. Perform these all these steps on the host computer:

1. Ensure that your host environment has:

• a C++ compiler

• GNU Make

• Perl

• CMake if building with DDS Security

• Optional Java SDK 1.5 or later for Java binding support

2. Download and extract the latest tar.gz file from the download site

3. Download and extract the Linux GCC 10.2 cross-compiler toolchain from the ARM Developer website.
Rename the resulting directory from gcc-arm-10.2-2020.11-x86_64-arm-none-linux-gnueabihf to
cross-pi-gcc and move it to /opt.

4. If building with DDS Security, follow the steps below to build OpenSSL and Xerces-C++ for the Pi.

5. Enter the OpenDDS-<version> directory

6. Run the following as a single command.

./configure --target=linux-cross --target-compiler=/opt/cross-pi-gcc/bin/arm-none-
→˓linux-gnueabihf-g++ (additional options)

Additional options:

• If using DDS Security:

16 Chapter 2. Developer’s Guide

https://www.raspberrypi.org/
https://github.com/OpenDDS/OpenDDS/releases/latest/
https://developer.arm.com/-/media/Files/downloads/gnu-a/10.2-2020.11/binrel/gcc-arm-10.2-2020.11-x86_64-arm-none-linux-gnueabihf.tar.xz?revision=d0b90559-3960-4e4b-9297-7ddbc3e52783&hash=6F50B04F08298881CA3596CE99E5ABB3925DEB24
https://developer.arm.com/


OpenDDS, Release 3.28.1

--security --no-tests --openssl=SSL_ROOT --xerces3=XERCESCROOT

Replace SSL_ROOT and XERCESCROOT with the paths for your system (see below).

Note that the Google Test Framework is not supported in this configuration, therefore --no-tests is re-
quired when using --security.

• If using Java bindings:

--java

7. make

See Support if you encounter problems with configuration or building.

Copying OpenDDS to the Pi

There are multiple ways to do this, including using a flash drive. We do not recommend copying the entire build tree,
since it can be 2+ GB. The following steps copy the OpenDDS runtime libraries, support scripts, and test executables
over the network.

1. Leave the OpenDDS-<version> directory:

cd ..

2. tar czhf OpenDDS-<version>.tar.gz OpenDDS-<version>/build/target/ACE_wrappers/lib␣
→˓OpenDDS-<version>/build/target/lib OpenDDS-<version>/build/target/bin OpenDDS-
→˓<version>/build/target/ACE_wrappers/bin/PerlACE OpenDDS-<version>/build/target/
→˓DevGuideExamples/DCPS/Messenger

3. scp OpenDDS.tar.gz USER@ADDRESS:

where USER and ADDRESS are the username and IP address of your Raspberry Pi. It will ask you for the password
for the user on the Pi.

4. ssh USER@ADDRESS

to access the Pi, taking the same information as the previous command.

5. tar xzf OpenDDSOpenDDS-<version>.tar.gz

Run the Messenger Example

1. While still in ssh on the Pi, enter the OpenDDS-<version> directory

2. export DDS_ROOT="$PWD/build/target"

3. export ACE_ROOT="$DDS_ROOT/ACE_wrappers"

4. export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:"$ACE_ROOT/lib":"$DDS_ROOT/lib"

2.2. Quick Start Guides 17

https://opendds.org/support.html


OpenDDS, Release 3.28.1

5. export PATH=${PATH}:"$ACE_ROOT/bin":"$DDS_ROOT/bin"

6. For the C++ example:

cd $DDS_ROOT/DevGuideExamples/DCPS/Messenger

For the Java example:

cd $DDS_ROOT/java/tests/messenger

7. ./run_test.pl

The Messenger Example starts an InfoRepo, publisher, and subscriber. The InfoRepo allows the publisher and sub-
scriber to find each other. Once the publisher finds the subscriber, it sends 10 messages to the subscriber and waits 30
seconds for the subscriber to acknowledge the messages.

Next Steps

See Getting Started for a detailed explanation of the Messenger C++ Example or Java Bindings for the Java Example.

Building Third-Party Libraries

Setup

1. Create and enter a directory to perform the build.

2. Set the BUILD_ROOT shell variable to the working directory.

3. This will be the parent directory for the source repos and “staged” installation directories for the cross-compiled
software.

OpenSSL

1. In $BUILD_ROOT, download and extract the OpenSSL source archive, and change to that extracted directory. See
OpenSSL for any version requirements for OpenSSL.

2. ./Configure --cross-compile-prefix=/opt/cross-pi-gcc/bin/arm-none-linux-gnueabihf-␣
→˓linux-armv4

3. make

4. make install DESTDIR=$BUILD_ROOT/pi-openssl

18 Chapter 2. Developer’s Guide

https://www.openssl.org/source/


OpenDDS, Release 3.28.1

Xerces-C++

1. In $BUILD_ROOT, create the file PiToolchain.cmake with the contents:

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_C_COMPILER /opt/cross-pi-gcc/bin/arm-none-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER /opt/cross-pi-gcc/bin/arm-none-linux-gnueabihf-g++)
set(CMAKE_FIND_ROOT_PATH /opt/cross-pi-gcc/arm-none-linux-gnueabihf)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(THREADS_PTHREAD_ARG 2)</pre></li>

2. In $BUILD_ROOT, download and extract the Xerces-C++ source archive, and change to that extracted directory.
See Xerces for any version requirements for Xerces.

3. mkdir build-pi
cd build-pi

4. cmake -DCMAKE_TOOLCHAIN_FILE=$BUILD_ROOT/PiToolchain.cmake -DCMAKE_INSTALL_PREFIX=
→˓$BUILD_ROOT/pi-xerces ..

5. make

6. make install

Using these with OpenDDS

• For configure (see above)

– SSL_ROOT is $BUILD_ROOT/pi-openssl/usr/local

– XERCESCROOT is $BUILD_ROOT/pi-xerces

• For runtime loading of shared objects

– copy $BUILD_ROOT/pi-openssl/usr/local/lib/libcrypto.so.1.1 to build/target/lib

– copy $BUILD_ROOT/pi-xerces/lib/libxerces-c-3.2.so to build/target/lib

2.2.4 Docker

This guide will take you through the process of compiling and runnning an OpenDDS application with Docker. Docker
images containing a pre-built OpenDDS are available in GitHub Container Registry. An image corresponding to a
particular release has a tag of the form DDS-X.xx, e.g., DDS-3.23.

2.2. Quick Start Guides 19

https://xerces.apache.org/xerces-c/download.cgi
https://github.com/OpenDDS/OpenDDS/pkgs/container/opendds


OpenDDS, Release 3.28.1

Prerequisites

Check that docker and docker-compose are installed.

docker --version
docker-compose --version

Compile the Messenger Example

1. Enter a container

docker run --rm -ti -v "$PWD:/opt/workspace" ghcr.io/opendds/opendds:latest-release

2. Copy the Messenger directory

cp -R /opt/OpenDDS/DevGuideExamples/DCPS/Messenger Messenger
cd Messenger

3. Configure and build the Messenger example

source /opt/OpenDDS/setenv.sh
mwc.pl -type gnuace
make

4. Exit the container

exit

Run the Messenger Example with RTPS

1. Enter the Messenger directory

cd Messenger

2. Run the Messenger example with RTPS

docker-compose up

Run the Messenger Example with InfoRepo

1. Enter the Messenger directory if not done as part of the previous section

cd Messenger

2. Run the Messenger example with InfoRepo

docker-compose -f docker-compose-inforepo.yml up

3. Use Control-C to kill the InfoRepo process

20 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Next Steps

See Getting Started for a detailed explanation of the Messenger C++ Example or Java Bindings for the Java Example.

See Building and Installing for detailed build instructions.

2.3 Introduction to DDS

The Data Distribution Service (DDS ®) is a specification for distributed systems based on the publish-subscribe
paradigm published by the Object Management Group (OMG ®). DDS applications efficiently share data across the
network using strongly-typed and asynchronous cache updates based on topics and QoS policies. DDS v1.4 2.2.1.2
Conceptual Outline contains a detailed overview of DDS. Data-Centric Publish-Subscribe (DCPS) is the application
model defined by the DDS specification. This section describes the main concepts and entities of the DCPS API and
discuss how they interact and work together.

2.3.1 Basic Concepts

This is an overview of the DDS DCPS API:

The following subsections define the concepts shown in the diagram.

Domain

The domain is the fundamental partitioning unit within DCPS. Each of the other entities belongs to a domain and can
only interact with other entities in that same domain. Application code is free to interact with multiple domains but
must do so via separate entities that belong to the different domains. Domains are identified by an integer identifier.
There is no entity in the DCPS API that represents the domain.

Entity

An entity is an object in a domain that has a QoS policy, status, and can be used with listeners and waitsets. “Entity”
is an interface that is implemented by the other concepts in a DCPS domain. The QoS policy for each derived entity is
specialized for that entity.

Domain Participant

A domain participant or just participant is the entry-point for an application to interact within a particular domain.
The domain participant is a factory for many of the objects involved in writing or reading data.

Topic

The topic is the fundamental means of interaction between publishing and subscribing applications. Each topic has
a unique name within the domain that connects publishers to subscribers. Multiple processes can publish on a topic
and multiple processes can subscribe to a topic which allows for many-to-many communication. A publishing process
specifies the topic when publishing samples and a subscribing process requests samples via the topic.

2.3. Introduction to DDS 21

https://www.omg.org/spec/DDS/1.4/PDF#G5.1028274
https://www.omg.org/spec/DDS/1.4/PDF#G5.1028274


OpenDDS, Release 3.28.1

Fig. 1: DCPS Conceptual Overview

22 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Samples, Instances, and Types

In DCPS terminology, an application publishes individual data samples for different instances on a topic. Each topic
has a specific type that describes the samples. Each topic data type can specify zero or more fields that make up its
key. Each instance is associated with a unique value for the key. A publishing process publishes multiple data samples
on the same instance by using the same key value for each sample. Conceptually, a topic data type without a key has a
single instance.

A type can be defined at compile-time (static type) or at run-time (dynamic type). An application can use both static
types and dynamic types. Static types are defined using OMG Interface Description Language (IDL). See Defining Data
Types with IDL for more information and examples. Dynamic types can be created or acquired via API. (OpenDDS
current does not support the creation of dynamic types.)

The type associated with a topic is relative to a participant. That is, two different participants may have different
definitions for the same topic type. A feature called XTypes allows participants with different topic types to still exchange
samples. If XTypes is not used, then the types must match exactly.

DataWriter

A data writer is used by the publishing application code to introduce samples for distribution. Each data writer is
bound to a particular topic. The application uses the data writer’s type-specific interface to publish samples on that
topic. The data writer is responsible for marshaling the data and passing it to the publisher for transmission.

Dynamic data writers can be used when code generated from IDL is not available or desired. Dynamic data writers are
also type-safe, but type checking happens at runtime.

Publisher

A publisher is responsible for taking the published data and disseminating it to all relevant subscribers in the domain.
The exact mechanism employed is left to the service implementation. A participant can have multiple publishers and
each publisher can have multiple data writers which may be on different topics. A publisher can group a sequence of
writes that span multiple data writers so that it appears as a coherent change to subscribers.

Subscriber

A subscriber receives the data from the publisher and passes it to any relevant data readers that belong to it. A participant
can have multiple subscribers and each subscriber can have multiple data readers which may be on different topics.

DataReader

A data reader takes data from the subscriber, demarshals it into the appropriate type for that topic, and delivers the
sample to the application. Each data reader is bound to a particular topic. The application uses the data reader’s
type-specific interfaces to receive the samples.

Dynamic data readers can be used when code generated from IDL is not available or desired. Dynamic data readers
are also type-safe, but type checking happens at runtime.

2.3. Introduction to DDS 23



OpenDDS, Release 3.28.1

2.3.2 Discovery, Matching, and Association

Discovery is the process whereby a participant learns about the publications and subscriptions offered by other partic-
ipants. The Data Distribution Service (DDS) for Real-Time Systems leaves the details of discovery to the implementa-
tion.

After discovering a remote publication and subscription, a participant compares the remote entity with its local entities
to determine if they are compatible. This process is called matching. A data writer and data reader match if they are
on the same topic, they have compatible types, and they have compatible QoS policies.

If a local entity matches a remote entity, then the implementation is configured to allow data to flow from the data
writer to the data reader. This is called association.

See also:

Discovery
The discovery impementations availables in OpenDDS.

2.3.3 Quality of Service Policies

The DDS specification defines a number of Quality of Service (QoS) policies that are used by applications to specify
their QoS requirements to the service. Participants specify what behavior they require from the service and the service
decides how to achieve these behaviors. These policies can be applied to the various DCPS entities (topic, data writer,
data reader, publisher, subscriber, domain participant) although not all policies are valid for all types of entities.

Subscribers and publishers are matched using a request-versus-offered (RxO) model. Subscribers request a set of
policies that are minimally required. Publishers offer a set of QoS policies to potential subscribers. The DDS imple-
mentation then attempts to match the requested policies with the offered policies; if these policies are compatible then
the association is formed.

See also:

Quality of Service
The QoS policies available in OpenDDS and how to use them.

2.3.4 Conceptual Data Flow

The application on the publishing side initiates the flow of data by writing a sample to the DataWriter which then
passes it to its associated Publisher. The Publisher sends the sample to associated Subscribers. Each Subscriber gives
the received sample to its DataReaders that are associated with the sending DataWriter. The flow ends when the
application on the subscribing side retrieves the data from the DataReader.

Quality of Service (QoS) Policies control the flow of the data through the system. The QoS policies of the Publisher,
DataWriter, and Topic control the data on the sending side. The QoS policies of the Subscriber, DataReader, and Topic
control the data on the receiving side.

24 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.3.5 Built-in Topics (BITs)

The DDS specification defines a number of topics that are built-in to the DDS implementation. Subscribing to these
built-in topics gives application developers access to the state of the domain being used including which topics are
registered, which data readers and data writers have been discovered and their status, and the QoS settings of the various
entities. While subscribed, the application receives samples indicating changes in the entities within the domain.

See also:

Built-in Topics
The built-in topics available in OpenDDS and how to use them.

2.3.6 Listeners

The DCPS API defines a callback interface for each entity that allows an application to listen for certain state changes
or events pertaining to that entity. For example, a Data Reader Listener is notified when there are data values available
for reading.

See also:

Listeners
The listeners available in OpenDDS and how to use them.

2.3.7 Conditions

Conditions and Wait Sets can also be used to detect events of interest in DDS Entities and are an alternative to listeners.
The general pattern is the application creates a specific kind of Condition object, such as a StatusCondition, and
attaches it to a WaitSet.

• The application waits on the WaitSet until one or more conditions become true.

• The application calls operations on the corresponding entity objects to extract the necessary information.

• The DataReader interface also has operations that take a ReadCondition argument.

• QueryCondition objects are provided as part of the implementation of the Content-Subscription Profile. The
QueryCondition interface extends the ReadCondition interface.

See also:

Conditions
The conditions available in OpenDDS and how to use them.

2.4 Shapes Demo

The goal of this guide is to walk through downloading and running the DDS Interoperability Shapes demo program.
The Shapes demo is a graphical application that will help you visualize some of the DDS concepts that OpenDDS
supports without needing to read or write source code. The application allows you to create publishers and subscribers
on topics represented by data payloads shown as simple shapes and see the results of the different quality of service,
data partitioning, and filtering options provided. The Shapes demo makes use of the Real-Time Publish-Subscribe
Wire Protocol Specification (DDSI-RTPS) that provides interoperable communications between various DDS imple-
mentations.

This video demonstrates a few of the scenarios described below.

2.4. Shapes Demo 25

https://www.youtube.com/watch?v=1GDXjp2kmGg


OpenDDS, Release 3.28.1

2.4.1 Environment Prerequisites

1. Ensure that your environment has Qt5 libraries available:

• Windows (x64): Use the Qt Installer, or install the qt5 package from vcpkg. The Visual C++ runtime
redistributable is also required.

• Ubuntu (x86_64): Install the libqt5gui5 package.

2. Download or compile the latest Shapes demo for your operating system:

• Choose from the “ShapesDemo” assets in the latest release of OpenDDS

• Alternatively, the Shapes demo can be run from a build from source of OpenDDS with Qt enabled. The
demo resides in the examples/DCPS/ishapes directory. See Dependencies for a complete list of depen-
dencies and README.md#supported-platforms for supported platforms.

2.4.2 Running the Shapes Demo

1. Locate and run the Shapes demo and you should see a window that looks like this:

2. The most basic example is to simply click the Publish button to begin publishing a circle and then click
Subscribe to begin subscribing to the same circle topic you are publishing. As soon as you begin publish-
ing, you should see a green circle bouncing around the display area with a white center. This indicates that this
is a published object, originating at this application.

3. After clicking Subscribe, as soon as the subscriber goes live and finds a match in the published circle topic,
the center of the circle will go dark to indicate it is an instance of subscribed data, which in this case is being
rendered over top the initial published instance.

26 Chapter 2. Developer’s Guide

https://www.qt.io/download-thank-you?os=windows&hsLang=en
https://github.com/Microsoft/vcpkg
https://aka.ms/vs/17/release/vc_redist.x64.exe
https://github.com/OpenDDS/OpenDDS/releases/latest
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/qt.md
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/examples/DCPS/ishapes
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#supported-platforms


OpenDDS, Release 3.28.1

2.4. Shapes Demo 27



OpenDDS, Release 3.28.1

4. Now that we have confirmed the ability to run an instance of the Shapes demo, let’s understand some of the DDS
concepts seen at work even in this simple example.

• Each of the available shapes in the drop-down menu are DDS Topics that can be published on or subscribed
to.

• Each instance on the topic has an instance key represented by the shape’s color and the shape itself is a
DDS Data type comprised of x and y coordinates as well as a size.

What may not be apparent in this simple example is that the center of the circle going from white to dark is
actually demonstrating the process of discovery, entity matching, publication, and subscription between two
DDS entities. The additional example scenarios below make use of multiple shapes demo instances running
concurrently to better demonstrate these capabilities.

2.4.3 Example Scenarios

The pages linked below contain example scenarios that demonstrate different features of OpenDDS:

Multiple Instances

1. Start up two instances of the Shapes Demo for this example. You should be able to see two application windows
like so:

2. Publish - Let’s change it up and begin this example by publishing a triangle by selecting Triangle from the top
Shape dropdown menu. Then click the Publish button. You should observe a green triangle bouncing around
the application window’s display area. The triangle, from a DDS perspective, is a piece of information that is
being published to the rest of the system for other entities to receive if they are set up to be interested in triangles.

3. Subscribe - In the other application window, select Triangle from the bottom Shape dropdown menu. Then
click the Subscribe button. You should observe the green triangle, published by the first application instance
bouncing around the display area in the application window you chose to subscribe in.

4. Results - The triangle in the subscriber’s window, tracking the initial triangle from the publisher’s window,
exemplifies the DDS publish/subscribe paradigm for a single publisher to single subscriber. The first application
has a single publisher sending information out into the system and the second application has a single subscriber
receiving that information.

28 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.4. Shapes Demo 29



OpenDDS, Release 3.28.1

Reliability

See also:

Reliability QoS

In this example, we will begin to look at the DDS concept of reliability as it relates to a publisher’s offered quality of
service (QoS) and a subscriber’s requested QoS. As in the last example, start up two instances of the Shapes Demo.

1. Publisher/Subscriber QoS - In this example we will publish 3 separate topics, each being configured with QoS
settings to demonstrate Reliability QoS compatibility. Use the upper QoS button to open a window that will
provide you with QoS configuration options for the publisher (Writer QoS). Here you should see the Reliability
QoS setting, which defaults to reliable. Likewise, if you click the lower QoS button, a window will open which
provides configuration options for the subscriber (Reader QoS). As you can see, the subscriber Reliability QoS
defaults to best effort.

2. In the first application window, publish one instance of each of the following topics using the QoS menu to set
the reliability accordingly before pressing the Publish button to begin publishing that topic:

• Square: RELIABLE

• Circle: BEST_EFFORT

• Triangle: BEST_EFFORT

3. In the second application window, subscribe to one instance of each of the following topics using the QoS menu
to set the reliability accordingly before pressing the Subscribe button to begin subscribing to that topic:

• Square: RELIABLE

• Circle: BEST_EFFORT

• Triangle: RELIABLE

4. Results - You should observe in the subscriber application’s display window that there are only 2 matched topics -
Square and Circle. The subscriber for the Triangle topic did not find a match due to requesting a quality of service

30 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.4. Shapes Demo 31



OpenDDS, Release 3.28.1

of RELIABLE, but the only available publisher was only offering BEST_EFFORT. Because the publisher could
not guarantee reliable delivery of messages, the subscriber was unable to fulfill its requirement and therefore
was unable to find a match. Thus, the unmatched triangle topic on the subscriber’s side is grayed out. Your two
application windows should look similar to the following:

Durability

See also:

Durability QoS

In this example, we will begin to look at the DDS concept of durability as it relates to a publisher’s offered quality of
service (QoS) and a subscriber’s requested QoS. Durability allows messages sent before a subscriber came online to
be delivered to that subscriber. As in the last example, start up two instances of the Shapes Demo.

1. In the first application window, configure the publisher’s QoS by opening the QoS menu and setting the following:

• Durability QoS: TRANSIENT_LOCAL

Then publish one instance of Square.

2. In the second application window, configure the subscriber’s QoS by opening the lower QoS menu and setting
the following:

• Reliability QoS: Reliable

• History QoS Depth: 100

• Durability QoS: TRANSIENT_LOCAL

Then subscribe to one instance of Square.

3. Results - You should observe a Square with 100 trailing squares bouncing around the subscriber application’s
display window. This demonstrates that the subscriber is being provided with the durable data that the publisher
has made available. The example application windows should look like this (publisher on the left, subscriber on
the right):

32 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Partition

See also:

Partition QoS

In this example, we will begin to look at the DDS concept of partitions. In this example, 4 instances of the Shapes
Demo application will need to be running simultaneously, each instance passed initial parameters to help configure the
application’s partition. Each step below will describe how one of the instances should be started and configured for
publishing/subscribing.

1. First publisher: Start an instance of the Shapes demo passing it a command line argument of -partition
"A". Then, have this application instance publish a Square. You may leave all the QoS menu items defaulted.

2. Second publisher: Start an instance of the Shapes demo passing it a command line argument of -partition
"B". Then, have this application instance publish a Circle. You may leave all the QoS menu items defaulted.

3. Third publisher: Start an instance of the Shapes demo passing it a command line argument of -partition
"*". Then, have this application instance publish a Triangle. You may leave all the QoS menu items defaulted.

4. Subscriber (fourth instance): Start an instance of the Shapes demo passing it a command line argument of
-partition "A". Then, have this application instance subscribe to Square, Circle, and Triangle. You may
leave all the QoS menu items defaulted.

5. Results - You should observe that only the Square and Triangle appear in the subscriber application’s display
area. This is because this subscriber instance matches to both partition A and *. However, the circle is being
published in partition B, which the subscriber does not belong to. Therefore, the circle is grayed out because it
is an unmatched subscription currently. The example application windows should look like this (subscriber on
the bottom right):

2.4. Shapes Demo 33



OpenDDS, Release 3.28.1

34 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Ownership

See also:

Ownership QoS

In this example, we will begin to look at the DDS concept of Ownership QoS. In this example, 3 instances of the Shapes
Demo application will need to be running simultaneously.

1. In the first application window, subscribe to one instance of Square after using the QoS menu to set the Ownership
QoS accordingly:

• Ownership QoS: EXCLUSIVE

2. Now start a second instance of the shapes demo. In this application window, publish one instance of Square after
using the QoS menu to set the Ownership QoS accordingly:

• Ownership QoS: EXCLUSIVE

• Ownership QoS Strength: 50

3. Initial Results - At this point you should observe that the Square has appeared in the subscriber application’s
display area matching the color, size, and location of the square in the publisher’s display area. The example
application windows should look like this (publisher on the left, subscriber on the right):

4. Now start a third instance of the shapes demo. In this application window, publish one instance of Square after
using the QoS menu to set the Ownership QoS accordingly:

• Ownership QoS: EXCLUSIVE

• Ownership QoS Strength: 75

• Before clicking “Publish” increase the size of the Square using the size slider. (This will help make the
changes more visible.)

5. Final Results - At this point you should observe that the larger Square has appeared in the subscriber application’s
display area. Since the Ownership QoS has been set to exclusive, only one writer of the topic – the writer with
the highest strength – will have its messages find their way to the subscriber. The example application windows
should look like this (initial publisher on the left, subscriber on the right, new publisher on the right):

6. Note - At this point you could simulate a higher strength publisher leaving the system by closing the second
publisher application window. Then you should observe the subscriber failing over to the initial publisher’s
smaller instance of the Square that had a lower ownership strength.

2.4. Shapes Demo 35



OpenDDS, Release 3.28.1

Time-Based Filter

See also:

Time Based Filter QoS

In this example, we will begin to look at the DDS concept of Time Based Filter QoS. In this example, only 2 instances
of the Shapes Demo application will be necessary.

1. In the first application window, publish 4 instances, 2 each of Circle and Square, but vary the colors to be unique.
QoS settings on the publisher can remain defaulted. For this demonstration we will publish:

• Circle - Green

• Circle - Red

• Square - Green

• Square - Blue

2. In the second application window, subscribe to the Square topic using the default QoS settings. Then, subscribe
to Circle by first using the QoS configuration menu to set the following:

• Time Based Filter QoS - Minimum Separation: 2 (seconds)

3. Results - Both samples of Square should appear fluidly bouncing around the subscriber’s application window.
However, you will notice, the Circle samples are being sub-sampled based on the time filter that was configured.
Only the most recent sample within the minimum separation is displayed in the subscriber’s window. You should
notice that each time the time based filter meets its required minimum separation the circle samples are updated
and, for an instant, should have the same location as those in the publisher’s window. Notice in the following
graphics how the circles in the subscriber do not match up perfectly with the position of the circles in the publisher.
Here are a couple examples of what your application windows might look like at this point (publisher on the left,
subscriber on the right):

Content-Filtered Topics

See also:

Content-Filtered Topic

In this example we will begin to look at the DDS concept of Content-Filtered Topics. In this example only 2 instances
of the Shapes Demo application will be necessary.

1. In the first application window publish a single instance of Square using the default QoS settings.

2. In the second application window you will subscribe to the Square topic. However, the content filter needs to be
configured first. So click on the Filter button and it should bring up a dialog that looks like this:

36 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.4. Shapes Demo 37



OpenDDS, Release 3.28.1

3. For this example we will use the default bounding box for the content filter which is controlled by the x and y
slider bars in the menu. We will also use the default filter of outside which will tell the subscriber to ignore all
samples outside the given bounding box. Then also toggle the filter by selecting Enable and finish by clicking
the OK button.

4. Now that the content filter is set up, subscribe to the Square topic.

5. Results - You should be able to observe the square bouncing around the publisher application’s display window.
On the subscriber’s side, however, the square’s position and graphic will only be updated when it is within the
content filter’s bounding box. All samples outside the content filter area are filtered out. Here are a couple of
examples of what your application windows might look like at this point (publisher on the left, subscriber on the
right):

Here you can see that while the published instance is within the content filter bounds, the subscriber’s square
updates normally keeping in step with the square on the publisher’s side.

Here you can see that when the published instance leaves the confines of the content filter, the subscriber’s square
remains at the last valid position and no longer updates its position until the published instance once again enters
into the bounds of the content filter.

38 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.4.4 Conclusion

The examples worked through above have demonstrated some of the many Data Distribution Service features provided
by OpenDDS. OpenDDS provides a portable and interoperable publish/subscribe infrastructure. You have learned a
little about many DDS concepts including:

• Discovery

• Topics and Data Types

• Publish/Subscribe semantics

• One to Many and Many to One communications

• Different Quality of Service (QoS)

– Reliability

– Durability

– Ownership

– Data Partitioning

– Time Based Filter

• Content Filtered Topics

Hopefully this has helped provide an understanding of what using OpenDDS to provide a publish/subscribe infrastruc-
ture can look like and the different features that can be included in a product using OpenDDS as its communications
infrastructure.

2.4.5 Next Steps

Now that you’ve acquired a conceptual baseline, here are some recommended next steps to continue learning about
OpenDDS:

• Work through downloading and building OpenDDS and running a simple example through the other Quick Start
Guides.

• Find more support information about dependencies and detailed instructions for Building and Installing.

• Learn more about Getting Started with OpenDDS by walking through an end-to-end example.

• Visit the OpenDDS project on GitHub.

2.5 Introduction to OpenDDS

2.5.1 What is OpenDDS?

OpenDDS is an open-source C++ framework for exchanging data in distributed systems. It is an implementation of
a group of related OMG specifications. OpenDDS is implemented in C++ and contains support for Java. Users
in the OpenDDS community have contributed and maintain bindings for other languages that include C#, Node.js,
and Python. OpenDDS is sponsored by the OpenDDS Foundation and is available via https://opendds.org and https:
//github.com/OpenDDS/OpenDDS.

2.5. Introduction to OpenDDS 39

https://github.com/OpenDDS/OpenDDS
https://www.openddsharp.com/
https://github.com/OpenDDS/node-opendds
https://github.com/OpenDDS/pyopendds
https://opendds.org
https://github.com/OpenDDS/OpenDDS
https://github.com/OpenDDS/OpenDDS


OpenDDS, Release 3.28.1

2.5.2 Licensing Terms

OpenDDS is open source software. The source code may be freely downloaded and is open for inspection, review,
comment, and improvement. Copies may be freely installed across all your systems and those of your customers. There
is no charge for development or run-time licenses. The source code is designed to be compiled, and used, across a wide
variety of hardware and operating systems architectures. You may modify it for your own needs, within the terms of the
license agreements. You must not copyright OpenDDS software. For details of the licensing terms, see the file named
LICENSE that is included in the OpenDDS source code distribution or visit https://opendds.org/about/license.html.

OpenDDS also utilizes other open source software products including MPC and ACE/TAO.

OpenDDS is open source and the development team welcomes contributions of code, tests, documentation, and ideas.
Active participation by users ensures a robust implementation. Contact the OpenDDS Foundation if you are interested
in contributing to the development of OpenDDS. Please note that any code or documentation that is contributed to and
becomes part of the OpenDDS open source code base is subject to the same licensing terms as the rest of the OpenDDS
code base.

2.5.3 Specifications

OpenDDS is an open source implementation of a group of related OMG specifications.

Data Distribution Service (DDS) for Real-Time Systems

This specification defines a service for efficiently distributing application data between participants in a distributed
application. This is the core functionality implemented by OpenDDS for real-time publish and subscribe applications
and is described throughout this document.

The version OpenDDS uses is DDS v1.4. Compliance with the specification is documented in DDS Compliance. More
information about the DDS itself can be found on the DDS Foundation website.

Real-time Publish-Subscribe (RTPS)

The full name of this specification is the Real-time Publish-Subscribe Protocol DDS Interoperability Wire Protocol
(DDSI-RTPS), but can also be just called RTPS. This specification describes the requirements for interoperability
between DDS implementations. See RTPS Discovery for more information.

The version OpenDDS uses is RTPS v2.3. Although the document number is v2.3, it specifies protocol version 2.4.
Compliance with the specification is documented in DDSI-RTPS Compliance.

DDS Security

This specification extends DDS with capabilities for authentication and encryption. OpenDDS’s support for the DDS
Security specification is described in DDS Security.

The version OpenDDS uses is DDS Security v1.1. Compliance with the specification is documented in DDS Security
Implementation Status.

40 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/LICENSE
https://opendds.org/about/license.html
https://www.omg.org/spec/DDS/1.4
https://www.dds-foundation.org/
https://www.omg.org/spec/DDSI-RTPS/2.3
https://www.omg.org/spec/DDS-SECURITY/1.1


OpenDDS, Release 3.28.1

Extensible and Dynamic Topic Types for DDS (XTypes)

This specification defines details of the type system used for the data exchanged on DDS Topics, including how schema
and data are encoded for network transmission. OpenDDS’s support for XTypes is described in XTypes.

The version OpenDDS uses is DDS XTypes v1.3. Compliance with the specification is documented in Unimplemented
Features and Differences from the specification.

IDL

IDL is a language that can be used to define data structures and interfaces that can be mapped to multiple programming
languages. The parser is implemented as part of tao_idl.

The version OpenDDS uses is IDL v4.2. Compliance with the specification is documented in IDL Compliance.

IDL to C++03 Language Mapping

This specification defines an IDL to C++ mapping. It’s generated by tao_idl, not opendds_idl.

The version OpenDDS uses is IDL to C++03 v1.3.

IDL to C++11 Language Mapping

This specification defines an IDL to C++ mapping that takes advantage of C++11 language features and standard library
types. OpenDDS’s support for IDL to C++11 is described in Using the IDL-to-C++11 Mapping.

The version OpenDDS uses is IDL to C++11 v1.5.

IDL to Java Language Mapping

This specification defines an IDL to Java mapping and is used for the Java Bindings.

The version OpenDDS uses is IDL to Java v1.3.

2.5.4 Compliance

OpenDDS complies with the OMG DDS and the OMG DDSI-RTPS specifications. Details of that compliance follows
here. OpenDDS also implements the OMG DDS Security specification. See Specifications for how OpenDDS complies
with other specifications it implements.

DDS Compliance

Section 2 of the DDS specification defines five compliance points for a DDS implementation:

• Minimum Profile

• Content-Subscription Profile

• Persistence Profile

• Ownership Profile

• Object Model Profile

2.5. Introduction to OpenDDS 41

https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/CPP/1.3
https://www.omg.org/spec/CPP11/1.5
https://www.omg.org/spec/I2JAV/1.3


OpenDDS, Release 3.28.1

OpenDDS complies with the entire DDS specification (including all optional profiles). This includes the implementa-
tion of all Quality of Service policies with the following notes:

• Reliability QoS RELIABLE_RELIABILITY_QOS is supported by the RTPS/UDP Transport, the TCP Transport,
and the Multicast Transport (when configured as reliable).

• Transport Priority QoS is not implemented as changeable.

Although version 1.5 of the DDS specification is not yet published, OpenDDS incorporates some changes planned for
that version that are required for a robust implementation:

• OMG Issue DDS15-5 (Member Link): The IDL type BuiltinTopicKey_t is a struct containing an array of 16
octets

– The actual child issue isn’t public viewable for some reason, but the member link is https://issues.omg.org/
browse/DDS15-257

DDSI-RTPS Compliance

The OpenDDS implementation complies with the requirements of the OMG DDSI-RTPS specification.

OpenDDS RTPS Implementation Notes

The OMG DDSI-RTPS specification supplies statements for implementation, but not required for compliance. The
following items should be taken into consideration when utilizing the OpenDDS RTPS functionality for transport
and/or discovery. Section numbers of the DDSI-RTPS specification are supplied with each item for further reference.

Items not implemented in OpenDDS:

1. Writer-side content filtering (RTPS v2.3 8.7.3 Content-filtered Topics)

OpenDDS may still drop samples that aren’t needed (due to content filtering) by any associated readers – this is
done above the transport layer

2. RTPS v2.3 8.7.6 Coherent Sets for Presentation QoS

3. RTPS v2.3 8.7.7 Directed Write

OpenDDS will use the Directed Write parameter if it’s present on incoming messages (for example, messages
generated by a different DDS implementation)

4. RTPS v2.3 8.7.8 Property Lists

5. RTPS v2.3 8.7.9 Original Writer Info for Durability QoS

This would only be used for transient and persistent durability, which are not supported by the RTPS specification

6. Key Hashes are not generated, but the specification makes them optional

7. nackSuppressionDuration (Table 8.47 in RTPS v2.3 8.4.7.1 RTPS Writer) and
heartbeatSuppressionDuration (Table 8.62 in RTPS v2.3 8.4.10.1 RTPS Reader).

Note: Items 3 and 4 above are described in the DDSI-RTPS specification. However, they do not have a corresponding
concept in the DDS specification.

42 Chapter 2. Developer’s Guide

https://issues.omg.org/issues/DDS15-5
https://issues.omg.org/browse/DDS15-5
https://issues.omg.org/browse/DDS15-257
https://issues.omg.org/browse/DDS15-257
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=130&view=FitH,366.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=135&view=FitH,238.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=137&view=FitH,168.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=137&view=FitH,297.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=137&view=FitH,403.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=129&view=FitH,379.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=137&view=FitH,738.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=70&view=FitH,209.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=95&view=FitH,232.68


OpenDDS, Release 3.28.1

IDL Compliance

OMG IDL is used in a few different ways in the OpenDDS code base and downstream applications that use it:

• Files that come with OpenDDS such as dds/DdsDcpsTopic.idl define parts of the API between the middleware
libraries and the application. This is known as the OMG IDL Platform Specific Model (PSM).

• Users of OpenDDS author IDL files in addition to source code files in C++ or Java.

This section only describes the latter use.

The IDL specification (version 4.2) uses the term “building block” to define subsets of the overall IDL grammar that
may be supported by certain tools. OpenDDS supports the following building blocks, with notes/caveats listed below
each:

• Core Data Types

– Support for the “fixed” data type (fixed point decimal) is incomplete.

• Anonymous Types

– There is limited support for anonymous types when they appear as sequence/array instantiations directly as
struct field types. Using an explicitly-named type is recommended.

• Annotations

– See Defining Data Types with IDL and IDL Annotations for details on which built-in annotations are sup-
ported.

– User-defined annotation types are also supported.

• Extended Data Types

– The integer types int8, uint8, int16, uin16, int32 uint32, int64, and uint64 are supported.

– The rest of the building block is not supported.

2.5.5 Extensions to the DDS Specification

Data types, interfaces, and constants in the DDS IDL module (C++ namespace, Java package) correspond directly to
the DDS specification with very few exceptions:

• DDS::SampleInfo contains an extra field starting with opendds_reserved.

• Type-specific DataReaders (including those for Built-in Topics) have additional operations
read_instance_w_condition() and take_instance_w_condition().

Additional extended behavior is provided by various classes and interfaces in the OpenDDSmodule/namespace/package.
Those include features like Recorder and Replayer (Alternate Interfaces to Data) and also:

• OpenDDS::DCPS::TypeSupport adds the unregister_type() operation not found in the DDS spec.

• OpenDDS::DCPS::ALL_STATUS_MASK, NO_STATUS_MASK, and DEFAULT_STATUS_MASK are useful constants
for the DDS::StatusMask type used by DDS::Entity, DDS::StatusCondition, and the various create_*()
operations.

2.5. Introduction to OpenDDS 43

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DdsDcpsTopic.idl


OpenDDS, Release 3.28.1

2.5.6 OpenDDS Implementation and Architecture

This section gives a brief overview of the OpenDDS implementation, its features, and some of its components.

Source Code Organization

Relative to DDS_ROOT:

• the dds/ directory contains the source code for OpenDDS.

• the tests/ directory contains tests.

• the tools/ directory contains tools and libraries like the DCPSInfoRepo, RtpsRelay, and the Modeling SDK.

• the DevGuideExamples/ directory contains examples used in this guide.

• the examples/ directory contains examples not used in this guide.

• the docs/ directory contains documentation for users and developers of OpenDDS.

Design Philosophy

The OpenDDS implementation and API is based on a fairly strict interpretation of the OMG IDL PSM. In almost all
cases the OMG’s IDL-to-C++ Language Mapping is used to define how the IDL in the DDS specification is mapped
into the C++ APIs that OpenDDS exposes to the client.

The main deviation from the OMG IDL PSM is that local interfaces are used for the entities and various other interfaces.
These are defined as unconstrained (non-local) interfaces in the DDS specification. Defining them as local interfaces
improves performance, reduces memory usage, simplifies the client’s interaction with these interfaces, and makes it
easier for clients to build their own implementations.

Plugins

OpenDDS puts many implementation details into libraries that are outside the core OpenDDS_Dcps library. Making
these features modular allows users to build and distribute their applications without building or distributing code their
applications won’t use. It also makes it easier to replace these libraries with custom ones.

• transports:

– TCP Transport

– RTPS/UDP Transport

– UDP Transport

– Multicast Transport

– Shared Memory Transport

• discovery1:

– InfoRepo Discovery

– RTPS Discovery

• security2

1 Static Discovery is built-in to the core Dcps library, so it doesn’t require linking a separate library or including an initialization header.
2 Within DDS Security there is a concept of plugins that is mostly separate from the plugins described here. They are for implementing specific

security features such as different encryption methods. The built-in security library is a default implementation of these, but a custom OpenDDS
security plugin could implement one or more of these DDS Security plugins.

44 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/dds/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tools/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/DevGuideExamples/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/examples/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/


OpenDDS, Release 3.28.1

How to enable and use a particular plugin will differ based on the kind of plugin and the plugin itself, but generally they
are enabled by some form of configuration setting, for example using [transport] transport_type or [common]
DCPSSecurity in a configuration file. The plugin will also have to be linked and initialized at runtime. For dynamic
libraries (.dll, .dynlib or, .so files) this is done automatically as the OpenDDS will load the dynamic library and
then run any initialization the plugin requires. When the plugins are statically linked, then it requires explicit linking
and including an initialization header in the application that contains a global object that will initialize the plugin. If
OpenDDS was built using CMake, then dds/DCPS/StaticIncludes.h can be included and the initialization headers
will be included automatically based on the static libraries that were linked. Explicit linking and initialization headers
can also be used with dynamic libraries. This will always load and initialize the plugin when the application starts
instead of delaying until the plugin is needed.

Transports

Transmission of samples and information related to their management is accomplished via an OpenDDS-specific trans-
port framework that allows the service to be used with a variety of transport protocols. Transports are typically specified
via configuration files and are attached to various entities in the publisher and subscriber processes. See Transport Con-
figuration for details on configuring transports generally.

.---------------------------. .---------------------------.
| "Publisher Application" | | "Subscriber Application" |
| +-----------------------+ | | +-----------------------+ |
| | "DataWriter" | | | | "DataReader" | |
| +-----------------------+ | | +-----------------------+ |
| | "Publisher" | | | | "Subscriber" | |
| +-----------------------+ | | +-----------------------+ |
| | "DomainParticipant" | | | | "DomainParticipant" | |
| +-----------+-----------+ | | +-----------+-----------+ |
| |"Discovery"|"Transport"| | | |"Transport"|"Discovery"| |
| +-----o-----+-----o-----+ | | +-----o-----+-----o-----+ |
| | | | | | | |
| +-----+-----+ | | +-----+-----+ |
`-------------|-------------' `-------------|-------------'

| |
| "Network" |

==============#==============================#==============

Transports are used along with discovery to define how OpenDDS communicates.

TCP Transport

The TCP transport (tcp) uses TCP as the transmission mechanism. It’s the default transport normally. It’s reliable,
regardless of configuration.

Important: Library filename: OpenDDS_Tcp

MPC base project name: dcps_tcp

CMake target Name: OpenDDS::Tcp

Initialization header: dds/DCPS/transport/tcp/Tcp.h

[transport] transport_type: tcp

Configuration: TCP Transport Configuration Properties

2.5. Introduction to OpenDDS 45

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/StaticIncludes.h
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/dcps_tcp.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/tcp/Tcp.h


OpenDDS, Release 3.28.1

RTPS/UDP Transport

The RTPS/UDP transport (rtps_udp) uses the UDP-based transport described in Real-time Publish-Subscribe (RTPS)
as the transmission mechanism. It’s interoperable with other DDS implementations when used with RTPS Discovery.
It’s the default transport when Safety Profile is being used. It supports reliability.

Important: Library filename: OpenDDS_Rtps_Udp

MPC base project name: dcps_rtps_udp

CMake target Name: OpenDDS::Rtps_Udp

Initialization header: dds/DCPS/transport/rtps_udp/RtpsUdp.h

[transport] transport_type: rtps_udp

Configuration: RTPS UDP Transport Configuration Properties

See also:

DDS Security
For security capabilities that are possible when using RTPS Discovery and the RTPS/UDP Transport

Internet-Enabled RTPS
For using RTPS Discovery and the RTPS/UDP Transport over the internet

UDP Transport

The UDP transport (udp) uses unicasted UDP as the transmission mechanism. It doesn’t support reliability at all.

Important: Library filename: OpenDDS_Udp

MPC base project name: dcps_udp

CMake target Name: OpenDDS::Udp

Initialization header: dds/DCPS/transport/udp/Udp.h

[transport] transport_type: udp

Configuration: UDP Transport Configuration Properties

Multicast Transport

The multicast transport (mutlicast) uses multicasted UDP as the transmission mechanism. It supports reliability.

Important: Library filename: OpenDDS_Multicast

MPC base project name: dcps_multicast

CMake target Name: OpenDDS::Multicast

Initialization header: dds/DCPS/transport/multicast/Multicast.h

[transport] transport_type: multicast

46 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/dcps_rtps_udp.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/rtps_udp/RtpsUdp.h
https://en.wikipedia.org/wiki/Unicast
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/dcps_udp.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/udp/Udp.h
https://en.wikipedia.org/wiki/Multicast
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/dcps_multicast.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/multicast/Multicast.h


OpenDDS, Release 3.28.1

Configuration: Multicast Transport Configuration Properties

Shared Memory Transport

Note: This transport is not currently supported on macOS because macOS lacks support for POSIX unnamed
semaphores.

The shared memory transport (shmem) uses shared memory on the local host as the transmission mechanism. It’s
reliable, regardless of configuration.

Important: Library filename: OpenDDS_Shmem

MPC base project name: dcps_shmem

CMake target Name: OpenDDS::Shmem

Initialization header: dds/DCPS/transport/shmem/Shmem.h

[transport] transport_type: shmem

Configuration: Shared Memory Transport Configuration Properties

Custom Transports

The transport framework enables application developers to implement their own customized transports. Implementing
a custom transport involves specializing a number of classes defined in the transport framework. The udp transport pro-
vides a good foundation developers may use when creating their own implementation. See the dds/DCPS/transport/
udp/ directory for details.

Discovery

DDS applications must discover one another via some central agent or through some distributed scheme. OpenDDS
provides three options for discovery: InfoRepo Discovery, RTPS Discovery, and Static Discovery. The choice of dis-
covery is independent of the choice of transport in most cases. For example, one can use the TCP Transport with RTPS
Discovery. Notable exceptions are:

1. DDS Security requires using both RTPS Discovery and the RTPS/UDP Transport.

2. To get the most out of XTypes, it’s recommended to both RTPS Discovery and the RTPS/UDP Transport

3. Static Discovery requires RTPS/UDP Transport.

Like transports, additional discovery implementations can be created and plugged in.

2.5. Introduction to OpenDDS 47

https://stackoverflow.com/questions/27736618
https://stackoverflow.com/questions/27736618
https://en.wikipedia.org/wiki/Shared_memory
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/dcps_shmem.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/shmem/Shmem.h
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/dds/DCPS/transport/udp/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/dds/DCPS/transport/udp/


OpenDDS, Release 3.28.1

InfoRepo Discovery

Note: InfoRepo discovery is scheduled for deprecation with OpenDDS 4 and scheduled for removal with OpenDDS
5.

OpenDDS contains a standalone CORBA service called The DCPS Information Repository. An instance of the
DCPSInfoRepo is shared by all the participants in a domain and constitutes a centralized approach to discovery. Each
OpenDDS application connects to the DCPSInfoRepo and creates records for its participants, topics, data writers, and
data readers. As records for data writers and data readers are created, they are matched against the existing set of
records. When matches are found, the DCPSInfoRepo invokes the participant to perform the necessary associations.

.---------------------------. .---------------------------.
| "Publisher Application" | | "Subscriber Application" |
| +-----------------------+ | | +-----------------------+ |
| | "DataWriter" | | | | "DataReader" | |
| +-----------------------+ | | +-----------------------+ |
| | "Publisher" | | | | "Subscriber" | |
| +-----------------------+ | | +-----------------------+ |
| | "DomainParticipant" | | | | "DomainParticipant" | |
| +-----------+-----------+ | | +-----------+-----------+ |
| |"InfoRepo" |"Transport"| | | |"Transport"|"InfoRepo" | |
| |"Discovery"| | | | | |"Discovery"| |
| +-----o-----+-----o-----+ | | +-----------+-----------+ |
| | | | | ^ ^ |
`-------|-----------|-------' `-------|-----------|-------'

| +------------------+ |
"1. Publisher" | "3. Publisher Writes Samples" |2. Subscriber
" Advertises" | | Discovers
" Topic" | .------------------------. | Topic

+------->+ "InfoRepo Application" +--------+
`------------------------'

Important: Library filename: OpenDDS_InfoRepoDiscovery

MPC base project name: dcps_inforepodiscovery

CMake target Name: OpenDDS::InfoRepoDiscovery

Initialization header: dds/DCPS/InfoRepoDiscovery/InfoRepoDiscovery.h

Configuration: Configuring for InfoRepo Discovery

The DCPSInfoRepo is not involved in data propagation; its role is limited in scope to OpenDDS applications discovering
one another. The DCPSInfoRepo populates the Built-in Topics (BITs) for a participant if configured to do so. OpenDDS
creates its own ORB and a separate thread to run that ORB when using DCPSInfoRepo discovery.

Application developers are free to run multiple information repositories with each managing their own non-overlapping
sets of DCPS domains.

It is also possible to operate domains with more than a single repository, thus forming a distributed virtual repository.
This is known as Repository Federation. In order for individual repositories to participate in a federation, each one
must specify its own federation identifier value (a 32-bit numeric value) upon start-up. See Repository Federation for
further information about repository federations.

48 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/dcps_inforepodiscovery.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/InfoRepoDiscovery/InfoRepoDiscovery.h


OpenDDS, Release 3.28.1

See also:

The DCPS Information Repository
Documentation on the DCPSInfoRepo program

RTPS Discovery

RTPS discovery is a peer-to-peer discovery mechanism standardized as part of the RTPS spec. Other DDS implemen-
tations can interoperate with OpenDDS when RTPS discovery is used with the RTPS/UDP Transport.

.---------------------------. .---------------------------.
| "Publisher Application" | | "Subscriber Application" |
| +-----------------------+ | | +-----------------------+ |
| | "DataWriter" | | | | "DataReader" | |
| +-----------------------+ | | +-----------------------+ |
| | "Publisher" | | | | "Subscriber" | |
| +-----------------------+ | | +-----------------------+ |
| | "DomainParticipant" | | | | "DomainParticipant" | |
| +-----------+-----------+ | | +-----------+-----------+ |
| |"RTPS" |"Transport"| | | |"Transport"|"RTPS" | |
| |"Discovery"| | | | | |"Discovery"| |
| +-----o-----+-----o-----+ | | +-----------+-----------+ |
| | | | | ^ ^ |
`-------|-----------|-------' `-------|-----------|-------'

| +------------------+ |
"1. Publisher" | "3. Publisher Writes Samples" |2. Subscriber
" Advertises" | | Discovers
" Topic" | | Topic

| "RTPS SPDP Multicast Group" |
========#==========================================#========

Important: Library filename: OpenDDS_Rtps

MPC base project name: dcps_rtps

CMake target Name: OpenDDS::Rtps

Initialization header: dds/DCPS/RTPS/RtpsDiscovery.h

Configuration: Configuring for RTPS Discovery

RTPS Discovery uses the RTPS protocol to advertise and discover participants, data writers, and data readers. RTPS
Discovery uses multicast to discover participants and built-in endpoints (not to be confused with built-in topics) each
other without a centralized broker such as InfoRepo. This part of RTPS discovery is called the Simple Participant
Discovery Protocol (SPDP). After the built-in endpoints are discovered and associated, they exchange information
about data writers and data readers which are called endpoints. This part of RTPS discovery is called Simple Endpoint
Discovery Protocol (SEDP). RTPS Discovery is a peer-to-peer approach to discovery as each participant interacts
directly with other participants to accomplish discovery.

The following are additional implementation limits that developers need to take into consideration when developing
and deploying applications that use RTPS discovery:

1. Domain IDs should be between 0 and 231 (inclusive) due to the way UDP ports are assigned to domain IDs. In
each OpenDDS process, up to 120 domain participants are supported in each domain.

2. Topic names and type identifiers are limited to 256 characters.

2.5. Introduction to OpenDDS 49

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=113&view=FitH,662.68
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/dcps_rtps.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/RTPS/RtpsDiscovery.h


OpenDDS, Release 3.28.1

3. The Multicast Transport does not work with RTPS Discovery due to the way GUIDs are assigned (a warning
will be issued if this is attempted).

See also:

XTypes
For expanded type-system capabilities that are possible when using RTPS discovery

DDS Security
For security capabilities that are possible when using RTPS Discovery and the RTPS/UDP Transport

Internet-Enabled RTPS
For using RTPS Discovery and the RTPS/UDP Transport over the internet

Static Discovery

In Static Discovery, each participant starts with a database containing identifiers, QoS settings, and network locators
for all participants, topics, data writers, data readers.

.---------------------------. .---------------------------.
| "Publisher Application" | | "Subscriber Application" |
| +-----------------------+ | | +-----------------------+ |
| | "DataWriter" | | | | "DataReader" | |
| +-----------------------+ | | +-----------------------+ |
| | "Publisher" | | | | "Subscriber" | |
| +-----------------------+ | | +-----------------------+ |
| | "DomainParticipant" | | | | "DomainParticipant" | |
| +-----------+-----------+ | | +-----------+-----------+ |
| |"Static" |"RTPS UDP" | | | |"RTPS UDP" |"Static" | |
| |"Discovery"|"Transport"| | | |"Transport"|"Discovery"| |
| +-----------+-----o-----+ | | +-----------+-----------+ |
| | | | ^ |
`-------------------|-------' `-------|-------------------'

+------------------+
"2. Publisher Writes Samples"

1. Subscriber
Assumes Topic

Important: The RTPS/UDP Transport is the only transport that can be used with Static Discovery.

Static Discovery is built-in to the core Dcps library, so it doesn’t require linking a separate library or including an
initialization header.

Configuration: Configuring for Static Discovery

When an application creates a data writer or data reader, Static Discovery causes it to send out periodic announcements.
Upon receiving one of these announcements, Static Discovery consults its local database of entities to look up the details
necessary for matching and matches it against local entities.

Static Discovery requires that the User Data QoS be configured for each participant, data writer, and data reader. This
user data must contain the identifier of the entity that is being created. Thus, the user data QoS is not available for
general use when using Static Discovery. Static Discovery also requires that the network locators for all entities be
determined up front by configuring the transport with the necessary networking information.

50 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Threading

OpenDDS creates its own threads for handling I/O, timers, asynchronous jobs, and cleanup tasks. These threads are
collectively called service threads. Applications may receive a callback from these threads via Listeners.

When publishing a sample, OpenDDS normally attempts to send the sample to any connected subscribers using the
calling thread. If the send call would block, then the sample may be queued for sending on a separate service thread.
This behavior depends on the QoS policies described in Quality of Service.

All incoming data is read by a service thread and queued for reading in DataReaders by the application. If a DataReader
has a listener that should be invoked when data is available, then the listener is invoked by the service thread.

Configuration

OpenDDS includes a file-based configuration framework for configuring both global items such as debug level, memory
allocation, and discovery, as well as transport implementation details for publishers and subscribers. Configuration can
also be achieved directly in code, however, it is recommended that configuration be externalized for ease of maintenance
and reduction in runtime errors. The complete set of configuration options are described in Run-time Configuration.

2.6 Building and Installing

2.6.1 Dependencies

Required to Build the Core OpenDDS Libraries

Note: Perl is required to run the configure script; MPC, ACE, and TAO will be downloaded automatically by the
configure script by default.

Perl

Perl is an interpreted language used in the configure script, the tests, and most other scripting in OpenDDS codebase.
Even if the configure script is not used, it is also required to run MPC, so it is required to build OpenDDS.

Perl should be 5.18 or newer and be available on the system PATH. Older versions of Perl will probably work, but are
not tested anymore. Strawberry Perl is recommended for Windows.

Testing scripts are written in Perl and use the common PerlACE modules provided by ACE. For scripts that will be part
of automated testing, don’t assume the presence of any non-standard (CPAN) modules. Perl offers many facilities for
portability. Shell scripts are by definition non-portable and should not to be committed to the OpenDDS repository.

Perl core modules are a required part of Perl. Some Linux distributions install the Perl interpreter without including
core modules. Using OpenDDS with this sort of partial Perl installation may fail unexpectedly when using configure,
MPC, make depend, or test scripts.

2.6. Building and Installing 51

https://www.perl.org/
https://strawberryperl.com


OpenDDS, Release 3.28.1

MPC

MPC is the build system used by OpenDDS, used to configure the build and generate platform specific build files
(Makefiles, VS solution files, etc.).

The official repository is hosted on Github at DOCGroup/MPC.

It is included in the release archive of ACE/TAO, which is downloaded by the configure script by default.

ACE/TAO

The DOC Group repository for ACE/TAO is hosted on Github at DOCGroup/ACE_TAO.

There are two versions of ACE/TAO that are officially supported by OpenDDS in this release (3.28.1):

DOC Group ACE 6.5.20/TAO 2.5.20
The configure script will download this version by default. CMake will download this version if
OPENDDS_ACE_TAO_KIND is set to ace6tao.

Pass --ace-github-latest to the configure script to clone the ace6tao2 branch of ACE/TAO as is. This also
clones the master branch of MPC as is. CMake will do the same if OPENDDS_ACE_TAO_KIND is set to ace6tao
and OPENDDS_ACE_TAO_GIT is set to TRUE.

DOC Group ACE 7.1.3/TAO 3.1.3
Pass --doc-group3 to the configure script to download this version. CMake will download this version by
default.

This version requires a C++14-capable compiler.

Pass --ace-github-latest to the configure script to clone the master branch of ACE/TAO as is. This also
clones the master branch of MPC as is. CMake will do the same if OPENDDS_ACE_TAO_GIT is set to TRUE.

ACE

ACE is the platform abstraction layer used by OpenDDS. It is used both directly and through TAO. Facilities not
provided by the C++ 2003 standard library, for example sockets, threads, and dynamic library loading, are provided by
ACE.

Some other features OpenDDS relies on ACE for:

• ACE provides the gnuace type used by MPC for generating Makefiles for OpenDDS

• ACE contains a script, generate_export_file.pl, which is used (along with MPC) to manage shared li-
braries’ symbol visibility (also known as export/import)

– See ACE documentation and usage guidelines for details

• ACE logging is used (ACE_Log_Msg and related classes).

– This is used through the ACE_DEBUG and ACE_ERROR macros.

– ACE logging uses a formatting string that works like std::printf() but not all of the formatting specifiers
are the same as printf(). Please read the ACE_Log_Msg documentation before using.

– The most commonly misused formatting specifier is %s. In printf this is for char* C strings, but in
ACE_Log_Msg this is for ACE_TCHAR* C strings. ACE_TCHAR can be char or a wide character depend-
ing on how ACE was built (see next point). %C should be used for strings that are always char*, like
std::string::c_str().

• ACE has classes and macros for wide/narrow string conversion. See docs/design/WCHAR for details.

52 Chapter 2. Developer’s Guide

https://github.com/DOCGroup/MPC
https://github.com/DOCGroup/ACE_TAO
https://github.com/DOCGroup/ACE_TAO/releases/tag/ACE%2BTAO-6_5_20
https://github.com/DOCGroup/ACE_TAO/releases/tag/ACE%2BTAO-7_1_3
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/design/WCHAR


OpenDDS, Release 3.28.1

• ACE provides support for platforms that have a non-standard program entry point (main). All of our main
functions are int ACE_TMAIN(int argc, ACE_TCHAR* argv[]).

TAO

TAO is a C++ CORBA Implementation built on ACE.

• TAO provides the tao_idl IDL compiler and non-generated classes which implement the IDL-to-C++ mapping.

• TAO ORBs are only created for interaction with the DCPSInfoRepo, all other uses of TAO are basic types and
local interfaces.

• A separate library, OpenDDS_InfoRepoDiscovery, encapsulates the participant process’s use of the ORB.

– This is the only library which depends on TAO_PortableServer.

The TAO Developer’s Guide book can be requested for free from https://objectcomputing.com/products/tao/
tao-developers-guide. The CORBA Programmers Guide can be downloaded for free from https://www.remedy.nl/
opensource/corbapg.html.

Optional Dependencies

CMake

OpenDDS has a package included for CMake. See Using OpenDDS in a CMake Project for how to build OpenDDS
applications with CMake and without the need to use MPC in your application.

CMake is required to build GoogleTest for OpenDDS tests if a prebuilt GoogleTest is not found or provided. See
tests/gtest_setup.txt for details.

CMake should be version 3.3 or later for Using OpenDDS in a CMake Project. It should be version 3.23 or later for
Building OpenDDS Using CMake.

GoogleTest

GoogleTest is required for OpenDDS tests.

GoogleTest is a git submodule that will be downloaded automatically if the repository was recursively cloned or sub-
modules were initialized separately.

Note: If OpenDDS is not a git repository or Git isn’t available, GoogleTest will have to be downloaded separately and
configured manually.

See tests/gtest_setup.txt for details.

2.6. Building and Installing 53

https://objectcomputing.com/products/tao/tao-developers-guide
https://objectcomputing.com/products/tao/tao-developers-guide
https://www.remedy.nl/opensource/corbapg.html
https://www.remedy.nl/opensource/corbapg.html
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/cmake
https://cmake.org/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/gtest_setup.txt
https://google.github.io/googletest/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/gtest_setup.txt


OpenDDS, Release 3.28.1

Java

OpenDDS has optional Java bindings. It requires the Java Development Kit (JDK).

There is also support for Java Message Server (JMS) v1.1. In addition to the JDK, it requires Ant and JBoss 4.2.x. See
java/jms/README.

Qt

Qt5 is used for the tools/monitor utility program and the examples/DCPS/ishapes RTPS demo.

See docs/qt.md for details on configuring OpenDDS to use Qt.

Wireshark

A Wireshark dissector plugin for OpenDDS’ non-RTPS transports is included with OpenDDS. The dissector supports
Wireshark 1.2 and onwards and supports displaying and filtering by sample contents and from Wireshark 1.12 onwards.

Because of Wireshark’s use of Glib, Glib is also required to build the dissector.

See tools/dissector/README.md for details.

RapidJSON

RapidJSON is a C++ JSON Library used for sample dissection in the Wireshark dissector and RapidJSON type support.
Support for RapidJSON, if available, is enabled by default unless --no-rapidjson was passed.

RapidJSON is a git submodule that will be downloaded automatically if the repository was recursively cloned or sub-
modules were initialized separately.

Note: If OpenDDS is not a git repository or Git isn’t available, RapidJSON will have to be downloaded separately
and configured manually.

Xerces

Apache Xerces (“Xerces 3 C++” specifically) is used for parsing QoS XML and DDS Security XML configuration files.

OpenSSL

OpenSSL is used for DDS Security for verifying security configurations and encryption and decryption. Versions 1.0,
1.1 and 3.0 (3.0.1 or later) are supported.

54 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/jms/README
https://www.qt.io/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tools/monitor
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/examples/DCPS/ishapes
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/qt.md
https://www.wireshark.org/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/dissector/README.md
https://rapidjson.org/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/dissector/README.md#sample-dissection
https://xerces.apache.org/xerces-c/
https://www.openssl.org/


OpenDDS, Release 3.28.1

Python

Python is used for some scripts where Perl isn’t as suitable. Most notably this includes this Sphinx-based documentation
and processing the results of the CMake tests in tests/auto_run_tests.pl if --cmake is passed.

Unless noted otherwise, Python should be version 3.10 or later.

Because it’s an optional dependency, Python should not be required for any script used for building and testing the core
functionality of OpenDDS. Right now only Perl can be used for situations like that.

2.6.2 Using OpenDDS in a CMake Project

See also:

Building OpenDDS Using CMake

OpenDDS can be used with CMake-based projects by using the OpenDDS CMake config package. This package
bridges the gap between the MPC build system used by OpenDDS and CMake-based projects by providing imported
library targets and the ability to add IDL to a target using opendds_target_sources.

Requirements

CMake version 3.3.2 or greater is required to use the CMake package, but some some features require newer versions.

Using the OpenDDS CMake Package

Examples

Developer’s Guide Messenger Example

For a simple quick-start example of a CMakeLists.txt using OpenDDS with CMake see the Developer’s Guide
Messenger example. The following instructions show how to configure and build it:

Make sure the environment is setup by using source setenv.sh.

cd DevGuideExamples/DCPS/Messenger
mkdir build
cd build
cmake ..
cmake --build .
perl run_test.pl

Make sure the environment is setup by using call setenv.cmd.

cd DevGuideExamples\DCPS\Messenger
mkdir build
cd build
cmake ..
cmake --build .
perl run_test.pl

2.6. Building and Installing 55

https://www.python.org/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/auto_run_tests.pl
https://cmake.org
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/cmake
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/CMakeLists.txt
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/CMakeLists.txt


OpenDDS, Release 3.28.1

Example Using Installed OpenDDS (Unix only)

The --prefix switch can be passed to configure to enable the install target, which will install OpenDDS (including
the OpenDDS CMake config package) into the specified directory. See Installation for details.

Note: Be sure to pass an absolute path to --prefix.

OPENDDS_PREFIX="$PWD/opendds-install"
DDS_ROOT="$PWD/OpenDDS"
ACE_ROOT="$DDS_ROOT/ACE_wrappers"
cd OpenDDS
./configure --prefix="$OPENDDS_PREFIX"
make -j $(getconf _NPROCESSORS_ONLN)
make install
cd DevGuideExamples/DCPS/Messenger
mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH="$OPENDDS_PREFIX" ..
cmake --build .
PERL5LIB="$DDS_ROOT/bin:$ACE_ROOT/bin" LD_LIBRARY_PATH="$OPENDDS_PREFIX/lib:$LD_LIBRARY_
→˓PATH" perl run_test.pl

Other Examples

The CMake tests are written primarily as tests, but can also be used as examples for specific features and approaches.

find_package

To use the OpenDDS CMake package, first it has to be loaded using find_package. For example to mandatorily load
OpenDDS:

find_package(OpenDDS REQUIRED)

For this to work, CMake has to be able to find the package. If the OpenDDS build environment variables (from source
setenv.sh or call setenv.cmd) are set then CMake should be able to find it using the PATH environment variable. If
those environment variables aren’t set, OpenDDS was installed to a path CMake doesn’t search automatically, or CMake
can’t otherwise find the OpenDDS package, then CMake has to be told about it explicitly somehow. This can be done
a number of ways, which includes adding the OpenDDS source tree or install prefix path to CMAKE_PREFIX_PATH or
setting OPENDDS_ROOT to that path (if using CMake 3.12 or later).

Consult the find_package documentation for your CMake version for all the details on how CMake could find
OpenDDS. Here is the documentation for the latest version of CMake

56 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/cmake
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html#config-mode-search-procedure


OpenDDS, Release 3.28.1

Components

Added in version 3.25.

By default the package will search for all libraries and executables, but only require the bare minimum for ACE/TAO and
OpenDDS. Arguments can be passed to find_package(OpenDDS COMPONENTS <argument>...) (or alternatively
find_package(OpenDDS REQUIRED [COMPONENTS] <argument>...)) add to what’s required. These can be:

• Executables and Libraries

Example:

find_package(OpenDDS REQUIRED OpenDDS::Rtps_Udp OpenDDS::RtpsRelay)

• Features

Feature names should be the same as the variable, but without the leading OPENDDS_ and all lowercase. Feature
names by themselves will be required to be enabled. If using CMake 3.9 or higher and the name is followed by
=, then the CMake boolean value following that determines if the feature must be enabled or disabled.

Example:

find_package(OpenDDS REQUIRED built_in_topics safety_profile=OFF)

Note: Passing features to OPTIONAL_COMPONENTS is treated as an error. It doesn’t make sense to optionally
request them because they are fixed.

• NO_DEFAULTS

Passing NO_DEFAULTS will only search for and require what is specified. This allows using ACE/TAO without
OpenDDS being built, assuming the package is configured correctly. It also allows OPTIONAL_COMPONENTS to
have an effect because normally everything is treated as optional.

Example:

find_package(OpenDDS REQUIRED NO_DEFAULTS ACE::ACE OPTIONAL_COMPONENTS TAO::TAO)

This just makes ACE::ACE and optionally TAO::TAO available. Normally ACE::ACE, TAO::TAO , and
OpenDDS::Dcps are unconditionally searched for and required.

Adding IDL Sources with opendds_target_sources

The CMake config package provides an easy way to add IDL sources to CMake targets using
opendds_target_sources. Here is how it’s used in the Developer’s Guide Messenger example:

# IDL TypeSupport Library
add_library(messenger_idl)
opendds_target_sources(messenger_idl PUBLIC "Messenger.idl")
target_link_libraries(messenger_idl PUBLIC OpenDDS::Dcps)

Here the IDL is added to a library that is shared by the executables, but opendds_target_sources can also be used
on executables directly.

Note: CMake version 3.10 and below will issue a harmless warning if add_library is called without any sources.

2.6. Building and Installing 57

https://cmake.org/cmake/help/latest/variable/CMAKE_MATCH_n.html
https://cmake.org/cmake/help/latest/command/if.html#basic-expressions
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/CMakeLists.txt


OpenDDS, Release 3.28.1

See opendds_target_sources for all the options it accepts.

Linking OpenDDS Libraries

In addition to C++ types generated from IDL and their type support, OpenDDS applications need discovery and trans-
port to talk to each other. target_link_libraries should be used with all the libraries needed. Here is the usage in the
Developer’s Guide Messenger example:

set(opendds_libs
OpenDDS::Dcps # Core OpenDDS Library
OpenDDS::InfoRepoDiscovery OpenDDS::Tcp # For run_test.pl
OpenDDS::Rtps OpenDDS::Rtps_Udp # For run_test.pl --rtps
messenger_idl

)

# Publisher
add_executable(publisher
Publisher.cpp

)
target_link_libraries(publisher ${opendds_libs})

# Subscriber
add_executable(subscriber
Subscriber.cpp
DataReaderListenerImpl.cpp

)
target_link_libraries(subscriber ${opendds_libs})

See Libraries for all the libraries the CMake package can provide.

install(IMPORTED_RUNTIME_ARTIFACTS)

Added in version 3.20.

If using CMake 3.21 or later, it’s possible to install executables and shared libraries from OpenDDS, ACE, and TAO
in CMake along side the application using install(IMPORTED_RUNTIME_ARTIFACTS). This will just install shared
libraries and executables, not static libraries, headers, or anything else required for building applications.

If OpenDDS and ACE/TAO is built with clang, the shared libraries might be missing an SONAME entry. It is an is-
sue with ACE/TAO. If trying to use install(IMPORTED_RUNTIME_ARTIFACTS) in this case, it causes the dynamic
linker to ignore the libraries and report that they could not be found. One workaround is to add SOFLAGS+=-Wl,
-h,$(SONAME) to $ACE_ROOT/include/makeinclude/platform_macros.GNU before building. This can be done
manually after running the configure script or by passing --macros=SOFLAGS+=-Wl,-h,\$\(SONAME\) to the con-
figure script.

opendds_get_library_dependencies is provided to help find out what libraries need to be installed.

See the install Test for an example of using this.

Changed in version 3.25: There are now executables that can be installed.

58 Chapter 2. Developer’s Guide

https://cmake.org/cmake/help/latest/command/target_link_libraries.html
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/CMakeLists.txt
https://cmake.org/cmake/help/latest/command/install.html#imported-runtime-artifacts
https://github.com/DOCGroup/ACE_TAO/issues/1790
https://github.com/DOCGroup/ACE_TAO/issues/1790
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/cmake/install/library/CMakeLists.txt


OpenDDS, Release 3.28.1

Installing Generated Interface Files

Added in version 3.20.

It is possible to install files from the OPENDDS_*_INTERFACE_FILES target properties for downstream projects to
use. See the install Test for an example of this. It uses install(FILES), but there isn’t any restriction on what installation
method can be used. For example, the PUBLIC_HEADER target property could be set on target to the desired files
from the interface lists. Then they could be installed using install(TARGETS . . . PUBLIC_HEADER . . . ). Another
method is provided by opendds_install_interface_files.

Manually Creating config.cmake

The configure script is responsible for generating the config.cmake file in cmake, which has various configuration
options. These options provide the OpenDDS CMake package with the required context it needs to integrate with the
OpenDDS code generators and libraries.

If you are using OpenDDS libraries that were built without the help of the configure script, the config.cmake file
needs to be created manually. See Config Variables for all the possible values to set.

Reference

Targets

Libraries

The CMake package can provide library targets that can be linked using target_link_libraries or installed using in-
stall(IMPORTED_RUNTIME_ARTIFACTS).

OpenDDS::Dcps

Required, the core OpenDDS Library

OpenDDS::Rtps

RTPS Discovery

OpenDDS::InfoRepoDiscovery

InfoRepo Discovery

OpenDDS::Rtps_Udp

RTPS/UDP Transport

OpenDDS::Multicast

Multicast Transport

OpenDDS::Shmem

Shared Memory Transport

OpenDDS::Tcp

TCP Transport

OpenDDS::Udp

UDP Transport

OpenDDS::Security

DDS Security

2.6. Building and Installing 59

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/cmake/install/library/CMakeLists.txt
https://cmake.org/cmake/help/latest/command/install.html#files
https://cmake.org/cmake/help/latest/prop_tgt/PUBLIC_HEADER.html
https://cmake.org/cmake/help/latest/command/install.html#targets
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/configure
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/cmake
https://cmake.org/cmake/help/latest/command/target_link_libraries.html


OpenDDS, Release 3.28.1

OpenDDS::RtpsRelayLib

Support library for OpenDDS::RtpsRelay.

Added in version 3.25.

ACE::ACE

Required

ACE::XML_Utils

TAO::TAO

Required

TAO::IDL_FE

TAO::AnyTypeCode

TAO::BiDirGIOP

TAO::CodecFactory

TAO::IORManip

TAO::IORTable

TAO::ImR_Client

TAO::PI

TAO::PortableServer

TAO::Svc_Utils

TAO::Valuetype

Executables

Added in version 3.25.

The CMake package can provide executable targets that can be called manually from CMake or installed using in-
stall(IMPORTED_RUNTIME_ARTIFACTS).

ACE::ace_gperf

Required

TAO::tao_idl

Required, tao_idl

OpenDDS::opendds_idl

Required, opendds_idl

OpenDDS::DCPSInfoRepo

The DCPS Information Repository

OpenDDS::RtpsRelay

The RtpsRelay

OpenDDS::dcpsinfo_dump

Utility for The DCPS Information Repository

60 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

OpenDDS::inspect

tools/inspect/README.rst

OpenDDS::repoctl

Utility for The DCPS Information Repository

Functions

opendds_target_sources

opendds_target_sources(<target>
[<idl-file>...]
[PRIVATE|PUBLIC|INTERFACE <idl-file>...]
[TAO_IDL_OPTIONS <option>...]
[OPENDDS_IDL_OPTIONS <option>...]
[SUPPRESS_ANYS TRUE|FALSE]
[ALWAYS_GENERATE_LIB_EXPORT_HEADER TRUE|FALSE]
[USE_EXPORT <export-header>;<export-macro>]
[USE_VERSIONED_NAMESPACE <vns-header>;<vns-prefix>]
[GENERATE_SERVER_SKELETONS TRUE|FALSE]
[AUTO_LINK TRUE|FALSE]
[INCLUDE_BASE <dir>]
[SKIP_TAO_IDL]
[SKIP_OPENDDS_IDL]

)

A function that acts like target_sources, but it adds IDL files and the resulting generated code to a target.

<idl file>... are IDL files that can be absolute or relative to CMAKE_CURRENT_SOURCE_DIR.
Each one will generate code using tao_idl and opendds_idl that is added to the target. The optional
scope-qualifier (PRIVATE, PUBLIC, INTERFACE) sets the scope of the generated files. When it is omitted,
OPENDDS_DEFAULT_SCOPE is used.

Deprecated since version 3.15: C/C++ files can also be passed along with IDL files, but this has been deprecated.

TAO_IDL_OPTIONS <option>...

Pass options to tao_idl. Valid options can be found here

OPENDDS_IDL_OPTIONS <option>...

Pass options to opendds_idl. Add OPENDDS_IDL_OPTIONS -Lc++11 to use the C++11 IDL Mapping.

SUPPRESS_ANYS TRUE|FALSE

If FALSE, TAO TypeCode for any will be generated. The default is set by OPENDDS_SUPPRESS_ANYS.

Added in version 3.17.

ALWAYS_GENERATE_LIB_EXPORT_HEADER TRUE|FALSE

If TRUE, a header for exporting symbols in a shared library will be always generated as long the target is
some sort of library. If FALSE, then it will only be done if the target is a shared library. The default is set
by OPENDDS_ALWAYS_GENERATE_LIB_EXPORT_HEADER .

Added in version 3.20.

2.6. Building and Installing 61

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/inspect/README.rst
https://cmake.org/cmake/help/latest/command/target_sources.html
https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_SOURCE_DIR.html
https://htmlpreview.github.io/?https://github.com/DOCGroup/ACE_TAO/blob/Latest_Micro/TAO/docs/compiler.html
https://cmake.org/cmake/help/latest/prop_tgt/TYPE.html


OpenDDS, Release 3.28.1

EXPORT_HEADER_DIR <header-dir>

Where the export header is placed relative to the other generated files. The value is passed to
opendds_export_header(DIR).

Added in version 3.28.

USE_EXPORT <export-header>;<export-macro>

Pass a CMake list (;-delimited) of an existing export header and export macro to use in the generated code.
This is the same format as opendds_export_header(USE_EXPORT_VAR), but is intended for use with a
custom export header. If there are multiple calls to opendds_target_sources on the same target, only
the first USE_EXPORT is used.

Added in version 3.25.

USE_VERSIONED_NAMESPACE <version-ns-header>;<version-ns-prefix>

Pass a CMake list (;-delimited) of an existing versioned namespace header and prefix to use in the generated
code.

Added in version 3.26.

GENERATE_SERVER_SKELETONS TRUE|FALSE

tao_idl generate code for CORBA servers. The default is FALSE. tao_idl by itself does this by default,
but by default opendds_target_sources passes -SS to suppress this as it’s not normally useful to an
OpenDDS application.

Added in version 3.25.

AUTO_LINK TRUE|FALSE

Automatically link OpenDDS::Dcps or other dependencies to the target using the “max” scope. If FALSE
then dependencies will have to be linked manually. The default is set by OPENDDS_AUTO_LINK_DCPS.

Added in version 3.25.

INCLUDE_BASE <dir>

Recreates the directory structure of all the passed IDLs relative to the passed base directory in the generated
files. This allows using IDL files from multiple directories. opendds_install_interface_files is
proved to help install generated files that result from this. Any IDL file passed that’s outside the include
base will cause an error.

The default behavior is the legacy behavior that assumes a flat hierarchy. Starting with OpenDDS 4.0 this
will always be enabled and will default to CMAKE_CURRENT_SOURCE_DIR.

Added in version 3.26.

SKIP_TAO_IDL

Skip invoking tao_idl on the IDL files that are passed in. This will still run tao_idl
on *TypeSupport.idl files unless SKIP_OPENDDS_IDL is passed in or -SI is passed to
opendds_target_sources(OPENDDS_IDL_OPTIONS).

Added in version 3.25.

SKIP_OPENDDS_IDL

Skip invoking opendds_idl on the IDL files.

Added in version 3.25.

After opendds_target_sources is run on a target, it will have these target properties set on it:

62 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

OPENDDS_LANGUAGE_MAPPINGS

This holds the IDL language mappings used in the target based on what is passed to
opendds_target_sources(OPENDDS_IDL_OPTIONS).

It will be a list that can contain one or more of the following:

• "C++03"

– IDL-to-C++ mapping generated by default.

• "C++11"

– IDL-to-C++11 mapping available when passing -Lc++11.

• "FACE"

– Will appear if -Lface is passed.

• "Java"

– Currently unsupported.

If the CMake version is at least 3.12, then this property will be exported with the target.

Added in version 3.15.

OPENDDS_GENERATED_DIRECTORY

The is the directory where generated files have been placed. This is an absolute path and is not exported
with the target. See Installing Generated Interface Files for more information.

Added in version 3.20.

The following OPENDDS_*_INTERFACE_FILES target properties are used to help with Installing Generated In-
terface Files. Some notes about these properties:

• All paths are absolute.

• All the generated files will be somewhere within the path from the OPENDDS_GENERATED_DIRECTORY
target property of the target.

• All the properties have the INTERFACE in their name, but this includes PUBLIC scoped files as PUBLIC
implies INTERFACE in CMake. PRIVATE scoped files are excluded from these lists as they shouldn’t have
a use outside the target.

• These properties are not exported with the target because the paths may not be valid any more if the build
directory has been removed or the export is being used on another machine.

OPENDDS_PASSED_IDL_INTERFACE_FILES

The PUBLIC and INTERFACE scoped IDL files passed.

Added in version 3.20.

OPENDDS_GENERATED_IDL_INTERFACE_FILES

The IDL files generated from the IDL files in OPENDDS_PASSED_IDL_INTERFACE_FILES.

Added in version 3.20.

OPENDDS_ALL_IDL_INTERFACE_FILES

Combination of OPENDDS_PASSED_IDL_INTERFACE_FILES and OPENDDS_GENERATED_IDL_INTERFACE_FILES.

OPENDDS_GENERATED_HEADER_FILES

The .h and .inl files generated from OPENDDS_ALL_IDL_INTERFACE_FILES.

Added in version 3.20.

2.6. Building and Installing 63



OpenDDS, Release 3.28.1

OPENDDS_ALL_GENERATED_INTERFACE_FILES

Combination of OPENDDS_GENERATED_IDL_INTERFACE_FILES and
OPENDDS_GENERATED_HEADER_FILES.

Added in version 3.20.

OPENDDS_ALL_INTERFACE_FILES

All the INTERFACE and PUBLIC scoped files that were passed in or generated.

Added in version 3.20.

Changed in version 3.25: OPENDDS_TARGET_SOURCES is now called opendds_target_sources, but this
shouldn’t affect anything because functions and macros are case-insensitive in CMake.

opendds_get_library_dependencies

opendds_get_library_dependencies(<output-list-var-name> <target>...)

If given targets provided by the CMake package, it will return a list of the targets along with their ACE, TAO,
and OpenDDS dependencies. This is provided to help use install(IMPORTED_RUNTIME_ARTIFACTS).

Added in version 3.20.

opendds_export_header

opendds_export_header(<target>
[USE_EXPORT_VAR <use-export-var-name>]
[DIR <dir-path>]

)

Generates a header that is compatible with ACE’s generate_export_file.pl for exporting symbols in shared li-
braries. The header will able to be included as <target>_export.h and the macro that can be used to export
symbols will be named <target>_Export. It is the same function opendds_target_sources uses so all the
same info about generated files applies.

USE_EXPORT_VAR <use-export-var-name>

Set a variable with the given name that contains a list with the location of the generated ex-
port header and the macro name to export a symbol. These values could be passed to
opendds_target_sources(USE_EXPORT), but this shouldn’t be necessary because these values are saved
on the target on the first call of opendds_target_sources or opendds_export_header.

DIR <dir-path>

Where the export header is placed relative to the other generated files. By default the generated export
header is put in the root of the include base. See opendds_target_sources(EXPORT_HEADER_DIR) for
how to pass this argument from there.

Added in version 3.28: to replace the broken and undocumented INCLUDE_BASE argument.

Added in version 3.25.

opendds_install_interface_files

opendds_install_interface_files(<target>
[DEST <dir>]
[INCLUDE_BASE <dir>]
[EXTRA_GENERATED_FILES <file>...]

)

64 Chapter 2. Developer’s Guide

https://github.com/DOCGroup/ACE_TAO/blob/master/ACE/bin/generate_export_file.pl


OpenDDS, Release 3.28.1

A helper function that installs the files from the OPENDDS_*_INTERFACE_FILES target properties of the
given target and is meant to be used with opendds_target_sources(INCLUDE_BASE). The install path of a
file idl_file could be described as DEST/relative(idl_file,INCLUDE_BASE)/idl_file.

DEST <dir>

The base directory to install them to. By default this is CMAKE_INSTALL_INCLUDEDIR.

INCLUDE_BASE <dir>

The source directory relative to the source IDL files to define the directory structure of the installed files.
This should probably be the same as opendds_target_sources(INCLUDE_BASE). By default this is
CMAKE_CURRENT_SOURCE_DIR.

EXTRA_GENERATED_FILES <file>...

Extra custom files that are in OPENDDS_GENERATED_DIRECTORY to install using the same method.

Added in version 3.26.

Variables

Package Options

These variables can be used to override default behavior of the CMake package.

Warning: Except for OPENDDS_CMAKE_VERBOSE, do not set these when building OpenDDS using CMake. All
the others will either have no effect or break the build.

OPENDDS_CMAKE_VERBOSE

If TRUE, then log detailed status information at configure-time. The default for this is FALSE.

Added in version 3.25: The variable can also contain a list of categories to log more verbosely:

all
Enables all logging

components
Logs what components were passed and the exact list of libraries are being searched for and required.

imports
Logs the paths of executables and libraries that are going to be imported.

opendds_target_sources
Logs the arguments of opendds_target_sources and what files will be generated.

OPENDDS_DEFAULT_NESTED

If TRUE, then topic types must be declared explicitly using annotations. The default for this is TRUE.

This can also be controlled on a finer level by passing --default-nested or --no-default-nested to
opendds_target_sources(OPENDDS_IDL_OPTIONS). For example:

add_library(messenger)
opendds_target_sources(messenger
PUBLIC
Messenger.idl
OPENDDS_IDL_OPTIONS --no-default-nested

)

2.6. Building and Installing 65

https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html


OpenDDS, Release 3.28.1

OPENDDS_FILENAME_ONLY_INCLUDES

Setting this to TRUE tells opendds_idl to strip path information from #include lines in generated files. Turning
the option on can make it easier to specify build rules for IDL files that include other IDL files. The default for
this is FALSE.

Added in version 3.15.

Deprecated since version 3.26: opendds_target_sources(INCLUDE_BASE) is a better way to handle IDL in
multiple nested directories.

OPENDDS_SUPPRESS_ANYS

Default value for opendds_target_sources(SUPPRESS_ANYS). The default for this is TRUE.

Added in version 3.17.

OPENDDS_ALWAYS_GENERATE_LIB_EXPORT_HEADER

Default value for opendds_target_sources(ALWAYS_GENERATE_LIB_EXPORT_HEADER). The default for this
is FALSE.

Added in version 3.20.

OPENDDS_DEFAULT_SCOPE

Default scope of unscoped files in opendds_target_sources. It must be PRIVATE, PUBLIC, or INTERFACE.
The default for this is PRIVATE.

Added in version 3.20.

OPENDDS_AUTO_LINK_DCPS

Default value for opendds_target_sources(AUTO_LINK). The default for this is FALSE.

Note: This is off by default because it’s not compatible with any existing usage of target_link_libraries that
doesn’t specify a scope. The default for this will be TRUE starting in OpenDDS 4.0.

Added in version 3.24.

OPENDDS_USE_CORRECT_INCLUDE_SCOPE

If TRUE, then include directories of generated files using the “max” scope specified in
opendds_target_sources. The default for this is FALSE, which always includes them using the PUBLIC
scope.

Note: This is off by default because it could cause “Cannot find source file” errors on TypeSupport.idl files
generated in a another directory. This will be fixed in OpenDDS 4.0 by requiring at least CMake 3.20 to get
CMP0118. This variable will be removed in OpenDDS 4.0 and the behavior will be the same as if this variable
was set to TRUE.

Added in version 3.24.

66 Chapter 2. Developer’s Guide

https://cmake.org/cmake/help/latest/policy/CMP0023.html
https://cmake.org/cmake/help/latest/policy/CMP0023.html
https://cmake.org/cmake/help/latest/policy/CMP0118.html


OpenDDS, Release 3.28.1

Config Variables

These variables are set by the configure script in an MPC-built OpenDDS and normally shouldn’t be changed. They
can be changed when configuring a CMake-built OpenDDS using -D, but should not be changed after that.

See also:

Build-Exclusive CMake Variables

Dependencies

OPENDDS_ACE

Path to ACE, usually ACE_ROOT

OPENDDS_ACE_VERSION

The version of ACE being used.

Added in version 3.27.

OPENDDS_TAO

Path to TAO, usually TAO_ROOT

OPENDDS_TAO_VERSION

The version of TAO being used.

Added in version 3.27.

OPENDDS_OPENSSL

Path to OpenSSL

OPENDDS_GTEST

Path to GoogleTest

OPENDDS_JAVA

Path to Java Currently unsupported.

OPENDDS_QT

Path to Qt

OPENDDS_RAPIDJSON

Path to RapidJSON

OPENDDS_XERCES3

Path to Xerces

OPENDDS_HOST_TOOLS

A directory that contains a bin directory with opendds_idl to be used for cross-compiling.

Added in version 3.26.

OPENDDS_ACE_TAO_HOST_TOOLS

A directory that contains a bin directory with tao_idl and ace_gperf to be used for cross-compiling. This
isn’t set by default unless OPENDDS_HOST_TOOLS is set, in which case it defaults to that.

Added in version 3.26.

2.6. Building and Installing 67



OpenDDS, Release 3.28.1

Features

OPENDDS_CXX11

ACE/TAO and OpenDDS were built with C++11 or later. Default depends on the compiler being used. Has no
effect when building OpenDDS using CMake.

OPENDDS_CXX_STD

Added in version 3.28.

If defined, then this value is prefixed with cxx_std_ and passed to target_compile_features for all targets. The
valid values are the standards in CMAKE_CXX_KNOWN_FEATURES without the leading cxx_std_. This is
the minimum C++ standard required to use the ACE, TAO, and OpenDDS libraries. When building OpenDDS
using CMake, it’s also the minimum C++ standard used to build OpenDDS. The default depends on the version
of ACE being used.

OPENDDS_DEBUG

Default depends on CMAKE_BUILD_TYPE. When building OpenDDS using CMake CMAKE_BUILD_TYPE
should be used.

OPENDDS_OPTIMIZE

Default depends on CMAKE_BUILD_TYPE. When building OpenDDS using CMake CMAKE_BUILD_TYPE
should be used.

OPENDDS_INLINE

.inl files are included in header files. Default is ON Has no effect when building OpenDDS using CMake.

OPENDDS_VERSIONED_NAMESPACE

ACE/TAO and OpenDDS have versioned namespaces. Default is OFF

OPENDDS_STATIC

ACE/TAO are built as static libraries. Default depends on BUILD_SHARED_LIBS. When building OpenDDS
using CMake BUILD_SHARED_LIBS should be used.

OPENDDS_WCHAR

ACE/TAO prefers using wide characters. Default is OFF

OPENDDS_TAO_IIOP

Default is ON

OPENDDS_TAO_OPTIMIZE_COLLOCATED_INVOCATIONS

Default is ON

OPENDDS_BUILT_IN_TOPICS

Default is ON

OPENDDS_OBJECT_MODEL_PROFILE

Default is ON

OPENDDS_PERSISTENCE_PROFILE

Default is ON

OPENDDS_OWNERSHIP_PROFILE

Default is ON

OPENDDS_OWNERSHIP_KIND_EXCLUSIVE

Default is the value of OPENDDS_OWNERSHIP_PROFILE.

68 Chapter 2. Developer’s Guide

https://cmake.org/cmake/help/latest/command/target_compile_features.html
https://cmake.org/cmake/help/latest/prop_gbl/CMAKE_CXX_KNOWN_FEATURES.html#high-level-meta-features-indicating-c-standard-support
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html


OpenDDS, Release 3.28.1

OPENDDS_CONTENT_SUBSCRIPTION

Default is ON

OPENDDS_CONTENT_FILTERED_TOPIC

Default is the value of OPENDDS_CONTENT_SUBSCRIPTION.

OPENDDS_MULTI_TOPIC

Default is the value of OPENDDS_CONTENT_SUBSCRIPTION.

OPENDDS_QUERY_CONDITION

Default is the value of OPENDDS_CONTENT_SUBSCRIPTION.

OPENDDS_SECURITY

Default is OFF

OPENDDS_SAFETY_PROFILE

Default is OFF

2.6.3 Android

How to build OpenDDS for Android and incorporate OpenDDS into Android apps.

Variables

The following table describes some of the variables of paths that are referenced in this guide.

Note: You don’t have to actually set and use these, they are mostly for shorthand.

Variable Description
$DDS_ROOT OpenDDS being built for Android
$HOST_DDS OpenDDS host to help build OpenDDS for Android
$ACE_ROOT ACE being built for Android
$NDK The Android NDK
$TOOLCHAIN The generated toolchain
$SDK The Android SDK (By default $HOME/Android/Sdk)
$STUDIO Android Studio
$JDK The Java SDK
$SSL_ROOT Install prefix for cross-compiled OpenSSL
$ABI android_abi
$ARCH_ARG A Target architecture name used by Android NDK
$MIN_API android_api, the minimum Android API version number
$TARGET_API android_target_api, the target Android API version number

2.6. Building and Installing 69



OpenDDS, Release 3.28.1

Requirements

To build the core OpenDDS native libraries for Android you will need:

• A development system supported by both OpenDDS and the Android NDK.

– Windows and Linux were tested, but macOS should work as well.

• Android Native Development Kit (NDK) r18 or higher. Building with the NDK directly requires NDK r19
or higher. You can download it separately from https://www.android.com or using the SDK Manager that
comes with Android Studio. If you downloaded the NDK using the SDK Manager, then it is located at $SDK/
ndk-bundle.

• Some knowledge about OpenDDS and Android development will be assumed, but more OpenDDS knowledge
will be assumed than Android knowledge.

• Windows users should see Building on Windows for additional requirements they might need.

In addition to those, building OpenDDS with optional dependencies also have additional requirements listed in their
own sections.

The Using OpenDDS in a Android App assumes the use of Android Studio, but it will also work when just using the
Android SDK if tweaked.

Building on Windows

If using you’re using Windows Subsystem for Linux (WSL), Docker, or anything like that, follow the Linux and macOS
instructions. You can copy the resulting libraries from the virtual environment to Windows and where they can be used
in Android Studio as they would be used on Linux.

If you want to build OpenDDS for Android on Windows without WSL or Docker, follow the Windows instructions.

In addition to OpenDDS and the Android NDK you will also need the following software:

• MSYS2

– Building OpenDDS and its dependencies for Android requires various utilities that would normally come
on a Unix system. This guide will use MSYS2, which supplies many of those utilities. Install MSYS2 from
the official website at https://www.msys2.org and set it up.

– Follow all the install/update steps from the msys2.org website.

• Strawberry Perl

• OpenDDS Host tools build using Visual Studio

– In a separate copy of OpenDDS, build OpenDDS as described in Building and Installing using Visual
Studio, except use the --host-tools-only configure script option. This OpenDDS (and the ACE+TAO
it uses) must be the same version as the one used to build for Android.

– If you want to use Java in the Android build, also pass the --java configure script option here as described
in Java. You will also need to pass it to the configure script build for Android when that comes.

Finally, all paths being passed to GNU Make must not contain spaces because ACE’s gnuace make scripts don’t handle
those paths correctly on Windows. This means the NDK, toolchain, MSYS2, JDK, OpenDDS source, OpenDDS host
tools, etc. must not contain any spaces in their paths.

70 Chapter 2. Developer’s Guide

https://developer.android.com/ndk/
https://www.android.com
https://www.msys2.org
https://www.msys2.org
https://strawberryperl.com/


OpenDDS, Release 3.28.1

Building OpenDDS for Android

As Android targets multiple architectures and has many versions, an architecture and minimum API version to use will
have to be decided. As of writing this page lists Android version numbers and their corresponding API versions. You
will have to do a separate build for each architecture if you want to build OpenDDS for multiple architectures.

OpenDDS for Android can be built in two ways: Using the NDK Directly or Using a Standalone Toolchain.

Using the NDK directly is recommended by Google and means that toolchains don’t have to be generated for each
target architecture.

Using the NDK Directly

Note: Building with the NDK directly requires NDK r19 or later.

Note: If you need to configure OpenDDS with any optional dependencies then read the relevant sections before
configuring and building OpenDDS.

OpenDDS can be configured and built with the Android NDK using the following commands:

./configure --doc-group3 --target=android --macros=android_abi=$ABI --macros=android_api=
→˓$MIN_API --macros=android_ndk=$NDK
make # Pass -j/--jobs with an appropriate value or this'll take a while...

Using a Standalone Toolchain

To build OpenDDS with with a Android standalone toolchain, a standalone toolchain must first be generated by using:

$NDK/build/tools/make_standalone_toolchain.py --arch $ARCH_ARG --api $MIN_API --install-
→˓dir $TOOLCHAIN

Android NDK includes Python in prebuilt\windows-x86_64\bin for 64-bit Windows NDKs. For the example
above, assuming %NDK% is the location of the NDK and %TOOLCHAIN% is the desired location of the toolchain, run this
command instead:

%NDK%\prebuilt\windows-x86_64\bin\python %NDK%\build\tools\make_standalone_toolchain.py -
→˓-arch %ARCH_ARG% --api %MIN_API% --install-dir %TOOLCHAIN%

The --arch argument for make_standalone_toolchain.py and --macros=android_abi=<ARCH> argument for
the configure script must match according to this table.

Note: If you need to configure OpenDDS with any optional dependencies then read the relevant sections before
configuring and building OpenDDS.

To configure and build OpenDDS after this, run:

./configure --target=android --macros=android_abi=$ABI
PATH=$PATH:$TOOLCHAIN/bin make # Pass -j/--jobs with an appropriate value or this'll take␣
→˓a while...

2.6. Building and Installing 71

https://source.android.com/docs/setup/about/build-numbers


OpenDDS, Release 3.28.1

configure --target=android --macros=android_abi=%ABI% --host-tools=%HOST_DDS%
set PATH=%PATH%;%TOOLCHAIN%\bin;C:\msys64\usr\bin
make
REM Pass -j/--jobs with an appropriate value or this'll take a while...

Note:

• Pass --host-tools with the location of the OpenDDS host tools that were built using Visual Studio must be
passed to configure.

• You will need MSYS2 utilities in your %PATH%.

• Run these commands in a new Visual Studio command prompt that is different from where you configured the
host tools.

Configure Script Macros

These are GNU make variables that can be passed using the --macros configure script option. They are mostly used
by platform_android.GNU.

android_ndk

Location of Android NDK, same as $NDK . This is required when building with the NDK directly, but not when building
with a standalone toolchain.

android_sdk

Location of Android SDK , same as $SDK . This is only required if enabling OpenDDS to use Android Java APIs.

android_abi

The architecture to cross-target. When using ACE6/TAO2 it is optional as it defaults to armeabi-v7a. When using
ACE7/ACE3 it is required.

The valid options are:

$ARCH_ARG android_abi $ABI_PREFIX Description
arm armeabi-v7a arm-linux-androideabi 32-bit ARM
arm armeabi-v7a-with-neon arm-linux-androideabi 32-bit ARM with NEON
arm64 arm64-v8a aarch64-linux-android 64-bit ARM
x86 x86 i686-linux-android 32-bit x86
x86_64 x86_64 x86_64-linux-android 64-bit x86

72 Chapter 2. Developer’s Guide

https://github.com/DOCGroup/ACE_TAO/blob/master/ACE/include/makeinclude/platform_android.GNU


OpenDDS, Release 3.28.1

android_api

The minimum Android API to target. This is the same as $MIN_API . This is required when building with the NDK ,
but not when building with a standalone toolchain.

android_target_api

The Android API being targeted by an application. This is the same as $TARGET_API . This is only required if enabling
OpenDDS to use Android Java APIs.

Host Tools

To cross-compile OpenDDS, host tools are required to process IDL. These are programs that include tao_idl and
opendds_idl that have to be built to run on the host system, not Android. The example above generates two copies
of OpenDDS, one in OpenDDS/build/host and another in OpenDDS/build/target. If this is the case, then
$HOST_DDS will be the absolute path to build/host and $DDS_ROOT will be the absolute path to build/target.

If building for more than one architecture, which will be necessary to cover the largest number of Android devices
possible, it might make sense to build the OpenDDS host tools separately to cut down on compile time and disk space.

If this is the case, then $HOST_DDSwill be the location of the static host tools built for the host platform and $DDS_ROOT
will just be the location of the OpenDDS source code.

This should be done with the same version of OpenDDS and ACE/TAO as what you want to build for Android. Pass
--host-tools-only to the configure script to generate static host tools. Also pass --java $JDK if you plan on using
Java.

If you want to just the minimum needed for host OpenDDS tools and get rid of the rest of the source files, you can.
These are the binaries that make up the OpenDDS host tools:

• $HOST_DDS/bin/opendds_idl

• $HOST_DDS/bin/idl2jni (if using the OpenDDS Java API)

• $HOST_DDS/ACE_TAO/bin/ace_gperf

• $HOST_DDS/ACE_TAO/bin/tao_idl

These files can be separated from the rest of the OpenDDS and ACE/TAO source trees, but the directory structure must
be kept. To use these to build OpenDDS for Android, pass --host-tools $HOST_DDS to the configure script.

Optional Dependencies

Java

To use OpenDDS in the traditional Android development language, Java, you will need to build the Java bindings when
building OpenDDS. See java/README for details. For Android you can use the JDK provided with Android Studio,
JDK=$STUDIO/jre. Pass --java=$JDK to the OpenDDS configure script.

2.6. Building and Installing 73

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/README


OpenDDS, Release 3.28.1

Android SDK

OpenDDS can make use of Android’s Java SDK. Right now this is just used for allowing OpenDDS to always be
notified of network availability when targeting API 30 and later.

OpenSSL

OpenSSL is required for OpenDDS Security.

Android preloads the system SSL library (either OpenSSL or BoringSSL) for the Java Android API, so OpenSSL
MUST be statically linked to the OpenDDS security library. The static libraries will used if the shared libraries are not
found. This can be accomplished by either disabling the generation of the shared libraries by passing no-shared to
OpenSSL’s Configure script or just deleting the so files after building OpenSSL.

To build OpenSSL for Android, read the NOTES.ANDROID file that comes with OpenSSL’s source code.

Cross-compiling OpenSSL on Windows:

1. Start the MSYS2 MSYS development shell using the start menu shortcut or C:\msys64\msys2_shell.cmd
-msys

2. cd /c/your/location/of/OpenSSL-source

3. export ANDROID_NDK_HOME=/c/your/location/of/ndk-standalone-toolchain

4. PATH+=:$ANDROID_NDK_HOME/bin

5. ./Configure --prefix=$SSL_ROOT android-arm no-tests no-shared (or replace -arm with a differ-
ent platform like -arm64, see OpenSSL’s NOTES.ANDROID file)

6. make install_sw

Xerces

Xerces C++ is also required for OpenDDS Security. It does not support Android specifically, but it comes with a CMake
build script that can be paired with the Android NDK’s CMake toolchain.

Xerces requires a supported “transcoder” library. For API levels greater than or equal to 28 one of these, GNU libiconv,
is included with Android. Before 28 any of the transcoders supported by Xerces would work theoretically but GNU
libiconv was the one tested. If GNU libiconv is used, build it as an archive library (--disable-shared) so that the
users of Xerces (ACE and OpenDDS) don’t need to be aware of it as an additional runtime dependency.

Download GNU libiconv version 1.16 source code and extract the archive.

Cross-compiling on Windows

GNU libiconv

1. Start the MSYS2 MSYS development shell using the start menu shortcut or C:\msys64\msys2_shell.cmd
-msys

2. cd /c/your/location/of/libiconv-source

3. export ANDROID_NDK_HOME=/c/your/location/of/ndk-standalone-toolchain

4. PATH+=:$ANDROID_NDK_HOME/bin

5. target=arm-linux-androideabi (or select a different NDK target)

74 Chapter 2. Developer’s Guide

https://ftp.gnu.org/pub/gnu/libiconv


OpenDDS, Release 3.28.1

6. ./configure --disable-shared --prefix=/c/your/location/of/installed-libiconv
--host=$target CC=$target-clang CXX=$target-clang++ LD=$target-ld CFLAGS="-fPIE
-fPIC" LDFLAGS=-pie

7. make && make install

Note: The directory given by --prefix= will be created by make install and will have include and lib subdi-
rectories that will be used by the Xerces build.

Xerces

A modified version of Xerces C++ hosted on OpenDDS GitHub organization has support for an external GNU libiconv.
Download this version using git (android branch) or the via ZIP archive.

Start the Microsoft Visual Studio command prompt for C++ development (for example “x64 Native Tools Command
Prompt for VS 2019”).

cmake and ninja should be on the PATH. They can be installed as on option component in the Visual Studio installer
(see “C++ CMake tools for Windows”), or downloaded separately.

Set environment variables based on the NDK location and Android configuration selected:

1. set target=arm-linux-androideabi

2. set abi=armeabi-v7a

3. set api=16

4. set NDK=C:\your\location\of\NDK

5. set GNU_ICONV_ROOT=C:\your\location\of\installed-libiconv

Configure and build with CMake

1. cd C:\your\location\of\Xerces-for-android

2. mkdir build & cd build

3. cmake -GNinja -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=C:\your\location\
of\installed-xerces -DCMAKE_TOOLCHAIN_FILE=%NDK%\build\cmake\android.toolchain.cmake
-DANDROID_ABI=%abi% -DANDROID_PLATFORM=android-%api% "-DANDROID_CPP_FEATURES=rtti
exceptions" ..

4. cmake --build . --target install

Cross-Compiling IDL Libraries

Like all OpenDDS applications, you will need to use type support libraries generated from IDL files to use most of
OpenDDS’s functionality.

Assuming the library is already setup and works for a desktop platform, then you should be able to run:

(source $DDS_ROOT/setenv.sh; opendds_mwc.pl && PATH=$PATH:$TOOLCHAIN/bin make)

The resulting native IDL library file must be included with the rest of the native library files.

2.6. Building and Installing 75

https://github.com/OpenDDS/xerces-c/tree/android
https://github.com/OpenDDS/xerces-c/archive/android.zip


OpenDDS, Release 3.28.1

Java IDL Libraries

Java support for your IDL, assuming OpenDDS was built with Java, will available by inheriting dcps_java in your
IDL MPC project and will be built along with the native IDL libraries using the command above.

Java IDL libraries consist of two components: a Java jar library file and a supporting native library so file. This native
library must be included with the other native library files, and is different than the regular native IDL type support
library.

Using OpenDDS in a Android App

After building OpenDDS and generating the IDL libraries, you will need to set up an app to be able to use OpenDDS.

There is a demo for using OpenDDS over the Internet that includes an Android app built using these instructions.

Adding the OpenDDS Native Libraries to the App

In your app’s build.gradle (NOT THE ONE OF THE SAME NAME IN THE ROOT OF THE PROJECT) add
this to the android section:

sourceSets {
main {

jniLibs.srcDirs 'native_libs'
}

}

native_libs is not a required name, but it needs to contain subdirectories named after the android_abi of the native
libraries it contains ABI/architecture table.

The exact list of libraries to include depend on what features you’re using but the basic list of library file for OpenDDS
are as follows:

• Core OpenDDS library and its dependencies:

– If not already included because of a separate C++ NDK project, you must include the Clang C++ Standard
Library. This is located at:

* Standalone toolchain: $TOOLCHAIN/sysroot/usr/lib/$ABI_PREFIX/libc++_shared.so

* NDK: $NDK/toolchains/llvm/prebuilt/$HOST_PLATFORM/sysroot/usr/lib/
$ABI_PREFIX/libc++_shared.so

* $ABI_PREFIX is an identifier for the architecture whose possible values can be found in the
ABI/architecture table.

– $ACE_ROOT/lib/libACE.so

– $ACE_ROOT/lib/libTAO.so

– $DDS_ROOT/lib/libOpenDDS_Dcps.so

• The following are the transport libraries, one for each transport type. You will need at least one of these, depend-
ing on the transport(s) you want to use:

– $DDS_ROOT/lib/libOpenDDS_Rtps_Udp.so

* Depends on $DDS_ROOT/lib/libOpenDDS_Rtps.so

– $DDS_ROOT/lib/libOpenDDS_Multicast.so

76 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/opendds-smart-lock


OpenDDS, Release 3.28.1

– $DDS_ROOT/lib/libOpenDDS_Shmem.so

– $DDS_ROOT/lib/libOpenDDS_Tcp.so

– $DDS_ROOT/lib/libOpenDDS_Udp.so

• The type support libraries for your IDL.

– The following are the Discovery libraries. Static discovery is built into libOpenDDS_Dcps.so, but most
likely you will want one of these:

– Required to use RTPS Discovery:

* $DDS_ROOT/lib/libOpenDDS_Rtps.so

– Required to use the DCPSInfoRepo Discovery:

* $DDS_ROOT/lib/libOpenDDS_InfoRepoDiscovery.so

· Depends on:

· $ACE_ROOT/lib/libTAO_PortableServer.so

· $ACE_ROOT/lib/libTAO_AnyTypeCode.so

· $ACE_ROOT/lib/libTAO_BiDirGIOP.so

· $ACE_ROOT/lib/libTAO_CodecFactory.so

· $ACE_ROOT/lib/libTAO_PI.so

– Required to use OpenDDS Security:

* $ACE_ROOT/lib/libACE_XML_Utils.so

* libxerces-c-3.*.so

* libiconv.so if it is necessary to include it.

* $DDS_ROOT/lib/libOpenDDS_Security.so

• In addition to the jars listed below, the following native libraries are required for using the Java API:

– $DDS_ROOT/lib/libtao_java.so

– $DDS_ROOT/lib/libidl2jni_runtime.so

– $DDS_ROOT/lib/libOpenDDS_DCPS_Java.so

* Depends on:

· $DDS_ROOT/lib/libOpenDDS_Rtps_Udp.so

· $DDS_ROOT/lib/libOpenDDS_Rtps.so

· $DDS_ROOT/lib/libOpenDDS_Tcp.so

· $DDS_ROOT/lib/libOpenDDS_Udp.so

· $ACE_ROOT/lib/libTAO_PortableServer.so

· $ACE_ROOT/lib/libTAO_AnyTypeCode.so

· $ACE_ROOT/lib/libTAO_BiDirGIOP.so

· $ACE_ROOT/lib/libTAO_CodecFactory.so

· $ACE_ROOT/lib/libTAO_PI.so

– The native part of the Java library for your IDL libraries.

2.6. Building and Installing 77



OpenDDS, Release 3.28.1

This list might not be complete, especially if you’re using a major feature not listed here.

Adding OpenDDS Java Libraries to the App

In your app’s build.gradle (NOT THE ONE OF THE SAME NAME IN THE ROOT OF THE PROJECT) add
this to the dependencies section if not already there:

implementation fileTree(include: ['*.jar'], dir: 'libs')

Copy these jar files from $DDS_ROOT/lib to a directory called libs in your app’s subdirectory. Create libs if it
doesn’t exist Like native_libs, the libs name isn’t required.

• i2jrt.jar

• i2jrt_corba.jar

• OpenDDS_DCPS.jar

• tao_java.jar

• The Java part of the Java library for your IDL libraries.

Also copy the jar files from your IDL Libraries and sync with Gradle if you’re using Android Studio. After this
OpenDDS Java API should be able to be used the same as if using OpenDDS with the Hotspot JVM. The exceptions
and particulars to how Android can effect OpenDDS are described in the following sections.

Network Permissions and Availability

In AndroidManifest.xml you will need to add the network permissions if they are not already there:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Failure to do so will result in ACE failing to access any sockets and OpenDDS will not be able to function.

Network Availability

When not running in an application targeting API 30 or later on Android 10 or later, Android builds of OpenDDS use
the LinuxNetworkConfigMonitor to reconfigure OpenDDS connections automatically when the device switches
from one network (cellular or WiFi) to another.

When running in an application targeting API 30 or later on Android 10, LinuxNetworkConfigMonitor can no longer
be used, as Netlink sockets are blocked by the OS for security reasons. In the logs this warning shows up as:

WARNING: LinuxNetworkConfigMonitor::open_i: could not open Netlink socket (this is expected for
API>=30, see Android section in the Developer’s Guide)

Instead, NetworkConfigModifier is utilized. As a consequence of this, two variables are required from the user,
android_sdk, and android_target_api. These correspond to the location of your Android SDK, likely $HOME/Android/
Sdk on Linux, and the API number you are targeting. The NetworkConfigModifier is set up along with the necessary
network callbacks when the user uses TheParticipantFactory.WithArgs.

Pass the following options to the configure script make this possible:

--macros=android_sdk=$SDK --macros=android_target_api=$TARGET_API --java

78 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Configuration Files

OpenDDS can use several types of configuration files: a main configuration file, security configuration files, and secu-
rity certificate files, among others. On traditional platforms, distributing and reading these files is usually not an issue
at all. On Android however, an app has no traditional files of its own out of the box, so you can’t give OpenDDS a path
to a file you want to distribute with the app without preparing beforehand.

If you already have a preferred way to include files in your app, then that will work as long as you can give OpenDDS
the path to the files.

Android can open a file stream for resource and asset files. Ideally OpenDDS would be able to accept these streams,
but it doesn’t. One solution to this is reading the streams into memory and then writing them to files in the app’s private
directory. This example is using assets, but resources will also work with some slight modifications.

// ...
private String copyAsset(String asset_path) {

File new_file = new File(getFilesDir(), asset_path);
final String full_path = new_file.getAbsolutePath();
try {

InputStream in = getAssets().open(asset_path, AssetManager.ACCESS_BUFFER);
byte[] buffer = new byte[in.available()];
in.read(buffer);
in.close();
FileOutputStream out = new FileOutputStream(new_file);
out.write(buffer);
out.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}
return full_path;

}
// ...

@Override
protected void onCreate(Bundle savedInstanceState) {

// ...

final String config_file = copyAsset("opendds_config.ini");
String[] args = new String[] {"-DCPSConfigFile", config_file};
StringSeqHolder argsHolder = new StringSeqHolder(args);
dpf = TheParticipantFactory.WithArgs(argsHolder);
// ...

}
// ...

This example works but in production code the error handling should be improved and integrated with the app’s ini-
tialization. Rewriting the file every time is not ideal, but OpenDDS’s files are small and this method ensures the files
are up-to-date.

2.6. Building and Installing 79



OpenDDS, Release 3.28.1

Multithreading

When using a DataReaderListener, the callbacks will be using a ACE reactor worker thread, which can’t make changes
to the Android GUI directly because it’s not the main thread. To have these callbacks affect changes in the Android
GUI, use something like android.os.Handler:

// ...

import android.os.Handler;

// ...

public class DataReaderListenerImpl extends DDS._DataReaderListenerLocalBase {

private MainActivity context;

public DataReaderListenerImpl(MainActivity context) {
super();
this.context = context;

}

public synchronized void on_data_available(DDS.DataReader reader) {
StatusDataReader mdr = StatusDataReaderHelper.narrow(reader);
if (mdr == null) {

return;
}
StatusHolder mh = new StatusHolder(new Status());
SampleInfoHolder sih = new SampleInfoHolder(new SampleInfo(0, 0, 0,

new DDS.Time_t(), 0, 0, 0, 0, 0, 0, 0, false, 0));
int status = mdr.take_next_sample(mh, sih);

if (status == RETCODE_OK.value) {

// ...

Handler handler = new Handler(context.getMainLooper());
handler.post(new Runnable() {

@Override
public void run() {

context.tryToUpdateThermostat(thermostat_status);
}

});
}

}
}

80 Chapter 2. Developer’s Guide

https://developer.android.com/reference/android/os/Handler


OpenDDS, Release 3.28.1

Android Activity Lifecycle

The Android Activity Lifecycle is something that affects all Android apps. In the case of OpenDDS, the interaction
gets more complicated because of the intersection of the similar, but distinct process lifecycle. The process hosts the
activity, but isn’t guaranteed to be kept alive after onStop() is called. What makes this worse for NDK applications
is that there doesn’t seem to be a way to be warned of the killing of the process the way Java application can rely on
onDestroyed(). For most OpenDDS applications, this isn’t a serious issue.

An easy way to make sure participants are cleaned up is to create participants in onStart() as might be expected, and
always delete them in onStop(), so that they may be created again in onStart(). The DomainParticpantFactory
can be retrieved either in onStart() or more perhaps appropriately in Application.onStart(), given the singleton nature
of both.

This might not be ideal or efficient though, because deleting and recreating participants will happen every time the
app loses focus, like during orientation changes. An alternative to this is to run OpenDDS within an Android Service
separate from the main app with the service configured so that it does not stopped when the Application’s onStop()
is called. The service should be specified in AndroidManifest.xml.

<service
android:name=".OpenDdsService"
android:exported="false"
android:stopWithTask="true">

</service>

OpenDDS service classes should extend Service and provide an IBinder for an application to use when it creates
the ServiceConnection. For example:

public class MainActivity extends AppCompatActivity {
// ...
private OpenDdsService svc = null;

private ServiceConnection ddsServiceConnection = new ServiceConnection() {
@Override
public void onServiceConnected(ComponentName name, IBinder service) {

OpenDdsService.OpenDdsBinder binder = (OpenDdsService.OpenDdsBinder) service␣
→˓;

svc = binder.getService();
// ...

}

@Override
public void onServiceDisconnected(ComponentName name) {

// ...
}

}
// ...

}

public class OpenDdsService extends Service {
// ...
private final IBinder binder = new OpenDdsBinder();

public class OpenDdsBinder extends Binder {
OpenDdsService getService() {

(continues on next page)

2.6. Building and Installing 81

https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/reference/android/app/Application
https://developer.android.com/guide/components/services


OpenDDS, Release 3.28.1

(continued from previous page)

return OpenDdsService.this;
}

@Override
public void onCreate() {

// ...
}

@Override
public int onStartCommand(Intent intent, int flags, int startId) {

return START_NOT_STICKY;
}

@Override
public IBinder onBind(Intent intent) {

return binder;
}

@Override
public void onRebind(Intent intent) {

super.onRebind(intent);
}

@Override
public void onDestroy() {

super.onDestroy();
stopSelf();

}
}

}

See Android’s Services overview for more information.

2.6.4 iOS

How to build OpenDDS for iOS and incorporate OpenDDS into iOS apps.

Variables

The following table describes some of the variables of paths that are referenced in this guide.

Note: You don’t have to actually set and use all of these, they are mostly for shorthand.

Variable Description
$DDS_ROOT OpenDDS being built for iOS
$ACE_ROOT ACE being built for iOS
$HOST_DDS OpenDDS host to help build OpenDDS for iOS
$IPHONE_TARGET Set to SIMULATOR or HARDWARE

82 Chapter 2. Developer’s Guide

https://developer.android.com/guide/components/services


OpenDDS, Release 3.28.1

Requirements

To build the core OpenDDS native libraries for iOS you will need:

• A macOS development system with Xcode and Xcode command-line tools.

• Some knowledge about OpenDDS development and iOS development.

Building OpenDDS with optional dependencies has additional requirements.

Building on macOS

OpenDDS has been tested on iOS using Xcode 11, arm64 iPhones (iPhone 5s and later), and x86_64 iOS simulators.

The OpenDDS configure scripts support simulator and hardware builds through the IPHONE_TARGET environment
variable.

Note: If you need to configure OpenDDS with any optional dependencies then read the relevant sections before
configuring and building OpenDDS.

To configure OpenDDS for an iOS simulator build, run the configure script in $DDS_ROOT from a bash shell:

./configure --host=macosx --target=ios --std=c++11 --macros=IPHONE_TARGET=SIMULATOR

Configuring a hardware build is similar:

./configure --host=macosx --target=ios --std=c++11 --macros=IPHONE_TARGET=HARDWARE

Then run make to build the host tools and the target static libraries:

make

Host Tools

To cross-compile OpenDDS, host tools are required to process IDL. These are programs that include tao_idl and
opendds_idl that have to be built to run on the host system, not iOS. The example above generates two copies
of OpenDDS, one in OpenDDS/build/host and another in OpenDDS/build/target. If this is the case, then
$HOST_DDS will be the absolute path to build/host and $DDS_ROOT will be the absolute path to build/target.

If building for both iOS simulators and iPhones, it might make sense to build the OpenDDS host tools separately to cut
down on compile time and disk space.

If this is the case, then $HOST_DDSwill be the location of the static host tools built for the host platform and $DDS_ROOT
will just be the location of the OpenDDS source code.

This should be done with the same version of OpenDDS and ACE/TAO as what you want to build for iOS. Pass
--host-tools-only to the configure script to generate static host tools.

If you want to just the minimum needed for host OpenDDS tools and get rid of the rest of the source files, you can.
These are the binaries that make up the OpenDDS host tools:

• $HOST_DDS/bin/opendds_idl

• $HOST_DDS/ACE_TAO/bin/ace_gperf

• $HOST_DDS/ACE_TAO/bin/tao_idl

2.6. Building and Installing 83



OpenDDS, Release 3.28.1

These files can be separated from the rest of the OpenDDS and ACE/TAO source trees, but the directory structure must
be kept. To use these to build OpenDDS for iOS, pass --host-tools $HOST_DDS to the configure script.

OpenDDS’s Optional Dependencies

Note: The OpenDDS Java bindings are not supported on iOS, since iOS does not have a Java runtime.

OpenSSL

OpenSSL is required for OpenDDS Security. To configure and build OpenSSL for iPhone targets, use the ios64-cross
configuration flag, and set the following environment variables:

export CC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/
→˓usr/bin/clang
export CROSS_TOP=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/
→˓Developer
export CROSS_SDK=iPhoneOS.sdk
export PATH="/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.
→˓xctoolchain/usr/bin:$PATH"

Run the configure script:

./Configure ios64-cross no-shared no-dso no-hw no-engine --prefix=/usr/local/ios/openssl

Build with make:

make

Install with make:

make install

Set OPENSSL_ROOT to the install location:

export OPENSSL_ROOT=/usr/local/ios/openssl

Note that the directory given by --prefix= will be created by make install and will have include and lib sub-
directories that will be used by the OpenSSL build.

OpenSSL builds for iOS simulators are not as well-supported, and require a minor modification to the generated make-
file. To build OpenSSL for iOS simulators, set the following environment variables:

export CC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/
→˓usr/bin/clang
export CROSS_TOP=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.
→˓platform/Developer
export CROSS_SDK=iPhoneSimulator.sdk
export PATH="/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.
→˓xctoolchain/usr/bin:$PATH"

Run the configure script in openssl-1.1.1d/:

84 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

./Configure darwin64-x86_64-cc no-shared no-dso no-hw no-engine --prefix=/usr/local/ios/
→˓openssl

Modify the generated Makefile setting CNF_CFLAGS, and CNF_CXXFLAGS to:

CNF_CFLAGS=-arch x86_64 -miphoneos-version-min=12.0 -isysroot $(CROSS_TOP)/SDKs/$(CROSS_
→˓SDK)

Build with make:

make

Install with make:

make install

Set OPENSSL_ROOT to the install location:

export OPENSSL_ROOT=/usr/local/ios/openssl

Note that the directory given by --prefix= will be created by make install and will have include and lib sub-
directories that will be used by the OpenSSL build.

OpenDDS security builds need the location of OpenSSL installed headers and static libraries. This location can be
passed to the OpenDDS configure script with the --openssl=\${OPENSSL_ROOT} flag.

Xerces

Xerces C++ is also required for OpenDDS Security. Xerces builds for iOS use CMake and require passing the cross-
compile flags needed by the macOS C and C++ compilers as well as setting the iOS SDK root and other build flags.
All setting can be passed on the command line.

A representative simulator build can be configured as:

CC="/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/
→˓bin/clang -miphoneos-version-min=12.0 -arch x86_64" \
CXX="/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/
→˓bin/clang++ -miphoneos-version-min=12.0 -arch x86_64" \
cmake . -DBUILD_SHARED_LIBS:BOOL=OFF -Dnetwork:BOOL=OFF -Dtranscoder=iconv \

-DCMAKE_INSTALL_PREFIX=/usr/local/ios/xerces3 \
-DCMAKE_OSX_SYSROOT="/Applications/Xcode.app/Contents/Developer/Platforms/

→˓iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk"

After configuring the build, run CMake:

cmake --build src

Install with make:

make install

Set $XERCES_ROOT to the install location:

export XERCES_ROOT=/usr/local/ios/xerces3

2.6. Building and Installing 85



OpenDDS, Release 3.28.1

Note that the directory given by --prefix= will be created by make install and will have include and lib sub-
directories that will be used by the Xerces build.

Configuring Xerces for a iPhone hardware build is similar to the simulator build. The --arch flag changes to arm64
and the CMAKE_OS_SYSROOT changes to the location of the iPhone SDK.

CC="/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/
→˓bin/clang -miphoneos-version-min=12.0 -arch arm64" \
CXX="/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/
→˓bin/clang++ -miphoneos-version-min=12.0 -arch arm64" \
cmake . -DBUILD_SHARED_LIBS:BOOL=OFF -Dnetwork:BOOL=OFF -Dtranscoder=iconv \

-DCMAKE_INSTALL_PREFIX=/usr/local/ios/xerces3 \
-DCMAKE_OSX_SYSROOT="/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.

→˓platform/Developer/SDKs/iPhoneOS.sdk"

OpenDDS security builds need the location of Xerces installed headers and static libraries. This location can be passed
to the OpenDDS configure script with the --xerces3=${XERCES_ROOT} flag.

Cross-Compiling IDL Libraries

Like all OpenDDS applications, you will need to use type support libraries generated from IDL files to use most of
OpenDDS’s functionality.

Assuming the library is already setup and works for a desktop platform, then you should be able to run the DDS
environment setup script from the OpenDDS/builds/target directory to set the appropriate iOS build flags:

(source $DDS_ROOT/setenv.sh; mwc.pl -type gnuace . && make)

The resulting native IDL library file must be included with the rest of the native library files.

Using OpenDDS in an iOS App

Copy the static libraries in $ACE_ROOT/lib, $DDS_ROOT/lib, and the cross-compiled IDL libraries (and optionally
$OPENSSL_ROOT/lib and $XERCES_ROOT/lib) to the Xcode project or framework directory.

In the Xcode project, add $ACE_ROOT and $DDS_ROOT the header search paths.

2.6.5 Supported Platforms

The OpenDDS Foundation regularly builds and tests OpenDDS on a wide variety of platforms, operating systems,
and compilers. The OpenDDS Foundation continually updates OpenDDS to support additional platforms. See the
README.md#supported-platforms file in the distribution for the most recent platform support information. See
Cross Compiling for how to cross compile for other platforms.

86 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#supported-platforms


OpenDDS, Release 3.28.1

2.6.6 Configuring and Building

See also:

Building OpenDDS Using CMake to use CMake instead of a MPC-based build.

If not already done, download the source from GitHub.

Use the configure script to prepare to build OpenDDS. This script requires Perl.

To start the script, change to the root of the OpenDDS source directory and run:

./configure

Strawberry Perl is recommended for Windows.

To start the script, open a Visual Studio Native Tools Command Prompt or Developer Command Prompt that has C++
tools available, then change to the root of the OpenDDS source directory and run:

configure

Optionally add --help to the command line to see the advanced options available for this script. The configure script
will download ACE/TAO and configure it for your platform. To use an existing ACE/TAO installation, either set the
ACE_ROOT and TAO_ROOT environment variables or pass the --ace and --tao (if TAO is not at $ACE_ROOT/TAO)
options to configure.

See also:

Dependencies for a full list of dependencies including ones that can be configured with the configure script.

If configure runs successfully it will end with a message about the next steps for compiling OpenDDS.

OpenDDS on these platforms must be built using GNU Make:

make -j 4

OpenDDS supports parallel builds to speed up the build when using Make. Above 4 is used as an example for the max
number of parallel jobs. If unsure what this number should be, use the number of CPU cores on the machine.

The configure script creates an environment setup file called setenv.sh that sets all the environment variables the
build and test steps rely on. The main makefile sets these itself, so setenv.sh is not needed when running make from
the top level. It needs to be sourced before building other projects and running tests:

source setenv.sh

The configure script will say how to open the solution file for OpenDDS in Visual Studio using devenv.

It can also be built directly from the command prompt by using MSBuild. For example, if the configure script was ran
without any arguments, to do a Debug x64 build:

msbuild -p:Configuration=Debug,Platform=x64 -m DDS_TAOv2.sln

See also:

Microsoft MSBuild Documentation

The configure script creates an environment setup file called setenv.cmd that sets all the environment variables the
build and test steps rely on. For the command prompt that ran the configure script, these variables were set automatically.
If running in another command prompt, the variables need to be set again before building other projects and running
tests:

2.6. Building and Installing 87

https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.28.1
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/configure
https://strawberryperl.com
https://learn.microsoft.com/en-us/cpp/build/how-to-enable-a-64-bit-visual-cpp-toolset-on-the-command-line
https://learn.microsoft.com/en-us/visualstudio/ide/reference/command-prompt-powershell
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild


OpenDDS, Release 3.28.1

setenv

Java

If you’re building OpenDDS for use by Java applications, please see the file java/INSTALL instead of this one.

Security

DDS Security is disabled by default, and must be enabled by passing --security to the configure script. It requires
Xerces and OpenSSL.

Most package managers should have Xerces and OpenSSL packages that can be installed if not already:

• Debian/Ubuntu-based: sudo apt install libxerces-c-dev libssl-dev

• Redhat/Fedora-based: sudo yum install xerces-c-devel openssl-devel

• Homebrew brew install xerces-c openssl@3

Download source and build according to instructions.

If the libraries didn’t get installed to /usr, then the installation prefixes will have to be passed using --xerces and
--openssl.

Using Microsoft vcpkg

Microsoft vcpkg is a “C++ Library Manager for Windows, Linux, and macOS” which helps developers build/install
dependencies. Although it is cross-platform, this guide only discusses vcpkg on Windows.

As of this writing, vcpkg is only supported on Visual Studio 2015 Update 3 and later versions; if using an earlier version
of Visual Studio, skip down to the manual setup instructions later in this section.

• If OpenDDS tests will be built, install CMake or put the one that comes with Visual Studio on the PATH (see
Common7\IDE\CommonExtensions\Microsoft\CMake).

• If you need to obtain and install vcpkg, navigate to https://github.com/Microsoft/vcpkg and follow the instruc-
tions to obtain vcpkg by cloning the repository and bootstrapping it.

• Fetch and build the dependencies; by default, vcpkg targets x86 so be sure to specify the x64 target if required
by specifying it when invoking vcpkg install, as shown here:

vcpkg install openssl:x64-windows xerces-c:x64-windows

• Configure OpenDDS by passing the --openssl and --xerces3 options. As a convenience, it can be helpful to
set an environment variable to store the path since it is the same location for both dependencies.

set VCPKG_INSTALL=c:\path\to\vcpkg\installed\x64-windows
configure --security --openssl=%VCPKG_INSTALL% --xerces3=%VCPKG_INSTALL%

• Compile with msbuild:

msbuild /m DDS_TAOv2_all.sln

Or by launching Visual Studio from this command prompt so it inherits the correct environment variables and
building from there:

devenv DDS_TAOv2_all.sln

88 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/INSTALL
https://github.com/Microsoft/vcpkg


OpenDDS, Release 3.28.1

Note: For all of the build steps listed here, check that each package targets the same architecture (either 32-bit or
64-bit) by compiling all dependencies within the same type of Developer Command Prompt.

Compiling OpenSSL

Official OpenSSL instructions can be found here.

1. Install Perl and add it to the PATH environment variable.

2. Install Netwide Assembler (NASM). Click through the latest stable release and there is a win32 and win64
directory containing executable installers. The installer does not update the Path environment variable, so a
manual entry (%LOCALAPPDATA%\bin\NASM) is necessary.

3. Download the required version of OpenSSL by cloning the repository.

4. Open a Developer Command Prompt (32-bit or 64-bit depending on the desired target architecture) and change
into the freshly cloned openssl directory.

5. Run the configure script and specify a required architecture (perl Configure VC-WIN32 or perl Configure
VC-WIN64A).

6. Run nmake

7. Run nmake install

Note: If the default OpenSSL location is desired, which will be searched by OpenDDS, open the “Developer Command
Prompt” as an administrator before running the install. It will write to C:\Program Files or C:\Program Files
(x86) depending on the architecture.

Compiling Xerces-C++ 3

Official Xerces instructions can be found here.

1. Download/extract the Xerces source files.

2. Create a cmake build directory and change into it (from within the Xerces source tree).

mkdir build
cd build

3. Run cmake with the appropriate generator. In this case Visual Studio 2017 with 64-bit is being used so:

cmake -G "Visual Studio 15 2017 Win64" ..

4. Run cmake again with the build switch and install target (this should be done in an administrator command-
prompt to install in the default location as mentioned above).

cmake --build . --target install

Configuring and Building OpenDDS:

1. Change into the OpenDDS root folder and run configure with security enabled.

• If the default location was used for OpenSSL and Xerces, configure should automatically find the depen-
dencies:

configure --security

2.6. Building and Installing 89

https://wiki.openssl.org/index.php/Compilation_and_Installation#Windows
https://xerces.apache.org/xerces-c/build-3.html


OpenDDS, Release 3.28.1

2. If a different location was used (assuming environment variables NEW_SSL_ROOT and NEW_XERCES_ROOT point
to their respective library directories):

configure --security --openssl=%NEW_SSL_ROOT% --xerces3=%NEW_XERCES_ROOT%

3. Compile with msbuild (or by opening the solution file in Visual Studio and building from there).

msbuild /m DDS_TAOv2_all.sln

Optional Features

To avoid compiling OpenDDS code that you will not be using, there are certain features than can be excluded from
being built. The features are discussed below.

Users requiring a small-footprint configuration or compatibility with safety-oriented platforms should consider using
the OpenDDS Safety Profile, which is described in Safety Profile of this guide.

Building With a Feature Enabled or Disabled

Most features are supported by the configure script. The configure script creates config files with the correct
content and then runs MPC. If you are using the configure script, run it with the --help command line option and
look for the feature you wish to enable/disable. If you are not using the configure script, continue reading below for
instructions on running MPC directly.

For the features described below, MPC is used for enabling (the default) a feature or disabling the feature. For a feature
named feature, the following steps are used to disable the feature from the build:

1. Use the command line features argument to MPC:

mwc.pl -type type -features feature=0 DDS.mwc

Or alternatively, add the line feature=0 to the file $ACE_ROOT/bin/MakeProjectCreator/config/
default.features and regenerate the project files using MPC.

2. If you are using the gnuace MPC project type (which is the case if you will be using GNU make as your build
system), add line feature=0 to the file $ACE_ROOT/include/makeinclude/platform_macros.GNU.

To explicitly enable the feature, use feature=1 above.

Note: You can also use the configure script to enable or disable features. To disable the feature, pass --no-feature
to the script, to enable pass --feature. In this case - is used instead of _ in the feature name. For example, to disable
feature content_subscription discussed below, pass --no-content-subscription to the configure script.

Disabling the Building of Built-in Topic Support

Feature Name: built_in_topics

You can reduce the footprint of the core DDS library by up to 30% by disabling Built-in Topic Support. See Built-in
Topics for a description of built-in topics.

90 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/configure


OpenDDS, Release 3.28.1

Disabling the Building of Compliance Profile Features

The DDS specification defines compliance profiles to provide a common terminology for indicating certain feature sets
that a DDS implementation may or may not support. These profiles are given below, along with the name of the MPC
feature to use to disable support for that profile or components of that profile.

Many of the profile options involve QoS settings. If you attempt to use a QoS value that is incompatible with a disabled
profile, a runtime error will occur. If a profile involves a class, a compile time error will occur if you try to use the class
and the profile is disabled.

Content-Subscription Profile

Feature Name: content_subscription

This profile adds the classes ContentFilteredTopic, QueryCondition, and MultiTopic discussed in Content-
Subscription Profile.

In addition, individual classes can be excluded by using the features given in the table below.

Table 1: Content-Subscription Class Features

Class Feature
ContentFilteredTopic content_filtered_topic
QueryCondition query_condition
MultiTopic multi_topic

Persistence Profile

Feature Name: persistence_profile

This profile adds the Durability Service QoS policy and the settings TRANSIENT and PERSISTENT of the Durability
QoS policy kind.

Ownership Profile

Feature Name: ownership_profile

This profile adds:

• the setting EXCLUSIVE of Ownership QoS

• support for the Ownership Strength QoS policy

• setting a depth > 1 for the History QoS policy

Some users may wish to exclude support for the exclusive Ownership QoS policy and its associated Ownership Strength
QoS without impacting use of History QoS. In order to support this configuration, OpenDDS also has the MPC feature
ownership_kind_exclusive (configure script option --no-ownership-kind-exclusive).

2.6. Building and Installing 91



OpenDDS, Release 3.28.1

Object Model Profile

Feature Name: object_model_profile

This profile includes support for the Presentation QoS access_scope setting of GROUP.

Note: Currently, the Presentation QoS access_scope of TOPIC is also excluded when object_model_profile is
disabled.

Cross Compiling

Use the configure script, and set the target platform to one different than the host. For example:

./configure --target=lynxos-178

Run configure with --target-help for details on the supported targets. In this setup, configure will clone the
OpenDDS and ACE/TAO source trees for host and target builds. It will do a static build of the host tools (such as
opendds_idl and tao_idl) in the host environment, and a full build in the target environment. Most parameters to
configure are then assumed to be target parameters.

Any testing has to be done manually.

Raspberry Pi

The instructions for building for the Raspberry Pi are on opendds.org.

Android

Android support is documented in Android.

Apple iOS

Apple iOS support is documented in iOS.

2.6.7 Installation

When OpenDDS is built using make, if the configure script was run with an argument of --prefix=<prefix> the
make install target is available.

After running make (and before make install) you have one completely ready and usable OpenDDS. Its DDS_ROOT
is the top of the source tree – the same directory from which you ran configure and make. That DDS_ROOT should work
for building application code, and some users may prefer using it this way.

After make install there is a second completely ready and usable OpenDDS that’s under the installation prefix
directory. It contains the required libraries, code generators, header files, IDL files, and associated scripts and docu-
mentation.

Note: If configured with RapidJSON, OpenDDS will install the headers for RapidJSON, which might conflict with
an existing installation.

92 Chapter 2. Developer’s Guide

https://opendds.org/quickstart/GettingStartedPi.html


OpenDDS, Release 3.28.1

Using an Installed OpenDDS

After make install completes, the shell script in <prefix>/share/dds/dds-devel.sh is used to set the
DDS_ROOT environment variable. The analogous files for ACE and TAO are <prefix>/share/ace/ace-devel.sh
and <prefix>/share/tao/tao-devel.sh.

The <prefix> tree does not contain a tool for makefile generation. To use MPC to generate application makefiles, the
MPC_ROOT subdirectory from the OpenDDS source tree can be used either in-place or copied elsewhere. To use CMake
to generate application makefiles, see Using OpenDDS in a CMake Project.

2.6.8 Tests

Tests are not built by default, --tests must be passed to the configure script. All tests can be run using tests/
auto_run_tests.pl. See Running Tests for running all tests or individual tests.

2.6.9 Building Applications that use OpenDDS

This section applies to any C++ code that directly or indirectly includes OpenDDS headers. For Java applications, see
Java Bindings.

C++ source code that includes OpenDDS headers can be built using either build system: MPC or CMake.

MPC: The Makefile, Project, and Workspace Creator

OpenDDS is itself built with MPC, so development systems that are set up to use OpenDDS already have MPC avail-
able. The OpenDDS configure script creates a “setenv” script with environment settings (setenv.cmd on Windows;
setenv.sh on Linux/macOS). This environment contains the PATH and MPC_ROOT settings necessary to use MPC.

MPC’s source tree (in MPC_ROOT) contains a docs directory with both HTML and plain text documentation (USAGE
and README files).

The example walk-through in Using DCPS uses MPC as its build system. The OpenDDS source tree contains many
tests and examples that are built with MPC. These can be used as starting points for application MPC files.

CMake

Applications can also be built with CMake. See Using OpenDDS in a CMake Project for more information.

Custom Build systems

Users of OpenDDS are strongly encouraged to select one of the two options listed above (MPC or CMake) to generate
consistent build files on any supported platform. If this is not possible, users of OpenDDS must make sure that all code
generator, compiler, and linker settings in the custom build setup result in API- and ABI-compatible code. To do this,
start with an MPC or CMake-generated project file (makefile or Visual Studio project file) and make sure all relevant
settings are represented in the custom build system. This is often done through a combination of inspecting the project
file and running the build with verbose output to see how the toolchain (code generators, compiler, linker) is invoked.

2.6. Building and Installing 93

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/auto_run_tests.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/auto_run_tests.pl
https://cmake.org/


OpenDDS, Release 3.28.1

2.6.10 Building OpenDDS Using CMake

Added in version 3.26.

OpenDDS can be built with CMake 3.23 or later.

Configuring and Building

If not already done, download the source from GitHub.

To configure and build:

cmake -B build -DCMAKE_UNITY_BUILD=TRUE
cmake --build build -- -j 4

4 was used as an example for the max number of parallel jobs. If unsure what this number should be, use the number
of CPU cores on the machine. This can be combined with unity builds.

cmake -B build -DCMAKE_UNITY_BUILD=TRUE
cmake --build build

Variables

Unless otherwise noted, the build features and behavior can be controlled by the OpenDDS Config Package Config
Variables.

ACE/TAO

A prebuilt ACE/TAO can be passed using OPENDDS_ACE. In that case Features will be automatically derived from
ACE’s default.features file. If OPENDDS_ACE is not passed, then ACE/TAO will be built. When building
ACE/TAO a release is downloaded by default, but source can also be provided using OPENDDS_ACE_TAO_SRC or cloned
using OPENDDS_ACE_TAO_GIT. OPENDDS_ACE_TAO_KIND controls what version of ACE/TAO is downloaded for both
releases and OPENDDS_ACE_TAO_GIT.

Build-Exclusive CMake Variables

These are all the variables that are exclusive to building OpenDDS with CMake:

OPENDDS_JUST_BUILD_HOST_TOOLS

If true, opendds_idl is the only thing built for OpenDDS. If ACE/TAO is also being built, then
ace_gperf, tao_idl, and their dependencies are also built. The build directory for this can be passed to
OPENDDS_HOST_TOOLS.

OPENDDS_ACE_TAO_SRC

If defined, sets the ACE/TAO to build and use. A prebuilt ACE/TAO can be provided using OPENDDS_ACE. By
default, a hardcoded release depending on OPENDDS_ACE_TAO_KIND is downloaded.

OPENDDS_ACE_TAO_KIND

The default is ace7tao3 for ACE 7/TAO 3. Use ace6tao2 to get ACE 6/TAO 2.

Added in version 3.27.

94 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.28.1


OpenDDS, Release 3.28.1

OPENDDS_ACE_TAO_GIT

Implies OPENDDS_MPC_GIT. If true clone ACE/TAO from OPENDDS_ACE_TAO_GIT_TAG at
OPENDDS_ACE_TAO_GIT_REPO . By default, a hardcoded release depending on OPENDDS_ACE_TAO_KIND
is downloaded.

Added in version 3.27.

OPENDDS_ACE_TAO_GIT_REPO

Implies OPENDDS_ACE_TAO_GIT. The Git repository to clone ACE/TAO from. The default is https://
github.com/DOCGroup/ACE_TAO.

Added in version 3.27.

OPENDDS_ACE_TAO_GIT_TAG

Implies OPENDDS_ACE_TAO_GIT. The Git tag to clone ACE/TAO from. The default depends on
OPENDDS_ACE_TAO_KIND.

Added in version 3.27.

OPENDDS_MPC

Path to MPC. In most cases this will be provided and automatically detected, unless ACE/TAO was cloned
manually and provided using OPENDDS_ACE_TAO_SRC.

Added in version 3.26,: but documented in 3.27

OPENDDS_MPC_GIT

If true clone MPC from OPENDDS_MPC_GIT_TAG at OPENDDS_MPC_GIT_REPO .

Added in version 3.27.

OPENDDS_MPC_GIT_REPO

Implies OPENDDS_MPC_GIT. The Git repository to clone MPC from. The default is https://github.com/
DOCGroup/MPC.

Added in version 3.27.

OPENDDS_MPC_GIT_TAG

Implies OPENDDS_MPC_GIT. This is the Git tag to clone MPC from. The default is master.

Added in version 3.27.

OPENDDS_BUILD_TESTS

Build tests that are currently supported when building OpenDDS with CMake. See Running Tests for how to run
them. The default for this is BUILD_TESTING (usually false).

OPENDDS_BUILD_EXAMPLES

Build examples that are currently supported when building OpenDDS with CMake. See Running Tests for how
to run them. The default for this is TRUE.

OPENDDS_BOOTTIME_TIMERS

Added in version 3.28.

OpenDDS uses CLOCK_BOOTTIME when scheduling timers. On some platforms the default is to use
CLOCK_MONOTONIC which does not increment when the system is suspended. Enable this option to use
CLOCK_BOOTTIME as the timer base clock instead of CLOCK_MONOTONIC. Default is OFF.

OPENDDS_COMPILE_WARNINGS

If set to WARNING, enables additional compiler warnings when compiling OpenDDS. If set to ERROR, enables
additional compiler warnings which are treated as errors when compiling OpenDDS.

Added in version 3.28.

2.6. Building and Installing 95



OpenDDS, Release 3.28.1

Speeding up the build

A major speed up supported by all the CMake generators are unity builds. This makes it so that multiple C++ source files
are compiled at the same time by a compiler process. This can be enabled by passing -DCMAKE_UNITY_BUILD=TRUE to
the CMake configure command as shown in the example. If there are problems with building, e.g. redefinition errors,
then pass -DCMAKE_UNITY_BUILD=FALSE to override the cache variable in an existing build directory and disable
unity builds. Fresh build directories default to CMAKE_UNITY_BUILD=FALSE.

The Ninja CMake generator can also be used to speed up builds as Ninja was built from scratch for parallel building
and build systems like CMake. If Ninja is available, pass -G Ninja to have CMake use it. Building ACE/TAO with
Ninja requires CMake 3.24 or later. If building ACE/TAO, the CMake build will still use either Visual Studio or GNU
Make internally to build ACE/TAO because MPC doesn’t support Ninja.

Cross Compiling

Once set up properly, OpenDDS can be cross-compiled with CMake using normal CMake cross compiling. A few
things to note:

• Native-built host tools, like opendds_idl, have to be configured and built separately and provided to the target
build using OPENDDS_HOST_TOOLS.

• The host tools will build its own ACE/TAO for the host system, but this can be overridden using OPENDDS_ACE
on the host build and OPENDDS_ACE_TAO_HOST_TOOLS on the target build.

• If the target platform isn’t automatically supported, then ACE/TAO will have to be built separately.

Android

The following is an example of cross-compiling OpenDDS for Android on Linux using CMake. It assumes the NDK
has been downloaded and the location is in an environment variable called NDK.

# Build Host Tools
cmake -B build-host \
-DBUILD_SHARED_LIBS=FALSE \
-DOPENDDS_JUST_BUILD_HOST_TOOLS=TRUE

cmake --build build-host -- -j 4

# Build OpenDDS for Android
cmake -B build-target \

-DBUILD_SHARED_LIBS=TRUE \
-DANDROID_ABI=armeabi-v7a -DANDROID_PLATFORM=android-29 \
--toolchain $NDK/build/cmake/android.toolchain.cmake \
-DOPENDDS_HOST_TOOLS=$(realpath build-host)

cmake --build build-target-- -j 4

96 Chapter 2. Developer’s Guide

https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
https://ninja-build.org/
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Cross%20Compiling%20With%20CMake.html


OpenDDS, Release 3.28.1

Installation

Once built, OpenDDS can be installed using cmake –install. Currently ACE/TAO has to be installed separately and
this is only possible with GNU Make.

Using a CMake-built OpenDDS

After building and optionally installing OpenDDS, it can be used through the same CMake package as an MPC-built
OpenDDS.

Running Tests

Tests and examples can be run using using ctest. There is also a target for running tests in the build, but the name
differs based on the CMake generator used.

Known Limitations

• ACE/TAO can’t be automatically built unless there is explicit support for the platform. Currently this only exists
for Windows, Linux, macOS, and Android. All other platforms will require configuring and building ACE/TAO
separately and passing the path using OPENDDS_ACE.

– See https://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html for how to manu-
ally build ACE/TAO.

• The following features are planned, but not implemented yet:

– Support for Safety Profile

– Support for Java Bindings

– The ability to use MPC for building user applications with an installed CMake-built OpenDDS

2.7 Getting Started

2.7.1 Using DCPS

This section focuses on an example application using DCPS to distribute data from a single publisher process to a
single subscriber process. It is based on a simple messenger application where a single publisher publishes messages
and a single subscriber subscribes to them. We use the default QoS properties and the default TCP/IP transport. Full
source code for this example may be found under the DevGuideExamples/DCPS/Messenger/ directory. Additional
DDS and DCPS features are discussed in later sections.

Defining Data Types with IDL

In this example, data types for topics will be defined using the OMG Interface Definition Language (IDL). For de-
tails on how to build OpenDDS applications that don’t use IDL for topic data types, see DynamicDataWriters and
DynamicDataReaders.

2.7. Getting Started 97

https://cmake.org/cmake/help/latest/manual/cmake.1.html#install-a-project
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/


OpenDDS, Release 3.28.1

Identifying Topic Types

Each data type used by DDS is defined using OMG Interface Definition Language (IDL). OpenDDS uses IDL annota-
tions1 to identify the data types that it transmits and processes. These data types are processed by the TAO IDL compiler
and the OpenDDS IDL compiler to generate the necessary code to transmit data of these types with OpenDDS. Here
is the IDL file that defines our Message data type:

module Messenger {

@topic
struct Message {
string from;
string subject;
@key long subject_id;
string text;
long count;

};
};

The @topic annotation marks a data type that can be used as a topic’s type. This must be a structure or a union. The
structure or union may contain basic types (short, long, float, etc. ), enumerations, strings, sequences, arrays, structures,
and unions. See IDL Compliance for more details on the use of IDL for OpenDDS topic types. The IDL above defines
the structure Message in the Messenger module for use in this example.

Keys

The @key annotation identifies a field that is used as a key for this topic type. A topic type may have zero or more key
fields. These keys are used to identify different DDS Instances within a topic. Keys can be of scalar type, structures or
unions containing key fields, or arrays of any of these constructs.

Multiple keys are specified with separate @key annotations. In the above example, we identify the subject_id mem-
ber of Messenger::Message as a key. Each sample published with a unique subject_id value will be defined as
belonging to a different DDS Instance within the same topic. Since we are using the default QoS policies, subsequent
samples with the same subject_id value are treated as replacement values for that DDS Instance.

@key can be applied to a structure field of the following types:

• Any primitive, such as booleans, integers, characters, and strings.

• Other structures that have a defined key or set of keys. For example:

struct StructA {
@key long key;

};

struct StructB {
@key StructA main_info;
long other_info;

};

@topic
struct StructC {

(continues on next page)

1 For backwards compatibility, OpenDDS also parses #pragma directives which were used before release 3.14. This guide will describe IDL
annotations only.

98 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

@key StructA keya; // keya.key is one key
@key StructB keyb; // keyb.main_info.key is another
DDS::OctetSeq data;

};

In this example, every type from the key marked on the topic type down to what primitive data types to use as the key
is annotated with @key. That isn’t strictly necessary though, as the next section shows.

• Other structures that don’t have any defined keys. In the following example, it’s implied that all the fields in
InnerStruct are keys.

struct InnerStruct {
long a;
short b;
char c;

};

@topic
struct OuterStruct {
@key InnerStruct value;
// value.a, value.b, and value.c are all keys

};

If none of the fields in a struct are marked with @key or @key(TRUE), then when the struct is used in another struct and
marked as a key, all the fields in the struct are assumed to keys. Fields marked with @key(FALSE) are always excluded
from being a key, such as in this example:

struct InnerStruct {
long a;
short b;
@key(FALSE) char c;

};

@topic
struct OuterStruct {
@key InnerStruct value;
// Now just value.a and value.b are the keys

};

• Unions can also be used as keys if their discriminator is marked as a key. There is an example of a keyed union
topic type in the next section, but keep in mind a union being used as a key doesn’t have to be a topic type.

• Arrays of any of the previous data types. @key can’t be applied to sequences, even if the base type would be valid
in an array. Also @key, when applied to arrays, it makes every element in the array part of the key. They can’t
be applied to individual array elements.

2.7. Getting Started 99



OpenDDS, Release 3.28.1

Union Topic Types

Unions can be used as topic types. Here is an example:

enum TypeKind {
STRING_TYPE,
LONG_TYPE,
FLOAT_TYPE

};

@topic
union MyUnionType switch (@key TypeKind) {
case STRING_TYPE:
string string_value;

case LONG_TYPE:
long long_value;

case FLOAT_TYPE:
float float_value;

};

Unions can be keyed like structures, but only the union discriminator can be a key, so the set of possible DDS Instances
of topics using keyed unions are values of the discriminator. Designating a key for a union topic type is done by putting
@key before the discriminator type like in the example above. Like structures, it is also possible to have no key fields,
in which case @key would be omitted and there would be only one DDS Instance.

Topic Types vs. Nested Types

In addition to @topic, the set of IDL types OpenDDS can use can also be controlled using @nested and
@default_nested. Types that are “nested” are the opposite of topic types; they can’t be used for the top-level type
of a topic, but they can be nested inside the top-level type (at any level of nesting). All types are nested by default in
OpenDDS to reduce the code generated for type support, but there a number of ways to change this:

• The type can be annotated with @topic (see Identifying Topic Types), or with @nested(FALSE), which is equiv-
alent to @topic.

• The enclosing module can be annotated with @default_nested(FALSE).

• The global default for opendds_idl can be changed by adding --no-default-nested, in which case it would
be as if all valid types were marked with @topic. If desired for IDL compatibility with other DDS implementa-
tions or based on preference, this can be done through the build system:

– When using MPC, add dcps_ts_flags += --no-default-nested to the project.

– When using CMake, this can be done by setting either OPENDDS_DEFAULT_NESTED to FALSE or passing
--no-default-nested to opendds_target_sources(OPENDDS_IDL_OPTIONS).

In cases where the module default is not nested, you can reverse this by using @nested or @nested(TRUE) for
structures/unions and @default_nested or @default_nested(TRUE) for modules. NOTE: the @topic annotation
doesn’t take a boolean argument, so @topic(FALSE) would cause an error in the OpenDDS IDL Compiler.

100 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Processing the IDL

This section uses the OMG IDL-to-C++ mapping (“C++ classic”) as part of the walk-through. OpenDDS also supports
the OMG IDL-to-C++11 mapping, see Using the IDL-to-C++11 Mapping for details.

The OpenDDS IDL is first processed by the TAO IDL compiler.

tao_idl Messenger.idl

In addition, we need to process the IDL file with the OpenDDS IDL compiler to generate the serialization and key
support code that OpenDDS requires to marshal and demarshal the Message, as well as the type support code for the
data readers and writers. This IDL compiler is located in bin and generates three files for each IDL file processed. The
three files all begin with the original IDL file name and would appear as follows:

• <filename>TypeSupport.idl

• <filename>TypeSupportImpl.h

• <filename>TypeSupportImpl.cpp

For example, running opendds_idl as follows

opendds_idl Messenger.idl

generates MessengerTypeSupport.idl, MessengerTypeSupportImpl.h, and MessengerTypeSupportImpl.
cpp. The IDL file contains the MessageTypeSupport, MessageDataWriter, and MessageDataReader interface
definitions. These are type-specific DDS interfaces that we use later to register our data type with the domain, publish
samples of that data type, and receive published samples. The implementation files contain implementations for these
interfaces. The generated IDL file should itself be compiled with the TAO IDL compiler to generate stubs and skele-
tons. These and the implementation file should be linked with your OpenDDS applications that use the Message type.
The OpenDDS IDL compiler has a number of options that specialize the generated code. These options are described
in opendds_idl.

Typically, you do not directly invoke the TAO or OpenDDS IDL compilers as above, but let your build system do it for
you. Two different build systems are supported for projects that use OpenDDS:

• MPC, the “Make Project Creator” which is used to build OpenDDS itself and the majority of its included tests
and examples

• CMake, a build system that’s commonly used across the industry

Even if you will eventually use some custom build system that’s not one of the two listed above, start by building an
example OpenDDS application using one of the supported build systems and then migrate the code generator command
lines, compiler options, etc., to the custom build system.

The remainder of this section will assume MPC. For more details on using CMake, see the Using OpenDDS in a CMake
Project.

The code generation process is simplified when using MPC, by inheriting from the dcps base project. Here is the MPC
file section common to both the publisher and subscriber

project(*idl): dcps {
// This project ensures the common components get built first.

TypeSupport_Files {
Messenger.idl

}
custom_only = 1

}

2.7. Getting Started 101

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/bin
https://cmake.org


OpenDDS, Release 3.28.1

The dcps parent project adds the Type Support custom build rules. The TypeSupport_Files section above tells MPC to
generate the Message type support files from Messenger.idl using the OpenDDS IDL complier. Here is the publisher
section:

project(*Publisher): dcpsexe_with_tcp {
exename = publisher
after += *idl

TypeSupport_Files {
Messenger.idl

}

Source_Files {
Publisher.cpp

}
}

The dcpsexe_with_tcp project links in the DCPS library.

For completeness, here is the subscriber section of the MPC file:

project(*Subscriber): dcpsexe_with_tcp {

exename = subscriber
after += *idl

TypeSupport_Files {
Messenger.idl

}

Source_Files {
Subscriber.cpp
DataReaderListenerImpl.cpp

}
}

A Simple Message Publisher

In this section we describe the steps involved in setting up a simple OpenDDS publication process. The code is broken
into logical sections and explained as we present each section. We omit some uninteresting sections of the code (such
as #include directives, error handling, and cross-process synchronization). The full source code for this sample
publisher is found in the Publisher.cpp and Writer.cpp files in DevGuideExamples/DCPS/Messenger/.

Initializing the Participant

The first section of main() initializes the current process as an OpenDDS participant.

int main (int argc, char *argv[]) {
try {
DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

DDS::DomainParticipant_var participant =
(continues on next page)

102 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/


OpenDDS, Release 3.28.1

(continued from previous page)

dpf->create_participant(42, // domain ID
PARTICIPANT_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!participant) {
std::cerr << "create_participant failed." << std::endl;
return 1;

}
// ...

}
}

The TheParticipantFactoryWithArgs macro is defined in Service_Participant.h and initializes the Domain
Participant Factory with the command line arguments. These command line arguments are used to initialize the ORB
that the OpenDDS service uses as well as the service itself. This allows us to pass ORB_init() options on the command
line as well as OpenDDS configuration options of the form -DCPS*. Available OpenDDS options are fully described
in Run-time Configuration.

The create_participant() operation uses the domain participant factory to register this process as a participant
in the domain specified by the ID of 42. The participant uses the default QoS policies and no listeners. Use of the
OpenDDS default status mask ensures all relevant communication status changes (e.g., data available, liveliness lost)
in the middleware are communicated to the application (e.g., via callbacks on listeners).

Users may define any number of domains using IDs in the range (0x0 ~ 0x7FFFFFFF). All other values are reserved
for internal use by the implementation.

The Domain Participant object reference returned is then used to register our Message data type.

Registering the Data Type and Creating a Topic

First, we create a MessageTypeSupportImpl object, then register the type with a type name using the
register_type() operation. In this example, we register the type with a nil string type name, which causes the
MessageTypeSupport interface repository identifier to be used as the type name. A specific type name such as “Mes-
sage” can be used as well.

Messenger::MessageTypeSupport_var mts =
new Messenger::MessageTypeSupportImpl();

if (DDS::RETCODE_OK != mts->register_type(participant, "")) {
std::cerr << "register_type failed." << std::endl;
return 1;

}

Next, we obtain the registered type name from the type support object and create the topic by passing the type name to
the participant in the create_topic() operation.

CORBA::String_var type_name = mts->get_type_name ();

DDS::Topic_var topic =
participant->create_topic ("Movie Discussion List",

type_name,
TOPIC_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

(continues on next page)

2.7. Getting Started 103



OpenDDS, Release 3.28.1

(continued from previous page)

if (!topic) {
std::cerr << "create_topic failed." << std::endl;
return 1;

}

We have created a topic named “Movie Discussion List” with the registered type and the default QoS policies.

Creating a Publisher

Now, we are ready to create the publisher with the default publisher QoS.

DDS::Publisher_var pub =
participant->create_publisher(PUBLISHER_QOS_DEFAULT,

0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!pub) {
std::cerr << "create_publisher failed." << std::endl;
return 1;

}

Creating a DataWriter and Waiting for the Subscriber

With the publisher in place, we create the data writer.

// Create the datawriter
DDS::DataWriter_var writer =
pub->create_datawriter(topic,

DATAWRITER_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!writer) {
std::cerr << "create_datawriter failed." << std::endl;
return 1;

}

When we create the data writer we pass the topic object reference, the default QoS policies, and a null listener reference.
We now narrow the data writer reference to a MessageDataWriter object reference so we can use the type-specific
publication operations.

Messenger::MessageDataWriter_var message_writer =
Messenger::MessageDataWriter::_narrow(writer);

The example code uses conditions and wait sets so the publisher waits for the subscriber to become connected and
fully initialized. In a simple example like this, failure to wait for the subscriber may cause the publisher to publish its
samples before the subscriber is connected.

The basic steps involved in waiting for the subscriber are:

• Get the status condition from the data writer we created

• Enable the Publication Matched status in the condition

• Create a wait set

104 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

• Attach the status condition to the wait set

• Get the publication matched status

• If the current count of matches is one or more, detach the condition from the wait set and proceed to publication

• Wait on the wait set (can be bounded by a specified period of time)

• Loop back around to step 5)

Here is the corresponding code:

// Block until Subscriber is available
DDS::StatusCondition_var condition = writer->get_statuscondition();
condition->set_enabled_statuses(DDS::PUBLICATION_MATCHED_STATUS);

DDS::WaitSet_var ws = new DDS::WaitSet;
ws->attach_condition(condition);

while (true) {
DDS::PublicationMatchedStatus matches;
if (writer->get_publication_matched_status(matches) != DDS::RETCODE_OK) {
std::cerr << "get_publication_matched_status failed!"

<< std::endl;
return 1;

}

if (matches.current_count >= 1) {
break;

}

DDS::ConditionSeq conditions;
DDS::Duration_t timeout = { 60, 0 };
if (ws->wait(conditions, timeout) != DDS::RETCODE_OK) {
std::cerr << "wait failed!" << std::endl;
return 1;

}

}

ws->detach_condition(condition);

For more details about status, conditions, and wait sets, see Conditions and Listeners.

Sample Publication

The message publication is quite straightforward:

// Write samples
Messenger::Message message;
message.subject_id = 99;
message.from = "Comic Book Guy";
message.subject = "Review";
message.text = "Worst. Movie. Ever.";
message.count = 0;

(continues on next page)

2.7. Getting Started 105



OpenDDS, Release 3.28.1

(continued from previous page)

for (int i = 0; i < 10; ++i) {
DDS::ReturnCode_t error = message_writer->write(message, DDS::HANDLE_NIL);
++message.count;
++message.subject_id;
if (error != DDS::RETCODE_OK) {
// Log or otherwise handle the error condition
return 1;

}
}

For each loop iteration, calling write() causes a message to be distributed to all connected subscribers that are regis-
tered for our topic. Since the subject_id is the key for Message, each time subject_id is incremented and write() is
called, a new instance is created (see Topic). The second argument to write() specifies the instance on which we are
publishing the sample. It should be passed either a handle returned by register_instance() or DDS::HANDLE_NIL.
Passing a DDS::HANDLE_NIL value indicates that the data writer should determine the instance by inspecting the key
of the sample. See Registering and Using Instances in the Publisher for details on using instance handles during
publication.

Setting up the Subscriber

Much of the subscriber’s code is identical or analogous to the publisher that we just finished exploring. We will progress
quickly through the similar parts and refer you to the discussion above for details. The full source code for this sample
subscriber is found in the Subscriber.cpp and DataReaderListener.cpp files in DevGuideExamples/DCPS/
Messenger/.

Initializing the Participant

The beginning of the subscriber is identical to the publisher as we initialize the service and join our domain:

int main (int argc, char *argv[])
{
try {

DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

DDS::DomainParticipant_var participant =
dpf->create_participant(42, // Domain ID

PARTICIPANT_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!participant) {
std::cerr << "create_participant failed." << std::endl;
return 1;

}

106 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/DevGuideExamples/DCPS/Messenger/


OpenDDS, Release 3.28.1

Registering the Data Type and Creating a Topic

Next, we initialize the message type and topic. Note that if the topic has already been initialized in this domain with the
same data type and compatible QoS, the create_topic() invocation returns a reference corresponding to the existing
topic. If the type or QoS specified in our create_topic() invocation do not match that of the existing topic then the
invocation fails. There is also a find_topic() operation our subscriber could use to simply retrieve an existing topic.

Messenger::MessageTypeSupport_var mts =
new Messenger::MessageTypeSupportImpl();

if (DDS::RETCODE_OK != mts->register_type(participant, "")) {
std::cerr << "Failed to register the MessageTypeSupport." << std::endl;
return 1;

}

CORBA::String_var type_name = mts->get_type_name();

DDS::Topic_var topic =
participant->create_topic("Movie Discussion List",

type_name,
TOPIC_QOS_DEFAULT,
0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!topic) {
std::cerr << "Failed to create_topic." << std::endl;
return 1;

}

Creating the subscriber

Next, we create the subscriber with the default QoS.

// Create the subscriber
DDS::Subscriber_var sub =
participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT,

0, // No listener required
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!sub) {
std::cerr << "Failed to create_subscriber." << std::endl;
return 1;

}

Creating a DataReader and Listener

We need to associate a listener object with the data reader we create, so we can use it to detect when data is available.
The code below constructs the listener object. The DataReaderListenerImpl class is shown in the next subsection.

DDS::DataReaderListener_var listener(new DataReaderListenerImpl);

The listener is allocated on the heap and assigned to a DataReaderListener_var object. This type provides reference
counting behavior so the listener is automatically cleaned up when the last reference to it is removed. This usage is

2.7. Getting Started 107



OpenDDS, Release 3.28.1

typical for heap allocations in OpenDDS application code and frees the application developer from having to actively
manage the lifespan of the allocated objects.

Now we can create the data reader and associate it with our topic, the default QoS properties, and the listener object
we just created.

// Create the Datareader
DDS::DataReader_var dr =
sub->create_datareader(topic,

DATAREADER_QOS_DEFAULT,
listener,
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

if (!dr) {
std::cerr << "create_datareader failed." << std::endl;
return 1;

}

This thread is now free to perform other application work. Our listener object will be called on an OpenDDS thread
when a sample is available.

The Data Reader Listener Implementation

Our listener class implements the DDS::DataReaderListener interface defined by the DDS specification. The
DataReaderListener is wrapped within a DCPS::LocalObject which resolves ambiguously-inherited members
such as _narrow and _ptr_type. The interface defines a number of operations we must implement, each of which
is invoked to inform us of different events. The OpenDDS::DCPS::DataReaderListener defines operations for
OpenDDS’s special needs such as disconnecting and reconnected event updates. Here is the interface definition:

module DDS {
local interface DataReaderListener : Listener {
void on_requested_deadline_missed(in DataReader reader,

in RequestedDeadlineMissedStatus status);
void on_requested_incompatible_qos(in DataReader reader,

in RequestedIncompatibleQosStatus status);
void on_sample_rejected(in DataReader reader,

in SampleRejectedStatus status);
void on_liveliness_changed(in DataReader reader,

in LivelinessChangedStatus status);
void on_data_available(in DataReader reader);
void on_subscription_matched(in DataReader reader,

in SubscriptionMatchedStatus status);
void on_sample_lost(in DataReader reader, in SampleLostStatus status);

};
};

Our example listener class stubs out most of these listener operations with simple print statements. The only operation
that is really needed for this example is on_data_available() and it is the only member function of this class we
need to explore.

void DataReaderListenerImpl::on_data_available(DDS::DataReader_ptr reader)
{
++num_reads_;

try {
(continues on next page)

108 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

Messenger::MessageDataReader_var reader_i =
Messenger::MessageDataReader::_narrow(reader);

if (!reader_i) {
std::cerr << "read: _narrow failed." << std::endl;
return;

}

The code above narrows the generic data reader passed into the listener to the type-specific MessageDataReader
interface. The following code takes the next sample from the message reader. If the take is successful and returns valid
data, we print out each of the message’s fields.

Messenger::Message message;
DDS::SampleInfo si;
DDS::ReturnCode_t status = reader_i->take_next_sample(message, si);

if (status == DDS::RETCODE_OK) {
if (si.valid_data) {

std::cout << "Message: subject = " << message.subject.in() << std::endl
<< " subject_id = " << message.subject_id << std::endl
<< " from = " << message.from.in() << std::endl
<< " count = " << message.count << std::endl
<< " text = " << message.text.in() << std::endl;

} else if (si.instance_state == DDS::NOT_ALIVE_DISPOSED_INSTANCE_STATE) {
std::cout << "instance is disposed" << std::endl;

} else if (si.instance_state == DDS::NOT_ALIVE_NO_WRITERS_INSTANCE_STATE) {
std::cout << "instance is unregistered" << std::endl;

} else {
std::cerr << "ERROR: received unknown instance state "

<< si.instance_state << std::endl;
}

} else if (status == DDS::RETCODE_NO_DATA) {
cerr << "ERROR: reader received DDS::RETCODE_NO_DATA!" << std::endl;

} else {
cerr << "ERROR: read Message: Error: " << status << std::endl;

}

Note the sample read may contain invalid data. The valid_data flag indicates if the sample has valid data. There are two
samples with invalid data delivered to the listener callback for notification purposes. One is the dispose notification,
which is received when the DataWriter calls dispose() explicitly. The other is the unregistered notification, which is
received when the DataWriter calls unregister() explicitly. The dispose notification is delivered with the instance
state set to NOT_ALIVE_DISPOSED_INSTANCE_STATE and the unregister notification is delivered with the instance
state set to NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.

If additional samples are available, the service calls this function again. However, reading values a single sample
at a time is not the most efficient way to process incoming data. The Data Reader interface provides a number of
different options for processing data in a more efficient manner. We discuss some of these operations in Data Handling
Optimizations.

2.7. Getting Started 109



OpenDDS, Release 3.28.1

Cleaning up in OpenDDS Clients

After we are finished in the publisher and subscriber, we can use the following code to clean up the OpenDDS-related
objects:

participant->delete_contained_entities();
dpf->delete_participant(participant);
TheServiceParticipant->shutdown();

The domain participant’s delete_contained_entities() operation deletes all the topics, subscribers, and publish-
ers created with that participant. Once this is done, we can use the domain participant factory to delete our domain
participant.

Since the publication and subscription of data within DDS is decoupled, data is not guaranteed to be delivered if a
publication is disassociated (shutdown) prior to all data that has been sent having been received by the subscriptions. If
the application requires that all published data be received, the wait_for_acknowledgments() operation is available
to allow the publication to wait until all written data has been received. Data readers must have Reliability QoS set
to RELIABLE_RELIABILITY_QOS (which is the default) in order for wait_for_acknowledgments() to work. This
operation is called on individual DataWriters and includes a timeout value to bound the time to wait. The following
code illustrates the use of wait_for_acknowledgments() to block for up to 15 seconds to wait for subscriptions to
acknowledge receipt of all written data:

DDS::Duration_t shutdown_delay = {15, 0};
DDS::ReturnCode_t result;
result = writer->wait_for_acknowledgments(shutdown_delay);
if (result != DDS::RETCODE_OK) {
std::cerr << "Failed while waiting for acknowledgment of "

<< "data being received by subscriptions, some data "
<< "may not have been delivered." << std::endl;

}

Running the Example

We are now ready to run our simple example. Running each of these commands in its own window should enable you
to most easily understand the output.

First we will start a DCPSInfoRepo service so our publishers and subscribers can find one another.

Note: This step is not necessary if you are using peer-to-peer discovery by configuring your environment to use RTPS
discovery.

The DCPSInfoRepo executable is found in bin/DCPSInfoRepo. When we start the DCPSInfoRepo we need to ensure
that publisher and subscriber application processes can also find the started DCPSInfoRepo. This information can be
provided in one of three ways:

1. Pass arguments on the command line.

2. Connection info generated and placed in a shared file for applications to use.

3. Options put in a configuration file for other processes to use.

For our simple example here we will use option 2 by generating the location properties of the DCPSInfoRepo into a
file so that our simple publisher and subscriber can read it in and connect to it.

From your current directory type:

110 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

$DDS_ROOT/bin/DCPSInfoRepo -o simple.ior

%DDS_ROOT%\bin\DCPSInfoRepo -o simple.ior

The -o parameter instructs the DCPSInfoRepo to generate its connection information to the file simple.ior for use
by the publisher and subscriber. In a separate window navigate to the same directory that contains the simple.ior
file and start the subscriber application in our example by typing:

./subscriber -DCPSInfoRepo file://simple.ior

subscriber -DCPSInfoRepo file://simple.ior

The command line parameters direct the application to use the specified file to locate the DCPSInfoRepo. Our sub-
scriber is now waiting for messages to be sent, so we will now start the publisher in a separate window with the same
parameters:

./publisher -DCPSInfoRepo file://simple.ior

publisher -DCPSInfoRepo file://simple.ior

The publisher connects to the DCPSInfoRepo to find the location of any subscribers and begins to publish messages
as well as write them to the console. In the subscriber window, you should also now be seeing console output from the
subscriber that is reading messages from the topic demonstrating a simple publish and subscribe application.

You can read more about configuring your application for RTPS and other more advanced configuration options in
Configuring for RTPS Discovery and RTPS UDP Transport Configuration Properties . See Discovery Configuration
and The DCPS Information Repository for configuring and using the DCPSInfoRepo . See Quality of Service for setting
and using QoS features that modify the behavior of your application.

Running Our Example with RTPS

The prior OpenDDS example has demonstrated how to build and execute an OpenDDS application using basic
OpenDDS configurations and centralized discovery using the DCPSInfoRepo service. The following details what
is needed to run the same example using RTPS for discovery and with an interoperable transport. This is important
in scenarios when your OpenDDS application needs to interoperate with a non-OpenDDS implementation of the DDS
specification or if you do not want to use centralized discovery in your deployment of OpenDDS.

The coding and building of the Messenger example above is not changed for using RTPS, so you will not need to modify
or rebuild your publisher and subscriber services. This is a strength of the OpenDDS architecture in that to enable the
RTPS capabilities, it is an exercise in configuration. For this exercise, we will enable RTPS for the Messenger example
using a configuration file that the publisher and subscriber will share. More details concerning the configuration of all
the available transports including RTPS are described in Run-time Configuration.

Navigate to the directory where your publisher and subscriber have been built. Create a new text file named rtps.ini
and populate it with the following content:

[common]
DCPSGlobalTransportConfig=$file
DCPSDefaultDiscovery=DEFAULT_RTPS

[transport/the_rtps_transport]
transport_type=rtps_udp

2.7. Getting Started 111



OpenDDS, Release 3.28.1

The two lines of interest are the one that sets the discovery method and the one that sets the data transport protocol to
RTPS.

Now lets re-run our example with RTPS enabled by starting the subscriber process first and then the publisher to begin
sending data. It is best to start them in separate windows to see the two working separately.

Start the subscriber with the -DCPSConfigFile command line parameter to point to the newly created configuration
file. . .

./subscriber -DCPSConfigFile rtps.ini

subscriber -DCPSConfigFile rtps.ini

Now start the publisher with the same parameter. . .

./publisher -DCPSConfigFile rtps.ini

publisher -DCPSConfigFile rtps.ini

Since there is no centralized discovery in the RTPS specification, there are provisions to allow for wait times to allow
discovery to occur. The specification sets the default to 30 seconds. When the two above processes are started there
may be up to a 30 second delay depending on how far apart they are started from each other. This time can be adjusted
in OpenDDS configuration files and is discussed in Configuring for RTPS Discovery.

Because the architecture of OpenDDS allows for pluggable discovery and pluggable transports the two configuration
entries called out in the rtps.ini file above can be changed independently with one using RTPS and the other not
using RTPS (e.g. centralized discovery using DCPSInfoRepo). Setting them both to RTPS in our example makes this
application fully interoperable with other non-OpenDDS implementations.

2.7.2 Data Handling Optimizations

Registering and Using Instances in the Publisher

The previous example implicitly specifies the instance it is publishing via the sample’s data fields. When write() is
called, the data writer queries the sample’s key fields to determine the instance. The publisher also has the option to
explicitly register the instance by calling register_instance() on the data writer:

Messenger::Message message;
message.subject_id = 99;
DDS::InstanceHandle_t handle = message_writer->register_instance(message);

After we populate the Message structure we called the register_instance() function to register the instance. The instance
is identified by the subject_id value of 99 (because we earlier specified that field as the key).

We can later use the returned instance handle when we publish a sample:

DDS::ReturnCode_t ret = data_writer->write(message, handle);

Publishing samples using the instance handle may be slightly more efficient than forcing the writer to query for the
instance and is much more efficient when publishing the first sample on an instance. Without explicit registration, the
first write causes resource allocation by OpenDDS for that instance.

Because resource limitations can cause instance registration to fail, many applications consider registration as part of
setting up the publisher and always do it when initializing the data writer.

112 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Reading Multiple Samples

The DDS specification provides a number of operations for reading and writing data samples. In the examples above
we used the take_next_sample() operation, to read the next sample and “take” ownership of it from the reader. The
Message Data Reader also has the following take operations.

• take() – Take a sequence of up to max_samples values from the reader

• take_instance() – Take a sequence of values for a specified instance

• take_next_instance() – Take a sequence of samples belonging to the same instance, without specifying the
instance.

There are also “read” operations corresponding to each of these “take” operations that obtain the same values, but leave
the samples in the reader and simply mark them as read in the SampleInfo.

Since these other operations read a sequence of values, they are more efficient when samples are arriving quickly. Here
is a sample call to take() that reads up to 5 samples at a time.

MessageSeq messages(5);
DDS::SampleInfoSeq sampleInfos(5);
DDS::ReturnCode_t status = message_dr->take(messages,

sampleInfos,
5,
DDS::ANY_SAMPLE_STATE,
DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

The three state parameters potentially specialize which samples are returned from the reader. See the DDS specification
for details on their usage.

Zero-Copy Read

The read and take operations that return a sequence of samples provide the user with the option of obtaining a copy of
the samples (single-copy read) or a reference to the samples (zero-copy read). The zero-copy read can have significant
performance improvements over the single-copy read for large sample types. Testing has shown that samples of 8KB
or less do not gain much by using zero-copy reads but there is little performance penalty for using zero-copy on small
samples.

The application developer can specify the use of the zero-copy read optimization by calling take() or read() with a
sample sequence constructed with a max_len of zero. The message sequence and sample info sequence constructors
both take max_len as their first parameter and specify a default value of zero. The following example code is taken
from DevGuideExamples/DCPS/Messenger_ZeroCopy/DataReaderListenerImpl.cpp:

Messenger::MessageSeq messages;
DDS::SampleInfoSeq info;

// get references to the samples (zero-copy read of the samples)
DDS::ReturnCode_t status = dr->take(messages,

info,
DDS::LENGTH_UNLIMITED,
DDS::ANY_SAMPLE_STATE,
DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

After both zero-copy takes/reads and single-copy takes/reads, the sample and info sequences’ length are set to the
number of samples read. For the zero-copy reads, the max_len is set to a value >= length.

2.7. Getting Started 113



OpenDDS, Release 3.28.1

Since the application code has asked for a zero-copy loan of the data, it must return that loan when it is finished with
the data:

dr->return_loan(messages, info);

Calling return_loan() results in the sequences’ max_len being set to 0 and its owns member set to false, allowing
the same sequences to be used for another zero-copy read.

If the first parameter of the data sample sequence constructor and info sequence constructor were changed to a value
greater than zero, then the sample values returned would be copies. When values are copied, the application developer
has the option of calling return_loan(), but is not required to do so.

If the max_len (the first) parameter of the sequence constructor is not specified, it defaults to 0; hence using zero-copy
reads. Because of this default, a sequence will automatically call return_loan() on itself when it is destroyed. To
conform with the DDS specification and be portable to other implementations of DDS, applications should not rely on
this automatic return_loan() feature.

The second parameter to the sample and info sequences is the maximum slots available in the sequence. If the read() or
take() operation’s max_samples parameter is larger than this value, then the maximum samples returned by read()
or take() will be limited by this parameter of the sequence constructor.

Although the application can change the length of a zero-copy sequence, by calling the length(len) operation, you
are advised against doing so because this call results in copying the data and creating a single-copy sequence of samples.

2.8 Quality of Service

Quality of Service (QoS) policies are sets of requested policies for how entities should behave. Each policy defines a
structure to specify its data. Each entity supports a subset of the policies and defines a QoS structure that is composed
of the supported policy structures. The set of allowable policies for a given entity is constrained by the policy structures
nested in its QoS structure. For example, the Publisher’s QoS structure is defined in the specification’s IDL as follows:

module DDS {
struct PublisherQos {
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
GroupDataQosPolicy group_data;
EntityFactoryQosPolicy entity_factory;

};
};

Setting policies is as simple as obtaining a structure with the default values already set, modifying the individual policy
structures as necessary, and then applying the QoS structure to an entity (usually when it is created). See Default QoS
Policy Values for examples of how to obtain the default QoS policies for various entity types.

2.8.1 Changing QoS Policies

Applications can change the QoS of any entity by calling the set_qos() operation on the entity. If the QoS policy val-
ues are either invalid or have conflicting polices, then set_qos() returns DDS::RETCODE_INCONSISTENT_POLICY.
If the application attempts to change a QoS policy that is immutable (not changeable), then set_qos() returns
DDS::RETCODE_IMMUTABLE_POLICY.

If the set_qos is successful, existing associations are removed if they are no longer compatible and new associations
are added if they become compatible. The policies specify if they are mutable or not and how they affect associations.

114 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

The application can detect failed associations caused by incompatible QoS using Offered Incompatible QoS Status for
writers and Requested Incompatible QoS Status for readers.

2.8.2 Default QoS Policy Values

Applications obtain the default QoS policies for an entity by instantiating a QoS structure of the appropriate type for
the entity and passing it by reference to the appropriate get_default_entity_qos() operation on the appropriate
factory entity. (For example, you would use a domain participant to obtain the default QoS for a publisher or subscriber.)
The following examples illustrate how to obtain the default policies for publisher, subscriber, topic, domain participant,
data writer, and data reader.

// Get default Publisher QoS from a DomainParticipant:
DDS::PublisherQos pub_qos;
DDS::ReturnCode_t ret;
ret = domain_participant->get_default_publisher_qos(pub_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default publisher QoS" << std::endl;

}

// Get default Subscriber QoS from a DomainParticipant:
DDS::SubscriberQos sub_qos;
ret = domain_participant->get_default_subscriber_qos(sub_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default subscriber QoS" << std::endl;

}

// Get default Topic QoS from a DomainParticipant:
DDS::TopicQos topic_qos;
ret = domain_participant->get_default_topic_qos(topic_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default topic QoS" << std::endl;

}

// Get default DomainParticipant QoS from a DomainParticipantFactory:
DDS::DomainParticipantQos dp_qos;
ret = domain_participant_factory->get_default_participant_qos(dp_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default participant QoS" << std::endl;

}

// Get default DataWriter QoS from a Publisher:
DDS::DataWriterQos dw_qos;
ret = pub->get_default_datawriter_qos(dw_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default data writer QoS" << std::endl;

}

// Get default DataReader QoS from a Subscriber:
DDS::DataReaderQos dr_qos;
ret = sub->get_default_datareader_qos(dr_qos);
if (DDS::RETCODE_OK != ret) {
std::cerr << "Could not get default data reader QoS" << std::endl;

}

2.8. Quality of Service 115



OpenDDS, Release 3.28.1

2.8.3 Policies

Liveliness QoS

The liveliness QoS policy controls when and how the service determines whether participants are considered “alive”,
meaning they are still reachable and active. This policy applies to the topic, data reader, and data writer entities via the
liveliness member of their respective QoS structures. Setting this policy on a topic means it is in effect for all data
readers and data writers on that topic.

Important: This policy is immutable and affects association.

IDL:

enum LivelinessQosPolicyKind {
AUTOMATIC_LIVELINESS_QOS,
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
MANUAL_BY_TOPIC_LIVELINESS_QOS

};

struct LivelinessQosPolicy {
LivelinessQosPolicyKind kind;
Duration_t lease_duration;

};

Applicable entities Members Default values
Topic, DataWriter,
and DataReader

kind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

Specification: DDS v1.4 2.2.3.11 LIVELINESS

The kindmember setting indicates whether liveliness is asserted automatically by the service or manually by the speci-
fied entity. A setting of AUTOMATIC_LIVELINESS_QOSmeans that the service will send a liveliness indication if the par-
ticipant has not sent any network traffic for the lease_duration. The MANUAL_BY_PARTICIPANT_LIVELINESS_QOS
or MANUAL_BY_TOPIC_LIVELINESS_QOS setting means the specified entity (data writer for the “by topic” setting or
domain participant for the “by participant” setting) must either write a sample or manually assert its liveliness within a
specified heartbeat interval. The desired heartbeat interval is specified by the lease_duration member. The default
lease duration is a pre-defined infinite value, which disables any liveliness testing.

To manually assert liveliness without publishing a sample, the application must call the assert_liveliness() oper-
ation on the data writer (for the “by topic” setting) or on the domain participant (for the “by participant” setting) within
the specified heartbeat interval.

Data writers specify (offer) their own liveliness criteria and data readers specify (request) the desired liveliness of their
writers. Writers that are not heard from within the lease duration (either by writing a sample or by asserting liveliness)
cause a change in the LIVELINESS_CHANGED_STATUS communication status and notification to the application
(e.g., by calling the data reader listener’s on_liveliness_changed() callback operation or by signaling any related
wait sets).

This policy is considered during the establishment of associations between data writers and data readers. The value
of both sides of the association must be compatible in order for an association to be established. Compatibility is
determined by comparing the data reader’s requested liveliness with the data writer’s offered liveliness. Both the kind
of liveliness (automatic, manual by topic, manual by participant) and the value of the lease duration are considered in

116 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1035972


OpenDDS, Release 3.28.1

determining compatibility. The writer’s offered kind of liveliness must be greater than or equal to the reader’s requested
kind of liveliness. The liveliness kind values are ordered as follows:

MANUAL_BY_TOPIC_LIVELINESS_QOS >
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS >
AUTOMATIC_LIVELINESS_QOS

In addition, the writer’s offered lease duration must be less than or equal to the reader’s requested lease duration. Both
of these conditions must be met for the offered and requested liveliness policy settings to be considered compatible and
the association established.

Reliability QoS

The reliability QoS policy applies to the topic, data reader, and data writer entities via the reliability member of
their respective QoS structures. This policy controls how data readers and writers treat the samples they process.

Important: This policy is immutable and affects association.

IDL:

enum ReliabilityQosPolicyKind {
BEST_EFFORT_RELIABILITY_QOS,
RELIABLE_RELIABILITY_QOS

};

struct ReliabilityQosPolicy {
ReliabilityQosPolicyKind kind;
Duration_t max_blocking_time;

};

Applicable
entities

Members Default values

Topic and
DataReader

kind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

DataWriter kind
max_blocking_time.sec
max_blocking_time.nanosec

RELIABLE_RELIABILITY_QOS1

0
100000000 (100 ms)

Specification: DDS v1.4 2.2.3.14 RELIABILITY

The “best effort” value (BEST_EFFORT_RELIABILITY_QOS) makes no promises as to the reliability of the samples and
could be expected to drop samples under some circumstances. The “reliable” value (RELIABLE_RELIABILITY_QOS)
indicates that the service should eventually deliver all values to eligible data readers.

The max_blocking_time member of this policy is used when the History QoS policy is set to “keep all” and the
writer is unable to proceed because of Resource Limits QoS. When this situation occurs and the writer blocks for more
than the specified time, then the write fails with a DDS::RETCODE_TIMEOUT return code. The default for this policy
for data readers and topics is “best effort”, while the default value for data writers is “reliable”.

1 For OpenDDS versions, up to 2.0, the default reliability kind for data writers is best effort. For versions 2.0.1 and later, this is changed to
reliable (to conform to the DDS specification).

2.8. Quality of Service 117

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036005


OpenDDS, Release 3.28.1

This policy is considered during the creation of associations between data writers and data readers. The value of both
sides of the association must be compatible in order for an association to be created. The reliability kind of data writer
must be greater than or equal to the value of data reader. In other words, all combinations are valid except that a reliable
reader can only associate with a reliable writer, not a “best effort” one.

History QoS

The history QoS policy determines how samples are held in the data writer and data reader for a particular instance.
For data writers these samples are held until the publisher retrieves them and successfully sends them to all connected
subscribers. For data readers these samples are held until taken by the application. This policy applies to the topic,
data reader, and data writer entities via the history member of their respective QoS structures.

Important: This policy is immutable and does not affect association.

IDL:

enum HistoryQosPolicyKind {
KEEP_LAST_HISTORY_QOS,
KEEP_ALL_HISTORY_QOS

};

struct HistoryQosPolicy {
HistoryQosPolicyKind kind;
long depth;

};

Applicable entities Members Default values
Topic, DataWriter, and DataReader kind

depth
KEEP_LAST_HISTORY_QOS
1

Specification: DDS v1.4 2.2.3.18 HISTORY

The “keep all” value (KEEP_ALL_HISTORY_QOS) specifies that all possible samples for that instance should be
kept. When “keep all” is specified and the number of unread samples is equal to the Resource Limits QoS field of
max_samples_per_instance then any incoming samples are rejected.

The “keep last” value (KEEP_LAST_HISTORY_QOS) specifies that only the last depth values should be kept. When a
data writer contains depth samples of a given instance, a write of new samples for that instance are queued for delivery
and the oldest unsent samples are discarded. When a data reader contains depth samples of a given instance, any
incoming samples for that instance are kept and the oldest samples are discarded.

Durability QoS

The durability QoS policy controls whether data writers should maintain samples after they have been sent to known
subscribers. This policy applies to the topic, data reader, and data writer entities via the durability member of their
respective QoS structures.

Important: This policy is immutable and affects association.

IDL:

118 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036038


OpenDDS, Release 3.28.1

enum DurabilityQosPolicyKind {
VOLATILE_DURABILITY_QOS, // Least Durability
TRANSIENT_LOCAL_DURABILITY_QOS,
TRANSIENT_DURABILITY_QOS,
PERSISTENT_DURABILITY_QOS // Greatest Durability

};

struct DurabilityQosPolicy {
DurabilityQosPolicyKind kind;

};

Applicable entities Members Default values
Topic, DataWriter, and DataReader kind VOLATILE_DURABILITY_QOS

Specification: DDS v1.4 2.2.3.4 DURABILITY

A durability kind of VOLATILE_DURABILITY_QOS means samples are discarded after being sent to all known sub-
scribers. As a side effect, subscribers cannot recover samples sent before they connect.

A durability kind of TRANSIENT_LOCAL_DURABILITY_QOSmeans that data readers that are associated/connected with
a data writer will be sent all of the samples in the data writer’s history.

A durability kind of TRANSIENT_DURABILITY_QOS means that samples outlive a data writer and last as long as the
process is alive. The samples are kept in memory, but are not persisted to permanent storage. A data reader subscribed
to the same topic and partition within the same domain will be sent all of the cached samples that belong to the same
topic/partition.

A durability kind of PERSISTENT_DURABILITY_QOS provides basically the same functionality as transient durability
except the cached samples are persisted and will survive process destruction.

When transient or persistent durability is specified, the Durability Service QoS QoS policy specifies additional tuning
parameters for the durability cache.

The durability policy is considered during the creation of associations between data writers and data readers. The value
of both sides of the association must be compatible in order for an association to be created. The durability kind value
of the data writer must be greater than or equal to the corresponding value of the data reader. The durability kind values
are ordered as follows:

PERSISTENT_DURABILITY_QOS >
TRANSIENT_DURABILITY_QOS >
TRANSIENT_LOCAL_DURABILITY_QOS >
VOLATILE_DURABILITY_QOS

2.8. Quality of Service 119

https://www.omg.org/spec/DDS/1.4/PDF#G5.1035885


OpenDDS, Release 3.28.1

Durability Service QoS

The durability service QoS policy controls deletion of samples in the transient or persistent durability caches. This
policy applies to the topic and data writer entities via the durability_service member of their respective QoS
structures and provides a way to specify History QoS and Resource Limits QoS for the sample cache.

Important: This policy is immutable and does not affect association.

IDL:

struct DurabilityServiceQosPolicy {
Duration_t service_cleanup_delay;
HistoryQosPolicyKind history_kind;
long history_depth;
long max_samples;
long max_instances;
long max_samples_per_instance;

};

Appli-
cable
enti-
ties

Members Default values

Topic
and
DataWriter

service_cleanup_delay.sec
service_cleanup_delay.nanosec
history_kind
history_depth
max_samples
max_instances
max_samples_per_instance

DURATION_ZERO_SEC
DURATION_ZERO_NSEC
KEEP_LAST_HISTORY_QOS
1
LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

Specification: DDS v1.4 2.2.3.5 DURABILITY_SERVICE

The members are analogous to, although independent of, those found in the History QoS and Resource Limits QoS
policies. The service_cleanup_delay can be set to a desired value. By default, it is set to zero, which means never
clean up cached samples.

Resource Limits QoS

The resource limits determines the amount of resources the service can consume in order to meet the requested QoS.
This policy applies to the topic, data reader, and data writer entities via the resource_limits member of their re-
spective QoS structures.

Important: This policy is immutable and does not affect association.

IDL:

struct ResourceLimitsQosPolicy {
long max_samples;
long max_instances;

(continues on next page)

120 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1035900


OpenDDS, Release 3.28.1

(continued from previous page)

long max_samples_per_instance;
};

Applicable entities Members Default values
Topic, DataWriter, and
DataReader

max_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

Specification: DDS v1.4 2.2.3.19 RESOURCE_LIMITS

The max_samples member specifies the maximum number of samples a single data writer or data reader can manage
across all of its instances. The max_instances member specifies the maximum number of instances that a data writer
or data reader can manage. The max_samples_per_instance member specifies the maximum number of samples
that can be managed for an individual instance in a single data writer or data reader.

Resources are used by the data writer to queue samples written to the data writer but not yet sent to all data readers
because of backpressure from the transport. Resources are used by the data reader to queue samples that have been
received, but not yet read/taken from the data reader.

Partition QoS

The partition QoS policy allows the creation of logical partitions within a domain. Data readers and data writers can
only be associated if they have at least one matched partition string. This policy applies to the publisher and subscriber
entities via the partition member of their respective QoS structures.

Important: This policy is mutable and affects association.

IDL:

struct PartitionQosPolicy {
StringSeq name;

};

Applicable entities Members Default values
Publisher and Subscriber name (empty sequence)

Specification: DDS v1.4 2.2.3.13 PARTITION

The default partition name is an empty string and causes the entity to participate in the default partition. The partition
names may contain wildcard characters as they are Fnmatch Expressions.

The establishment of data reader and data writer associations depends on matching partition strings on the publication
and subscription ends. Failure to match partitions is not considered a failure and does not trigger any callbacks or set
any status values.

2.8. Quality of Service 121

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036044
https://www.omg.org/spec/DDS/1.4/PDF#G5.1035997


OpenDDS, Release 3.28.1

Deadline QoS

The deadline QoS policy allows the application to detect when samples are not written or read within a specified
amount of time. This policy applies to the topic, data writer, and data reader entities via the deadline member of their
respective QoS structures.

Important: This policy is mutable and affects association.

IDL:

struct DeadlineQosPolicy {
Duration_t period;

};

Applicable entities Members Default values
Topic, DataWriter, and
DataReader

period.sec
period.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

Specification: DDS v1.4 2.2.3.7 DEADLINE

The default value of the period member is infinite, which requires no behavior. When this policy is set to a finite
value, then the data writer monitors the changes to data made by the application and indicates failure to honor the
policy by setting the corresponding status condition and triggering the on_offered_deadline_missed() listener
callback. A data reader that detects that the data has not changed before the period has expired sets the corresponding
status condition and triggers the on_requested_deadline_missed() listener callback.

This policy is considered during the creation of associations between data writers and data readers. The value of both
sides of the association must be compatible in order for an association to be created. The deadline period of the data
reader must be greater than or equal to the corresponding value of data writer.

The value of this policy may change after the associated entity is enabled. In the case where the policy of a data reader
or data writer is made, the change is successfully applied only if the change remains consistent with the remote end of
all associations in which the reader or writer is participating. If the policy of a topic is changed, it will only affect data
readers and writers that are created after the change has been made. Any existing readers or writers, and any existing
associations between them, will not be affected by the topic policy value change.

Lifespan QoS

The lifespan QoS policy allows the application to specify when a sample expires. Expired samples will not be delivered
to subscribers. This policy applies to the topic and data writer entities via the lifespan member of their respective
QoS structures.

Important: This policy is mutable and does not affect association.

IDL:

struct LifespanQosPolicy {
Duration_t duration;

}

122 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1035931


OpenDDS, Release 3.28.1

Applicable entities Members Default values
Topic and
DataWriter

duration.sec
duration.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

Specification: DDS v1.4 2.2.3.16 LIFESPAN

The default value of the duration member is infinite, which means samples never expire.

Note: OpenDDS currently supports expired sample detection on the publisher side when using a Durability QoS kind
other than VOLATILE_DURABILITY_QOS. The current OpenDDS implementation may not remove samples from the
data writer and data reader caches when they expire after being placed in the cache.

The value of this policy may be changed at any time, but only affects data written after the change.

User Data QoS

The user data QoS policy can be used to attach arbitrary information to the created entity. It is not available to the user
when using Static Discovery. This policy applies to the domain participant, data reader, and data writer entities via the
user_data member of their respective QoS structures.

Important: This policy is mutable and does not affect association.

IDL:

struct UserDataQosPolicy {
sequence<octet> value;

};

Applicable entities Members Default values
DomainParticipant, DataWriter, DataReader value (empty sequence)

Specification: DDS v1.4 2.2.3.1 USER_DATA

The value of the policy is available in respective built-in topic data. The value’s use is defined by the application. For
example, the application could attach security credentials via the policy that can be used by the remote application to
authenticate the source.2

Warning: When using DDS Security, the user data of a participant can be leaked in unsecured discovery messages.
Enabling [rtps_discovery] SecureParticipantUserData will only send and provide the real user data when
it can be securely sent. This is an OpenDDS-specific extension.

2 This is an example that was given by the DDS specification. If you actually need to authenticate remote participants in a secure way, it’s highly
recommended to use DDS Security.

2.8. Quality of Service 123

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036015
https://www.omg.org/spec/DDS/1.4/PDF#G5.1035875


OpenDDS, Release 3.28.1

Topic Data QoS

The topic data QoS policy can be used to attach arbitrary information to the created topic. This policy applies to topic
entities via the topic_data member of TopicQoS structures.

Important: This policy is mutable and does not affect association.

IDL:

struct TopicDataQosPolicy {
sequence<octet> value;

};

Applicable entities Members Default values
Topic value (empty sequence)

Specification: DDS v1.4 2.2.3.2 TOPIC_DATA

The value of the topic data policy is available in data writer, data reader, and topic built-in topic data. The value’s use
is defined by the application.

Group Data QoS

The group data QoS policy can be used to attach arbitrary information to the created entity. This policy applies to the
publisher and subscriber entities via the group_data member of their respective QoS structures.

Important: This policy is mutable and does not affect association.

IDL:

struct GroupDataQosPolicy {
sequence<octet> value;

};

Applicable entities Members Default values
Publisher and Subscriber value (empty sequence)

Specification: DDS v1.4 2.2.3.3 GROUP_DATA

The value of the group data policy is propagated via built-in topics using the writer built-in topic data for the publisher
and the reader built-in topic data for the subscriber. The value’s use is defined by the application. This could be used
to implement matching mechanisms similar to those of the Partition QoS except the decision could be made based on
an application-defined policy.

124 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1035878
https://www.omg.org/spec/DDS/1.4/PDF#G5.1035881


OpenDDS, Release 3.28.1

Transport Priority QoS

The transport priority QoS policy is considered a hint to the transport layer to indicate at what priority to send messages.
This policy applies to topic and data writer entities via the transport_priority member of their respective QoS
policy structures.

Important: OpenDDS currently only implements this for the tcp and udp transports.

This policy is immutable and does not affect association. This is opposed to the DDS specification, which specifies that
it’s mutable. OpenDDS does not currently support modifications of the transport priority policy values after creation
of the data writer. This can be worked around by creating new data writers as different priority values are required.

IDL:

struct TransportPriorityQosPolicy {
long value;

};

Applicable entities Members Default values
Topic and DataWriter value 0

Specification: DDS v1.4 2.2.3.15 TRANSPORT_PRIORITY

Higher values indicate higher priority. OpenDDS maps the priority value directly onto thread and DiffServ codepoint
values. A default priority of zero will not modify either threads or codepoints in messages.

OpenDDS will attempt to set the thread priority of the sending transport as well as any associated receiving trans-
port. Transport priority values are mapped from zero (default) through the maximum thread priority linearly without
scaling. If the lowest thread priority is different from zero, then it is mapped to the transport priority value of zero.
Where priority values on a system are inverted (higher numeric values are lower priority), OpenDDS maps these to an
increasing priority value starting at zero. Priority values lower than the minimum (lowest) thread priority on a system
are mapped to that lowest priority. Priority values greater than the maximum (highest) thread priority on a system
are mapped to that highest priority. On most systems, thread priorities can only be set when the process scheduler
has been set to allow these operations. Setting the process scheduler is generally a privileged operation and will re-
quire system privileges to perform. On POSIX based systems, the system calls of sched_get_priority_min(2) and
sched_get_priority_max(2) are used to determine the system range of thread priorities.

OpenDDS will attempt to set the DiffServ codepoint on the socket used to send data for the data writer if it is supported
by the transport implementation. If the network hardware honors the codepoint values, higher codepoint values will
result in better (faster) transport for higher priority samples. The default value of zero will be mapped to the (default)
codepoint of zero. Priority values from 1 through 63 are then mapped to the corresponding codepoint values, and
higher priority values are mapped to the highest codepoint value (63).

2.8. Quality of Service 125

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036011
https://manpages.debian.org/sched_get_priority_min(2)
https://manpages.debian.org/sched_get_priority_max(2)


OpenDDS, Release 3.28.1

Latency Budget QoS

The latency budget QoS policy is considered a hint to the transport layer to indicate the urgency of samples being sent.
This policy applies to topic, data reader, and data writer entities via the latency_budget member of their respective
QoS policy structures.

Important: This policy is mutable and affects association.

IDL:

struct LatencyBudgetQosPolicy {
Duration_t duration;

};

Applicable entities Members Default values
Topic, DataWriter, and
DataReader

duration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

Specification: DDS v1.4 2.2.3.8 LATENCY_BUDGET

The default value of duration is zero indicating that the delay should be minimized. OpenDDS uses the value to
bound a delay interval for reporting unacceptable delay in transporting samples from publication to subscription. This
policy is used for monitoring purposes only at this time. Use Transport Priority QoS to modify the sending priority of
samples.

There is an OpenDDS-specific Budget Exceeded Status that reports when the duration is exceeded.

The data writer policy value is used only for compatibility comparisons and if left at the default value of zero will result
in all requested duration values from data readers being matched. The data writer policy value must be greater or equal
to a data reader policy value for an association to occur or continue to exist.

Entity Factory QoS

The entity factory QoS policy controls whether entities are automatically enabled by their factories when they are
created. This policy applies to domain participant factory (as a factory for domain participants), domain participant
(as a factory for publishers, subscribers, and topics), publisher (as a factory for data writers), or subscriber (as a factory
for data readers).

Important: This policy is mutable and does not affect association.

IDL:

struct EntityFactoryQosPolicy {
boolean autoenable_created_entities;

};

Applicable entities Members Default val-
ues

DomainParticipantFactory, DomainParticipant, Publisher,
and Subscriber

autoenable_created_entitiestrue

126 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1035938


OpenDDS, Release 3.28.1

Specification: DDS v1.4 2.2.3.20 ENTITY_FACTORY

Applications that wish to explicitly enable entities some time after they are created should set the value of the
autoenable_created_entities member of this policy to false and apply the policy to the appropriate factory
entities. The application must then manually enable the entity by calling the entity’s enable() operation. One use of
setting this policy to false is binding specfic transport configurations to readers and writers.

The value of this policy may be changed at any time, but this only affects entities created after the change.

Presentation QoS

The presentation QoS policy controls how changes to instances by publishers are presented to data readers. It affects
the relative ordering of these changes and the scope of this ordering.

Important: This policy is immutable and affects association.

IDL:

enum PresentationQosPolicyAccessScopeKind {
INSTANCE_PRESENTATION_QOS,
TOPIC_PRESENTATION_QOS,
GROUP_PRESENTATION_QOS

};

struct PresentationQosPolicy {
PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;

};

Applicable entities Members Default values
Publisher and Sub-
scriber

access_scope
coherent_access
ordered_access

INSTANCE_PRESENTATION_QOS
0
0

Specification: DDS v1.4 2.2.3.6 PRESENTATION

The scope of these changes (access_scope) specifies the level in which an application may be made aware:

• INSTANCE_PRESENTATION_QOS (the default) indicates that changes occur to instances independently. Instance
access essentially acts as a no-op with respect to coherent_access and ordered_access. Setting either of
these values to true has no observable affect within the subscribing application.

• TOPIC_PRESENTATION_QOS indicates that accepted changes are limited to all instances within the same data
reader or data writer.

• GROUP_PRESENTATION_QOS indicates that accepted changes are limited to all instances within the same pub-
lisher or subscriber.

Coherent changes (coherent_access) allow one or more changes to an instance be made available to an associated
data reader as a single change. If a data reader does not receive the entire set of coherent changes made by a publisher,
then none of the changes are made available. The semantics of coherent changes are similar in nature to those found in
transactions provided by many relational databases. By default, coherent_access is false.

2.8. Quality of Service 127

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036056
https://www.omg.org/spec/DDS/1.4/PDF#G5.1035909


OpenDDS, Release 3.28.1

Changes may also be made available to associated data readers in the order sent by the publisher (ordered_access).
This is similar in nature to the Destination Order QoS policy, however ordered_access permits data to be ordered
independently of instance ordering. By default, ordered_access is false.

Note: This policy controls the ordering and scope of samples made available to the subscriber, but the subscriber
application must use the proper logic in reading samples to guarantee the requested behavior. For more details, see
DDS v1.4 2.2.2.5.1.9 Data access patterns.

For a reader and writer to associate, all the following must be true:

• The writer’s access_scope must be greater or equal to the reader’s.

• The writer’s coherent_access must be false or else both the reader’s and writer’s coherent_access must
both be true.

• The writer’s ordered_access must be false or else both the reader’s and writer’s ordered_access must
both be true.

Destination Order QoS

The destination order QoS policy controls the order in which samples within a given instance are made available to a
data reader.

Important: This policy is immutable and affects association.

IDL:

enum DestinationOrderQosPolicyKind {
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

};

struct DestinationOrderQosPolicy {
DestinationOrderQosPolicyKind kind;

};

Applicable entities Members Default values
Topic, DataWriter, and DataReader kind BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS

Specification: DDS v1.4 2.2.3.17 DESTINATION_ORDER

If a History QoS depth of one (the default) is specified, the instance will reflect the most recent value written by all
data writers to that instance.

The BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS value (the default) indicates that samples within an
instance are ordered in the order in which they were received by the data reader. Note that samples are
not necessarily received in the order sent by the same data writer. To enforce this type of ordering, the
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS value should be used.

The BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS value indicates that samples within an instance are ordered
based on a timestamp provided by the data writer. It should be noted that if multiple data writers write to the same
instance, care should be taken to ensure that clocks are synchronized to prevent incorrect ordering on the data reader.

128 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1032095
https://www.omg.org/spec/DDS/1.4/PDF#G5.1036029


OpenDDS, Release 3.28.1

For a reader and writer to associate, the writer’s kind must be greater or equal to the reader’s. In other
words, if the reader is BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS, then it the writer can be ei-
ther value. If the reader is BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS, then the writer must also be
BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS.

Writer Data Lifecycle QoS

The writer data lifecycle QoS policy controls the lifecycle of instances managed by a DataWriter.

Important: This policy is mutable and does not affect association.

IDL:

struct WriterDataLifecycleQosPolicy {
boolean autodispose_unregistered_instances;

};

Applicable entities Members Default values
DataWriter autodispose_unregistered_instances true

Specification: DDS v1.4 2.2.3.21 WRITER_DATA_LIFECYCLE

When autodispose_unregistered_instances is set to true (the default), a data writer disposes an instance when
it is unregistered. In some cases, it may be desirable to prevent an instance from being disposed when an instance is
unregistered. This policy could, for example, allow an exclusive ownership data writer to gracefully defer to the next
data writer without affecting the instance state. Deleting a data writer implicitly unregisters all of its instances prior to
deletion.

Reader Data Lifecycle QoS

The reader data lifecycle QoS policy controls the lifecycle of instances managed by a DataReader.

Important: This policy is mutable and does not affect association.

IDL:

struct ReaderDataLifecycleQosPolicy {
Duration_t autopurge_nowriter_samples_delay;
Duration_t autopurge_disposed_samples_delay;

};

Appli-
cable
enti-
ties

Members Default values

DataReaderautopurge_nowriter_samples_delay.sec
autopurge_nowriter_samples_delay.nanosec
autopurge_disposed_samples_delay.sec
autopurge_disposed_samples_delay.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

2.8. Quality of Service 129

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036067


OpenDDS, Release 3.28.1

Specification: DDS v1.4 2.2.3.22 READER_DATA_LIFECYCLE

Normally, a data reader maintains data for all instances until there are no more associated data writers for the instance,
the instance has been disposed, or the data has been taken by the user.

In some cases, it may be desirable to constrain the reclamation of these resources. This policy could, for example,
permit a late-joining data writer to prolong the lifetime of an instance in fail-over situations.

The autopurge_nowriter_samples_delay controls how long the data reader waits before re-
claiming resources once an instance transitions to the NOT_ALIVE_NO_WRITERS state. By default,
autopurge_nowriter_samples_delay is infinite.

The autopurge_disposed_samples_delay controls how long the data reader waits before reclaiming resources
once an instance transitions to the NOT_ALIVE_DISPOSED state. By default, autopurge_disposed_samples_delay
is infinite.

Time Based Filter QoS

The time based filter QoS policy controls how often a DataReader may be interested in changes in values to an instance.

Important: This policy is mutable and does not affect association.

IDL:

struct TimeBasedFilterQosPolicy {
Duration_t minimum_separation;

};

Applicable en-
tities

Members Default values

DataReader minimum_separation.sec
minimum_separation.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

Specification: DDS v1.4 2.2.3.12 TIME_BASED_FILTER

An interval (minimum_separation) may be specified on the data reader. This interval defines a minimum delay be-
tween instance value changes; this permits the data reader to throttle changes without affecting the state of the associated
data writer. By default, minimum_separation is zero, which indicates that no data is filtered. This QoS policy does
not conserve bandwidth as instance value changes are still sent to the subscriber process. It only affects which samples
are made available via the data reader.

Ownership QoS

The ownership QoS policy controls whether more than one DataWriter is able to write samples for the same instance.

Important: This policy is immutable and affects association.

IDL:

130 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G5.1036104
https://www.omg.org/spec/DDS/1.4/PDF#G5.1035987


OpenDDS, Release 3.28.1

enum OwnershipQosPolicyKind {
SHARED_OWNERSHIP_QOS,
EXCLUSIVE_OWNERSHIP_QOS

};

struct OwnershipQosPolicy {
OwnershipQosPolicyKind kind;

};

Applicable entities Members Default values
Topic, DataWriter, and DataReader kind SHARED_OWNERSHIP_QOS

Specification: DDS v1.4 2.2.3.9 OWNERSHIP

If the kind member is set to SHARED_OWNERSHIP_QOS, more than one data writer is allowed to update the same instance.
If the kind member is set to EXCLUSIVE_OWNERSHIP_QOS, only one data writer is allowed to update a given instance
(i.e., the data writer is considered to be the owner of the instance) and associated DataReaders will only see samples
written by that data writer. The owner of the instance is determined by value of the Ownership Strength QoS policy; the
data writer with the highest value of strength is considered the owner of the instance. Other factors may also influence
ownership, such as whether the data writer with the highest strength is “alive” (as defined by the Liveliness QoS policy)
and has not violated its offered publication deadline constraints (as defined by the Deadline QoS policy).

For a reader and writer to associate, the kind must be the same.

Ownership Strength QoS

The ownership strength QoS policy is used in conjunction with the Ownership QoS EXCLUSIVE_OWNERSHIP_QOS
policy on DataWriters.

Important: This policy is mutable and does not affect association.

IDL:

struct OwnershipStrengthQosPolicy {
long value;

};

Applicable entities Members Default values
DataWriter value 0

Specification: DDS v1.4 2.2.3.10 OWNERSHIP_STRENGTH

The value member is used to determine which data writer is the owner of the instance. The default value is zero.

2.8. Quality of Service 131

https://www.omg.org/spec/DDS/1.4/PDF#G5.1035943
https://www.omg.org/spec/DDS/1.4/PDF#G5.1035961


OpenDDS, Release 3.28.1

Property QoS

The property QoS policy contains sequences of key-value pairs for the DomainParticipant.

Important: This policy is mutable, but updates to properties after creating the participant might not an effect. This
policy affects association indirectly through security.

IDL:

struct Property_t {
string name;
string value;
boolean propagate;

};
typedef sequence<Property_t> PropertySeq;

struct BinaryProperty_t {
string name;
OctetSeq value;
boolean propagate;

};
typedef sequence<BinaryProperty_t> BinaryPropertySeq;

struct PropertyQosPolicy {
PropertySeq value;
BinaryPropertySeq binary_value;

};

Applicable entities Members Default values
DomainParticipant value

binary_value
(empty sequence)
(empty sequence)

Specification: DDS Security v1.1 7.2.5 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataRead-
erQos

Right now these are only used for DDS Security Configuration via Property Qos Policy.

Data Representation QoS

The data representation QoS policy defines how a DataWriter encodes samples and what encodings a DataReader will
accept. This XTypes concept is explained in detail in Data Representation.

Important: This policy is immutable and affects association.

IDL:

module DDS {
const DataRepresentationId_t XCDR_DATA_REPRESENTATION = 0;
const DataRepresentationId_t XML_DATA_REPRESENTATION = 1;
const DataRepresentationId_t XCDR2_DATA_REPRESENTATION = 2;

(continues on next page)

132 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS-SECURITY/1.1/PDF#page=35&view=FitH,240.0
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF#page=35&view=FitH,240.0


OpenDDS, Release 3.28.1

(continued from previous page)

typedef sequence<DataRepresentationId_t> DataRepresentationIdSeq;

struct DataRepresentationQosPolicy {
DataRepresentationIdSeq value;

};
};

module OpenDDS {
module DCPS {
const DDS::DataRepresentationId_t UNALIGNED_CDR_DATA_REPRESENTATION = -12140;

};
};

Applicable entities Mem-
bers

Default values

DataWriter using the
RTPS/UDP Trans-
port

value (empty sequence) – interpreted as a sequence containing
XCDR2_DATA_REPRESENTATION

DataReader using
the RTPS/UDP
Transport

value (empty sequence) – interpreted as a sequence containing
XCDR_DATA_REPRESENTATION and XCDR2_DATA_REPRESENTATION

DataWriter using
other transports

value (empty sequence) – interpreted as a sequence containing
UNALIGNED_CDR_DATA_REPRESENTATION

DataReader using
other transports

value (empty sequence) – interpreted as a sequence containing
XCDR_DATA_REPRESENTATION, XCDR2_DATA_REPRESENTATION, and
UNALIGNED_CDR_DATA_REPRESENTATION

Specification: DDS XTypes v1.3 7.6.3.1 Data Representation QoS Policy

Warning: The default interpretation of value is OpenDDS-specific as of XTypes 1.3. The XTypes specification
v1.3 specifies that it should be interpreted as a sequence containing XCDR_DATA_REPRESENTATION. This is because
OpenDDS defaults to XCDR2 instead of XCDR1 when using the RTPS/UDP Transport, the use of unaligned CDR,
and the desire to have readers be as compatible as possible by default. See Data Representation for details.

For a reader and writer to associate, the first value in the writer’s effective value must be contained in the reader’s
effective value. Other items values in a writer’s value are ignored.

2.8. Quality of Service 133

https://www.omg.org/spec/DDS-XTypes/1.3/PDF#page=227&view=FitH,214.0


OpenDDS, Release 3.28.1

Type Consistency Enforcement QoS

The type consistency enforcement QoS policy lets the application fine-tune details of how topic types may differ between
DataWriters and DataReaders. This XTypes concept is explained in detail in Type Consistency Enforcement.

Important: OpenDDS only supports this with RTPS Discovery.

This policy is immutable and affects association.

IDL:

enum TypeConsistencyKind {
DISALLOW_TYPE_COERCION,
ALLOW_TYPE_COERCION

};

struct TypeConsistencyEnforcementQosPolicy {
TypeConsistencyEnforcementQosPolicyKind_t kind;
boolean ignore_sequence_bounds;
boolean ignore_string_bounds;
boolean ignore_member_names;
boolean prevent_type_widening;
boolean force_type_validation;

};

Appli-
cable
entities

Members Default values

DataReader kind
ignore_sequence_bounds
ignore_string_bounds
ignore_member_names
prevent_type_widening
force_type_validation

ALLOW_TYPE_COERCION
true
true
false
false
false

Specification: DDS XTypes v1.3 7.6.3.4 Type Consistency Enforcement QoS Policy

Attention: OpenDDS only supports ignore_member_names. All other members should be left at their default
values.

ignore_member_names defaults to false so member names (along with member IDs, see Member ID assignment) are
significant for type compatibility. Changing this to true means that only member IDs are used for type compatibility.

134 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS-XTypes/1.3/PDF#page=244&view=FitH,257.0


OpenDDS, Release 3.28.1

2.8.4 Policy Example

The following sample code illustrates some policies being set and applied for a publisher.

DDS::DataWriterQos dw_qos;
pub->get_default_datawriter_qos (dw_qos);

dw_qos.history.kind = DDS::KEEP_ALL_HISTORY_QOS;

dw_qos.reliability.kind = DDS::RELIABLE_RELIABILITY_QOS;
dw_qos.reliability.max_blocking_time.sec = 10;
dw_qos.reliability.max_blocking_time.nanosec = 0;

dw_qos.resource_limits.max_samples_per_instance = 100;

DDS::DataWriter_var dw =
pub->create_datawriter(topic,

dw_qos,
0, // No listener
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

This code creates a publisher with the following qualities:

• History QoS set to “keep all”

• Reliability QoS set to “reliable” with a maximum blocking time of 10 seconds

• The maximum samples per instance Resource Limits QoS set to 100

This means that when 100 samples are waiting to be delivered, the writer can block up to 10 seconds before returning
an error code. These same QoS settings on the data reader side would mean that up to 100 unread samples are queued
by the framework before any are rejected. Rejected samples are dropped and the SampleRejectedStatus is updated.

2.9 Conditions and Listeners

2.9.1 Introduction

The DDS specification defines two separate mechanisms for notifying applications of DCPS communication status
changes. Most of the status types define a structure that contains information related to the change of status and can
be detected by the application using conditions or listeners. The different status types are described in Communication
Status Types.

Each entity type defines its own corresponding listener interface. Applications can implement this interface and then
attach their listener implementation to the entity. Each listener interface contains an operation for each status that can be
reported for that entity. The listener is asynchronously called back with the appropriate operation whenever a qualifying
status change occurs. Details of the different listener types are discussed in Listeners.

Conditions are used in conjunction with Wait Sets to let applications synchronously wait on events. The basic usage
pattern for conditions involves creating the condition objects, attaching them to a wait set, and then waiting on the wait
set until one of the conditions is triggered. The result of wait tells the application which conditions were triggered,
allowing the application to take the appropriate actions to get the corresponding status information. Conditions are
described in greater detail in Conditions.

2.9. Conditions and Listeners 135



OpenDDS, Release 3.28.1

2.9.2 Communication Status Types

Each status type is associated with a particular entity type. This section is organized by the entity types, with the
corresponding statuses described in subsections under the associated entity type.

Most of the statuses below are plain communication statuses. The exceptions are DATA_ON_READERS and
DATA_AVAILABLE which are read statuses. Plain communication statuses define an IDL data structure. Their cor-
responding section below describes this structure and its fields. The read statuses are simple notifications to the appli-
cation which then reads or takes the samples as desired.

Incremental values in the status data structure report a change since the last time the status was accessed. A status is
considered accessed when a listener is called for that status or the status is read from its entity.

Fields in the status data structure with a type of InstanceHandle_t identify an entity by the instance handle used for
that entity in the built-in topics.

Topic Status Types

Inconsistent Topic Status

The INCONSISTENT_TOPIC status indicates that the topic being registered has different characteristics than an existing
topic with the same name. Typically, the existing topic may have a different type associated with it. The IDL associated
with the Inconsistent Topic Status is listed below:

struct InconsistentTopicStatus {
long total_count;
long total_count_change;

};

The total_count value is the cumulative count of topics that have been reported as inconsistent. The
total_count_change value is the incremental count of inconsistent topics since the last time this status was accessed.

Subscriber Status Types

Data On Readers Status

The DATA_ON_READERS status indicates that new data is available on some of the data readers associated with the
subscriber. This status is considered a read status and does not define an IDL structure. Applications receiving this
status can call get_datareaders() on the subscriber to get the set of data readers with data available.

Data Reader Status Types

Sample Rejected Status

The SAMPLE_REJECTED status indicates that a sample received by the data reader has been rejected. The IDL associated
with the Sample Rejected Status is listed below:

enum SampleRejectedStatusKind {
NOT_REJECTED,
REJECTED_BY_INSTANCES_LIMIT,
REJECTED_BY_SAMPLES_LIMIT,
REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT

(continues on next page)

136 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

};

struct SampleRejectedStatus {
long total_count;
long total_count_change;
SampleRejectedStatusKind last_reason;
InstanceHandle_t last_instance_handle;

};

The total_count value is the cumulative count of samples that have been reported as rejected. The
total_count_change value is the incremental count of rejected samples since the last time this status was accessed.
The last_reason value is the reason the most recently rejected sample was rejected. The last_instance_handle
value indicates the instance of the last rejected sample.

Liveliness Changed Status

The LIVELINESS_CHANGED status indicates that there have been liveliness changes for one or more data writers that
are publishing instances for this data reader. The IDL associated with the Liveliness Changed Status is listed below:

struct LivelinessChangedStatus {
long alive_count;
long not_alive_count;
long alive_count_change;
long not_alive_count_change;
InstanceHandle_t last_publication_handle;

};

The alive_count value is the total number of data writers currently active on the topic this data reader is reading.
The not_alive_count value is the total number of data writers writing to the data reader’s topic that are no longer
asserting their liveliness. The alive_count_change value is the change in the alive count since the last time the status
was accessed. The not_alive_count_change value is the change in the not alive count since the last time the status
was accessed. The last_publication_handle is the handle of the last data writer whose liveliness has changed.

Requested Deadline Missed Status

The REQUESTED_DEADLINE_MISSED status indicates that the deadline requested via the Deadline QoS policy was not
respected for a specific instance. The IDL associated with the Requested Deadline Missed Status is listed below:

struct RequestedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

};

The total_count value is the cumulative count of missed requested deadlines that have been reported. The
total_count_change value is the incremental count of missed requested deadlines since the last time this status
was accessed. The last_instance_handle value indicates the instance of the last missed deadline.

2.9. Conditions and Listeners 137



OpenDDS, Release 3.28.1

Requested Incompatible QoS Status

The REQUESTED_INCOMPATIBLE_QOS status indicates that one or more qos policy values that were requested by a local
DataReader were incompatible with what was offered by a DataWriter. See Changing QoS Policies for details. The
IDL associated with the Requested Incompatible QoS Status is listed below:

struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;

};

typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct RequestedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

};

The total_count value is the cumulative count of times data writers with incompatible QoS have been reported. The
total_count_change value is the incremental count of incompatible data writers since the last time this status was
accessed. The last_policy_id value identifies one of the QoS policies that was incompatible in the last incompati-
bility detected. The policies value is a sequence of values that indicates the total number of incompatibilities that have
been detected for each QoS policy.

Data Available Status

The DATA_AVAILABLE status indicates that samples are available on the data writer. This status is considered a read sta-
tus and does not define an IDL structure. Applications receiving this status can use the various take and read operations
on the data reader to retrieve the data.

Sample Lost Status

The SAMPLE_LOST status indicates that a sample has been lost and never received by the data reader. The IDL associated
with the Sample Lost Status is listed below:

struct SampleLostStatus {
long total_count;
long total_count_change;

};

The total_count value is the cumulative count of samples reported as lost. The total_count_change value is the
incremental count of lost samples since the last time this status was accessed.

138 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Subscription Matched Status

The SUBSCRIPTION_MATCHED status indicates that either a compatible data writer has been matched or a previously
matched data writer has ceased to be matched. The IDL associated with the Subscription Matched Status is listed
below:

struct SubscriptionMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_publication_handle;

};

The total_count value is the cumulative count of data writers that have compatibly matched this data reader.
The total_count_change value is the incremental change in the total count since the last time this status was
accessed. The current_count value is the current number of data writers matched to this data reader. The
current_count_change value is the change in the current count since the last time this status was accessed. The
last_publication_handle value is a handle for the last data writer matched.

Data Writer Status Types

Liveliness Lost Status

The LIVELINESS_LOST status indicates that the liveliness that the data writer committed through its Liveliness QoS
has not been respected. This means that any connected data readers will consider this data writer no longer active.The
IDL associated with the Liveliness Lost Status is listed below:

struct LivelinessLostStatus {
long total_count;
long total_count_change;

};

The total_count value is the cumulative count of times that an alive data writer has become not alive. The
total_count_change value is the incremental change in the total count since the last time this status was accessed.

Offered Deadline Missed Status

The OFFERED_DEADLINE_MISSED status indicates that the deadline offered by the data writer has been missed for one
or more instances. The IDL associated with the Offered Deadline Missed Status is listed below:

struct OfferedDeadlineMissedStatus {
long total_count;
long total_count_change;
InstanceHandle_t last_instance_handle;

};

The total_count value is the cumulative count of times that deadlines have been missed for an instance. The
total_count_change value is the incremental change in the total count since the last time this status was accessed.
The last_instance_handle value indicates the last instance that has missed a deadline.

2.9. Conditions and Listeners 139



OpenDDS, Release 3.28.1

Offered Incompatible QoS Status

The OFFERED_INCOMPATIBLE_QOS status indicates that one or more qos policy values offered by a local DataWriter
were incompatible with what was requested by a DataReader. See Changing QoS Policies for details. The IDL asso-
ciated with the Offered Incompatible QoS Status is listed below:

struct QosPolicyCount {
QosPolicyId_t policy_id;
long count;

};
typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct OfferedIncompatibleQosStatus {
long total_count;
long total_count_change;
QosPolicyId_t last_policy_id;
QosPolicyCountSeq policies;

};

The total_count value is the cumulative count of times that data readers with incompatible QoS have been found.
The total_count_change value is the incremental change in the total count since the last time this status was ac-
cessed. The last_policy_id value identifies one of the QoS policies that was incompatible in the last incompatibility
detected. The policies value is a sequence of values that indicates the total number of incompatibilities that have
been detected for each QoS policy.

Publication Matched Status

The PUBLICATION_MATCHED status indicates that either a compatible data reader has been matched or a previously
matched data reader has ceased to be matched. The IDL associated with the Publication Matched Status is listed
below:

struct PublicationMatchedStatus {
long total_count;
long total_count_change;
long current_count;
long current_count_change;
InstanceHandle_t last_subscription_handle;

};

The total_count value is the cumulative count of data readers that have compatibly matched this data writer.
The total_count_change value is the incremental change in the total count since the last time this status was
accessed. The current_count value is the current number of data readers matched to this data writer. The
current_count_change value is the change in the current count since the last time this status was accessed. The
last_subscription_handle value is a handle for the last data reader matched.

140 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Budget Exceeded Status

This is an OpenDDS-specific listener extension allows for reporting delays in excess of the Latency Budget QoS. The
OpenDDS::DCPS::DataReaderListener interface has an additional operation for notification that samples were re-
ceived with a measured transport delay greater than the latency budget policy duration. The IDL for this method is:

struct BudgetExceededStatus {
long total_count;
long total_count_change;
DDS::InstanceHandle_t last_instance_handle;

};

void on_budget_exceeded(
in DDS::DataReader reader,
in BudgetExceededStatus status);

To use the extended listener callback you will need to derive the listener implementation from the extended interface,
as shown in the following code fragment:

class DataReaderListenerImpl
: public virtual OpenDDS::DCPS::LocalObject<OpenDDS::DCPS::DataReaderListener>

{
void on_budget_exceeded(
DDS::DataReader* reader,
const OpenDDS::DCPS::BudgetExceededStatus& status)

{
}

Then you must provide a non-null implementation for the on_budget_exceeded() operation. Note that you will need
to provide empty implementations for the following extended operations as well:

void on_subscription_disconnected(
DDS::DataReader* reader,
const OpenDDS::DCPS::SubscriptionDisconnectedStatus& status)

{
}

void on_subscription_reconnected(
DDS::DataReader* reader,
const OpenDDS::DCPS::SubscriptionReconnectedStatus& status)

{
}

void on_subscription_lost(
DDS::DataReader* reader,
const OpenDDS::DCPS::SubscriptionLostStatus& status)

{
}

OpenDDS also makes the summary latency statistics available via an extended interface of the data reader. This ex-
tended interface is located in the OpenDDS::DCPS module and the IDL is defined as:

struct LatencyStatistics {
GUID_t publication;

(continues on next page)

2.9. Conditions and Listeners 141



OpenDDS, Release 3.28.1

(continued from previous page)

unsigned long n;
double maximum;
double minimum;
double mean;
double variance;

};

typedef sequence<LatencyStatistics> LatencyStatisticsSeq;

local interface DataReaderEx : DDS::DataReader {
/// Obtain a sequence of statistics summaries.
void get_latency_stats(inout LatencyStatisticsSeq stats);

/// Clear any intermediate statistical values.
void reset_latency_stats();

/// Statistics gathering enable state.
attribute boolean statistics_enabled;

};

To gather this statistical summary data you will need to use the extended interface. You can do so simply by dynamically
casting the OpenDDS data reader pointer and calling the operations directly. In the following example, we assume that
reader is initialized correctly by calling DDS::Subscriber::create_datareader():

DDS::DataReader_var reader;
// ...

// To start collecting new data.
dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->

reset_latency_stats();
dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
statistics_enabled(true);

// ...

// To collect data.
OpenDDS::DCPS::LatencyStatisticsSeq stats;
dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
get_latency_stats(stats);

for (unsigned long i = 0; i < stats.length(); ++i) {
std::cout << "stats[" << i << "]:" << std::endl;
std::cout << " n = " << stats[i].n << std::endl;
std::cout << " max = " << stats[i].maximum << std::endl;
std::cout << " min = " << stats[i].minimum << std::endl;
std::cout << " mean = " << stats[i].mean << std::endl;
std::cout << " variance = " << stats[i].variance << std::endl;

}

142 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.9.3 Listeners

Each entity defines its own listener interface based on the statuses it can report. Any entity’s listener interface also
inherits from the listeners of its owned entities, allowing it to handle statuses for owned entities as well. For example,
a subscriber listener directly defines an operation to handle Data On Readers statuses and inherits from the data reader
listener as well.

Each status operation takes the general form of on_<status_name>(<entity>, <status_struct>), where
<status_name> is the name of the status being reported, <entity> is a reference to the entity the status is reported
for, and <status_struct> is the structure with details of the status. Read statuses omit the second parameter. For
example, here is the operation for the Sample Lost status:

void on_sample_lost(in DataReader the_reader, in SampleLostStatus status);

Listeners can either be passed to the factory function used to create their entity or explicitly set by calling
set_listener() on the entity after it is created. Both of these functions also take a status mask as a parameter.
The mask indicates which statuses are enabled in that listener. Mask bit values for each status are defined in DdsD-
cpsInfrastructure.idl:

module DDS {
typedef unsigned long StatusKind;
typedef unsigned long StatusMask; // bit-mask StatusKind

const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS= 0x0001 << 6;
const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;

};

Simply do a bit-wise “or” of the desired status bits to construct a mask for your listener. Here is an example of attaching
a listener to a data reader (for just Data Available statuses):

DDS::DataReaderListener_var listener (new DataReaderListenerImpl);
// Create the Datareader
DDS::DataReader_var dr = sub->create_datareader(
topic,
DATAREADER_QOS_DEFAULT,
listener,
DDS::DATA_AVAILABLE_STATUS);

Here is an example showing how to change the listener using set_listener():

dr->set_listener(listener,
DDS::DATA_AVAILABLE_STATUS | DDS::LIVELINESS_CHANGED_STATUS);

When a plain communication status changes, OpenDDS invokes the most specific relevant listener operation. This

2.9. Conditions and Listeners 143



OpenDDS, Release 3.28.1

means, for example, that a data reader’s listener would take precedence over the subscriber’s listener for statuses related
to the data reader.

A common “gotcha” when using set_listener is that the listener is not invoked immediately. Instead, the listener will
be invoked for the next status change. Consequently, usages of set_listener should 1) invoke the listener manually
after calling set_listener and 2) ensure that the listener methods are thread safe.

The following sections define the different listener interfaces. For more details on the individual statuses, see Commu-
nication Status Types.

Topic Listener

interface TopicListener : Listener {
void on_inconsistent_topic(in Topic the_topic,

in InconsistentTopicStatus status);
};

Data Writer Listener

interface DataWriterListener : Listener {
void on_offered_deadline_missed(in DataWriter writer,

in OfferedDeadlineMissedStatus status);
void on_offered_incompatible_qos(in DataWriter writer,

in OfferedIncompatibleQosStatus status);
void on_liveliness_lost(in DataWriter writer,

in LivelinessLostStatus status);
void on_publication_matched(in DataWriter writer,

in PublicationMatchedStatus status);
};

Publisher Listener

interface PublisherListener : DataWriterListener {
};

Data Reader Listener

interface DataReaderListener : Listener {
void on_requested_deadline_missed(in DataReader the_reader,

in RequestedDeadlineMissedStatus status);
void on_requested_incompatible_qos(in DataReader the_reader,

in RequestedIncompatibleQosStatus status);
void on_sample_rejected(in DataReader the_reader,

in SampleRejectedStatus status);
void on_liveliness_changed(in DataReader the_reader,

in LivelinessChangedStatus status);
void on_data_available(in DataReader the_reader);
void on_subscription_matched(in DataReader the_reader,

in SubscriptionMatchedStatus status);
(continues on next page)

144 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

void on_sample_lost(in DataReader the_reader,
in SampleLostStatus status);

};

Subscriber Listener

interface SubscriberListener : DataReaderListener {
void on_data_on_readers(in Subscriber the_subscriber);

};

Domain Participant Listener

interface DomainParticipantListener : TopicListener,
PublisherListener,
SubscriberListener {

};

2.9.4 Conditions

The DDS specification defines four types of condition:

• Status Condition

• Read Condition

• Query Condition

• Guard Condition

Status Condition

Each entity has a status condition object associated with it and a get_statuscondition() operation that lets applica-
tions access the status condition. Each condition has a set of enabled statuses that can trigger that condition. Attaching
one or more conditions to a wait set allows application developers to wait on the condition’s status set. Once an enabled
status is triggered, the wait call returns from the wait set and the developer can query the relevant status condition on
the entity. Querying the status condition resets the status.

Status Condition Example

This example enables the Offered Incompatible QoS status on a data writer, waits for it, and then queries it when it
triggers. The first step is to get the status condition from the data writer, enable the desired status, and attach it to a wait
set:

DDS::StatusCondition_var cond = data_writer->get_statuscondition();
cond->set_enabled_statuses(DDS::OFFERED_INCOMPATIBLE_QOS_STATUS);

DDS::WaitSet_var ws = new DDS::WaitSet;
ws->attach_condition(cond);

2.9. Conditions and Listeners 145



OpenDDS, Release 3.28.1

Now we can wait ten seconds for the condition:

DDS::ConditionSeq active;
DDS::Duration_t ten_seconds = {10, 0};
int result = ws->wait(active, ten_seconds);

The result of this operation is either a timeout or a set of triggered conditions in the active sequence:

if (result == DDS::RETCODE_TIMEOUT) {
cout << "Wait timed out" << std::endl;

} else if (result == DDS::RETCODE_OK) {
DDS::OfferedIncompatibleQosStatus incompatibleStatus;
data_writer->get_offered_incompatible_qos(incompatibleStatus);
// Access status fields as desired...

}

Developers have the option of attaching multiple conditions to a single wait set as well as enabling multiple statuses
per condition.

Additional Condition Types

The DDS specification also defines three other types of conditions: read conditions, query conditions, and guard condi-
tions. These conditions do not directly involve the processing of statuses but allow the integration of other activities into
the condition and wait set mechanisms. These are other conditions are briefly described here. For more information
see the DDS specification or the OpenDDS tests in tests/.

Read Conditions

Read conditions are created using the data reader and the same masks that are passed to the read and take operations.
When waiting on this condition, it is triggered whenever samples match the specified masks. Those samples can then
be retrieved using the read_w_condition() and take_w_condition() operations which take the read condition as
a parameter.

Query Conditions

Query conditions are a specialized form of read conditions that are created with a limited form of an SQL-like query.
This allows applications to filter the data samples that trigger the condition and then are read use the normal read
condition mechanisms. See Query Condition for more information about query conditions.

Guard Conditions

The guard condition is a simple interface that allows the application to create its own condition object and trigger it
when application events (external to OpenDDS) occur.

146 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/


OpenDDS, Release 3.28.1

2.10 Content-Subscription Profile

2.10.1 Introduction

The Content-Subscription Profile of DDS consists of three features which enable a data reader’s behavior to be influ-
enced by the content of the data samples it receives. These three features are:

• Content-Filtered Topic

• Query Condition

• Multi Topic

The content-filtered topic and multi topic interfaces inherit from the TopicDescription interface (and not from the
Topic interface, as the names may suggest).

Content-filtered topic and query condition allow filtering (selection) of data samples using a SQL-like parameterized
query string. Additionally, query condition allows sorting the result set returned from a data reader’s read() or take()
operation. Multi topic also has this selection capability as well as the ability to aggregate data from different data writers
into a single data type and data reader.

If you are not planning on using the Content-Subscription Profile features in your application, you can configure
OpenDDS to remove support for it at build time (Content-Subscription Profile).

2.10.2 Content-Filtered Topic

The domain participant interface contains operations for creating and deleting a content-filtered topic. Creating a
content-filtered topic requires the following parameters:

• Name

Assigns a name to this content-filtered topic which could later be used with the lookup_topicdescription()
operation.

• Related topic

Specifies the topic that this content-filtered topic is based on. This is the same topic that matched data writers
will use to publish data samples.

• Filter expression

An SQL-like expression which defines the subset of samples published on the related topic that should be received
by the content-filtered topic’s data readers.

• Expression parameters

The filter expression can contain parameter placeholders. This argument provides initial values for those param-
eters. The expression parameters can be changed after the content-filtered topic is created (the filter expression
cannot be changed).

Once the content-filtered topic has been created, it is used by the subscriber’s create_datareader() operation to
obtain a content-filtering data reader. This data reader is functionally equivalent to a normal data reader except that
incoming data samples which do not meet the filter expression’s criteria are dropped.

Filter expressions are first evaluated at the publisher so that data samples which would be ignored by the sub-
scriber can be dropped before even getting to the transport. This feature can be turned off by setting [common]
DCPSPublisherContentFilter to 0. The behavior of non-default Deadline QoS or Liveliness QoS policies may
be affected by this policy. Special consideration must be given to how the “missing” samples impact the QoS behavior,
see the document in docs/design/CONTENT_SUBSCRIPTION.

2.10. Content-Subscription Profile 147

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/design/CONTENT_SUBSCRIPTION


OpenDDS, Release 3.28.1

Note: RTPS/UDP Transport does not always do Writer-side filtering. It does not currently implement transport level
filtering, but may be able to filter above the transport layer.

Filter Expressions

The formal grammar for filter expressions is defined in DDS v1.4 Annex B - Syntax for Queries and Filters. This
section provides an informal summary of that grammar. Query expressions and topic expressions are also defined in
the DDS specification.

Filter expressions are combinations of one or more predicates. Each predicate is a logical expression taking one of two
forms:

• <arg1> <RelOp> <arg2>

• – arg1 and arg2 are arguments which may be either a literal value (integer, character, floating-point, string,
or enumeration), a parameter placeholder of the form %n (where n is a zero-based index into the parameter
sequence), or a field reference.

– At least one of the arguments must be a field reference, which is the name of an IDL struct field, optionally
followed by any number of . and another field name to represent nested structures.

– RelOp is a relational operator from the list: =, >, >=, <, <=, <>, and like. like is a wildcard match using
% to match any number of characters and _ to match a single character.

– Examples of this form of predicate include: a = 'z', b <> 'str', c < d, e = 'enumerator', f >=
3.14e3, 27 > g, h <> i, j.k.l like %0

• <arg1> [NOT] BETWEEN <arg2> AND <arg3>

• – In this form, argument 1 must be a field reference and arguments 2 and 3 must each be a literal value or
parameter placeholder.

Any number of predicates can be combined through the use of parenthesis and the Boolean operators AND, OR, and NOT
to form a filter expression.

Expression Parameters

Expression parameters allow more flexibility since the filter can effectively change at runtime. To use expression
parameters, add parameter placeholders in the filter expression wherever a literal would be used. For example, an
expression to select all samples that have a string field with a fixed value (m = 'A') could instead use a placeholder
which would be written as m = %0. Placeholders consist of a percent sign followed by a decimal integer between 0 and
99 inclusive.

Using a filter that contains placeholders requires values for each placeholder which is used in the expression to
be provided by the application in the corresponding index of the expression parameters sequence (placeholder
%0 is sequence[0]). The application can set the parameter sequence when the content-filtered topic is created
(create_contentfilteredtopic) or after it already exists by using set_expression_parameters. A valid value
for each used placeholder must be in the parameters sequence whenever the filter is evaluated, for example when a data
reader using the content-filtered topic is enabled.

The type used for the parameters sequence in the DDS-DCPS API is a sequence of strings. The application must format
this string based on how the parameter is used:

• For a number (integer or floating point), provide the decimal representation in the same way it would appear as
a C++ or Java literal.

• For a character or string, provide the character(s) directly without quoting

148 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS/1.4/PDF#G7.1007674


OpenDDS, Release 3.28.1

• For an enumerated type, provide one of the enumerators as if it was a string

Filtering and Dispose/Unregister Samples

DataReaders without filtering can see samples with the valid_data field of SampleInfo set to false. This hap-
pens when the matching DataWriter disposes or unregisters the instance. Content filtering (whether achieved through
Content-Filtered Topics, Query Conditions, or Multi Topics) will filter such samples when the filter expression explic-
itly uses key fields. Filter expressions that don’t meet that criteria will result in no such samples passing the filter.

Content-Filtered Topic Example

The code snippet below creates a content-filtered topic for the Message type. First, here is the IDL for Message:

module Messenger {
@topic
struct Message {
long id;

};
};

Next we have the code that creates the data reader:

CORBA::String_var type_name = message_type_support->get_type_name();
DDS::Topic_var topic = dp->create_topic("MyTopic",

type_name,
TOPIC_QOS_DEFAULT, 0, 0);

DDS::ContentFilteredTopic_var cft =
participant->create_contentfilteredtopic("MyTopic-Filtered",

topic,
"id > 1",
StringSeq());

DDS::DataReader_var dr =
subscriber->create_datareader(cft,

DATAREADER_QOS_DEFAULT, 0, 0);

The data reader dr will only receive samples that have values of id greater than 1.

2.10.3 Query Condition

The query condition interface inherits from the read condition interface, therefore query conditions have all of the
capabilities of read conditions along with the additional capabilities described in this section. One of those inherited
capabilities is that the query condition can be used like any other condition with a wait set (Conditions).

The DataReader interface contains operations for creating (create_querycondition) and deleting
(delete_readcondition) a query condition. Creating a query condition requires the following parameters:

• Sample, view, and instance state masks

These are the same state masks that would be passed to create_readcondition(), read(), or take().

• Query expression

An SQL-like expression (see Query Expressions) describing a subset of samples which cause the condition
to be triggered. This same expression is used to filter the data set returned from a read_w_condition() or
take_w_condition() operation. It may also impose a sort order (ORDER BY) on that data set.

2.10. Content-Subscription Profile 149



OpenDDS, Release 3.28.1

• Query parameters

The query expression can contain parameter placeholders. This argument provides initial values for those pa-
rameters. The query parameters can be changed after the query condition is created (the query expression cannot
be changed).

A particular query condition can be used with a wait set (attach_condition), with a
data reader (read_w_condition, take_w_condition, read_next_instance_w_condition,
take_next_instance_w_condition), or both. When used with a wait set, the ORDER BY clause has no ef-
fect on triggering the wait set. When used with a data reader’s read*() or take*() operation, the resulting data set
will only contain samples which match the query expression and they will be ordered by the ORDER BY fields, if an
ORDER BY clause is present.

Query Expressions

Query expressions are a super set of filter expressions (Filter Expressions). Following the filter expression, the query
expression can optionally have an ORDER BY keyword followed by a comma-separated list of field references. If the
ORDER BY clause is present, the filter expression may be empty. The following strings are examples of query expres-
sions:

• m > 100 ORDER BY n

• ORDER BY p.q, r, s.t.u

• NOT v LIKE 'z%'

Query expressions can use parameter placeholders in the same way that filter expressions (for content-filtered topics)
use them. See Expression Parameters for details.

Query Condition Example

The following code snippet creates and uses a query condition for a type that uses struct Message with field key (an
integral type).

DDS::QueryCondition_var dr_qc =
dr->create_querycondition(DDS::ANY_SAMPLE_STATE,

DDS::ANY_VIEW_STATE,
DDS::ALIVE_INSTANCE_STATE,
"key > 1",
DDS::StringSeq());

DDS::WaitSet_var ws = new DDS::WaitSet;
ws->attach_condition(dr_qc);
DDS::ConditionSeq active;
DDS::Duration_t three_sec = {3, 0};
DDS::ReturnCode_t ret = ws->wait(active, three_sec);
// error handling not shown

ws->detach_condition(dr_qc);
MessageDataReader_var mdr = MessageDataReader::_narrow(dr);
MessageSeq data;
DDS::SampleInfoSeq infoseq;
ret = mdr->take_w_condition(data, infoseq, DDS::LENGTH_UNLIMITED, dr_qc);
// error handling not shown

dr->delete_readcondition(dr_qc);

Any sample received with key <= 1 would neither trigger the condition (to satisfy the wait) nor be returned in the
data sequence from take_w_condition().

150 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.10.4 Multi Topic

Multi topic is a more complex feature than the other two Content-Subscription features, therefore describing it requires
some new terminology.

The MultiTopic interface inherits from the TopicDescription interface, just like ContentFilteredTopic does.
A data reader created for the multi topic is known as a “multi topic data reader.” A multi topic data reader receives
samples belonging to any number of regular topics. These topics are known as its “constituent topics.” The multi topic
has a DCPS data type known as the “resulting type.” The multi topic data reader implements the type-specific data
reader interface for the resulting type. For example, if the resulting type is Message, then the multi topic data reader
can be narrowed to the MessageDataReader interface.

The multi topic’s topic expression (Topic Expressions) describes how the distinct fields of the incoming data (on the
constituent topics) are mapped to the fields of the resulting type.

The domain participant interface contains operations for creating and deleting a multi topic. Creating a multi topic
requires the following parameters:

• Name

Assigns a name to this multi topic which could later be used with the lookup_topicdescription() operation.

• Type name

Specifies the resulting type of the multi topic. This type must have its type support registered before creating the
multi topic.

• Topic expression (also known as subscription expression)

An SQL-like expression (Topic Expressions) which defines the mapping of constituent topic fields to resulting
type fields. It can also specify a filter (WHERE clause).

• Expression parameters

The topic expression can contain parameter placeholders. This argument provides initial values for those param-
eters. The expression parameters can be changed after the multi topic is created (the topic expression cannot be
changed).

Once the multi topic has been created, it is used by the subscriber’s create_datareader() operation to obtain a multi
topic data reader. This data reader is used by the application to receive the constructed samples of the resulting type.
The manner in which these samples are constructed is described in How Resulting Samples are Constructed.

Topic Expressions

Topic expressions use a syntax that is very similar to a complete SQL query:

SELECT <aggregation> FROM <selection> [WHERE <condition>]

• The aggregation can be either a * or a comma separated list of field specifiers. Each field specifier has the
following syntax:

• – <constituent_field> [[AS] <resulting_field>]]

– constituent_field is a field reference (Filter Expressions) to a field in one of the constituent topics
(which topic is not specified).

– The optional resulting_field is a field reference to a field in the resulting type. If present, the
resulting_field is the destination for the constituent_field in the constructed sample. If absent, the
constituent_field data is assigned to a field with the same name in the resulting type. The optional AS
has no effect.

2.10. Content-Subscription Profile 151



OpenDDS, Release 3.28.1

– If a * is used as the aggregation, each field in the resulting type is assigned the value from a same-named
field in one of the constituent topic types.

• The selection lists one or more constituent topic names. Topic names are separated by a join keyword (all 3
join keywords are equivalent):

• – <topic> [{NATURAL INNER | NATURAL | INNER NATURAL} JOIN <topic>]...

– Topic names must contain only letters, digits, and dashes (but may not start with a digit).

– The natural join operation is commutative and associative, thus the order of topics has no impact.

– The semantics of the natural join are that any fields with the same name are treated as “join keys” for the
purpose of combining data from the topics in which those keys appear. The join operation is described in
more detail in subsequent sections.

• The condition has the exact same syntax and semantics as the filter expression (Filter Expressions). Field refer-
ences in the condition must match field names in the resulting types, not field names in the constituent topic types.
The condition in the topic expression can use parameter placeholders in the same way that filter expressions (for
content-filtered topics) use them. See Expression Parameters for details.

Usage Notes

Join Keys and DCPS Data Keys

The concept of DCPS data keys (@key) has already been discussed in Defining Data Types with IDL. Join keys for the
multi topic are a distinct but related concept.

A join key is any field name that occurs in the struct for more than one constituent topic. The existence of the join
key enforces a constraint on how data samples of those topics are combined into a constructed sample (How Resulting
Samples are Constructed). Specifically, the value of that key must be equal for those data samples from the constituent
topics to be combined into a sample of the resulting type. If multiple join keys are common to the same two or more
topics, the values of all keys must be equal in order for the data to be combined.

The DDS specification requires that join key fields have the same type. Additionally, OpenDDS imposes two require-
ments on how the IDL must define DCPS data keys to work with multi topics:

1. Each join key field must also be a DCPS data key for the types of its constituent topics.

2. The resulting type must contain each of the join keys, and those fields must be DCPS data keys for the resulting
type.

The example in IDL and Topic Expression meets both of these requirements. Note that it is not necessary to list the
join keys in the aggregation (SELECT clause).

How Resulting Samples are Constructed

Although many concepts in multi topic are borrowed from the domain of relational databases, a real-time middleware
such as DDS is not a database. Instead of processing a batch of data at a time, each sample arriving at the data reader
from one of the constituent topics triggers multi-topic-specific processing that results in the construction of zero, one,
or many samples of the resulting type and insertion of those constructed samples into the multi topic data reader.

Specifically, the arrival of a sample on constituent topic A with type TA results in the following steps in the multi topic
data reader (this is a simplification of the actual algorithm):

1. A sample of the resulting type is constructed, and fields from TA which exist in the resulting type and are in the
aggregation (or are join keys) are copied from the incoming sample to the constructed sample.

152 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2. Each topic B which has at least one join key in common with A is considered for a join operation. The join reads
READ_SAMPLE_STATE samples on topic B with key values matching those in the constructed sample. The result
of the join may be zero, one, or many samples. Fields from TB are copied to the resulting sample as described in
step 1.

3. Join keys of topic B (connecting it to other topics) are then processed as described in step 2, and this continues
to all other topics that are connected by join keys.

4. Any constituent topics that were not visited in steps 2 or 3 are processed as “cross joins” (also known as cross-
product joins). These are joins with no key constraints.

5. If any constructed samples result, they are inserted into the multi topic data reader’s internal data structures as if
they had arrived via the normal mechanisms. Application listeners and conditions are notified.

Use with Subscriber Listeners

If the application has registered a subscriber listener for read condition status changes (DATA_ON_READERS_STATUS)
with the same subscriber that also contains a multi topic, then the application must invoke notify_datareaders()
in its implementation of the subscriber listener’s on_data_on_readers() callback method. This requirement is nec-
essary because the multi topic internally uses data reader listeners, which are preempted when a subscriber listener is
registered.

Multi Topic Example

This example is based on the example topic expression used in Annex A section A.3 of the DDS specification. It
illustrates how the properties of the multi topic join operation can be used to correlate data from separate topics (and
possibly distinct publishers).

IDL and Topic Expression

Often times we will use the same string as both the topic name and topic type. In this example we will use distinct
strings for the type names and topic names, in order to illustrate when each is used.

Here is the IDL for the constituent topic data types:

@topic
struct LocationInfo {
@key unsigned long flight_id;
long x;
long y;
long z;

};

@topic
struct PlanInfo {
@key unsigned long flight_id;
string flight_name;
string tailno;

};

Note that the names and types of the key fields match, so they are designed to be used as join keys. The resulting type
(below) also has that key field.

Next we have the IDL for the resulting data type:

2.10. Content-Subscription Profile 153



OpenDDS, Release 3.28.1

@topic
struct Resulting {
@key unsigned long flight_id;
string flight_name;
long x;
long y;
long height;

};

Based on this IDL, the following topic expression can be used to combine data from a topic Location which uses type
LocationInfo and a topic FlightPlan which uses type PlanInfo:

SELECT flight_name, x, y, z AS height FROM Location NATURAL JOIN FlightPlan WHERE height
→˓< 1000 AND x <23

Taken together, the IDL and the topic expression describe how this multi topic will work. The multi topic data reader
will construct samples which belong to instances keyed by flight_id. The instance of the resulting type will only
come into existence once the corresponding instances are available from both the Location and FlightPlan topics.
Some other domain participant or participants within the domain will publish data on those topics, and they don’t even
need to be aware of one another. Since they each use the same flight_id to refer to flights, the multi topic can
correlate the incoming data from disparate sources.

Creating the Multi Topic Data Reader

Creating a data reader for the multi topic consists of a few steps. First the type support for the resulting type is registered,
then the multi topic itself is created, followed by the data reader:

ResultingTypeSupport_var ts_res = new ResultingTypeSupportImpl;
ts_res->register_type(dp, "");
CORBA::String_var type_name = ts_res->get_type_name();
DDS::MultiTopic_var mt =
dp->create_multitopic("MyMultiTopic",

type_name,
"SELECT flight_name, x, y, z AS height "
"FROM Location NATURAL JOIN FlightPlan "
"WHERE height < 1000 AND x<23",

DDS::StringSeq());
DDS::DataReader_var dr =
sub->create_datareader(mt,

DATAREADER_QOS_DEFAULT,
NULL,
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

154 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Reading Data with the Multi Topic Data Reader

From an API perspective, the multi topic data reader is identical to any other typed data reader for the resulting type.
This example uses a wait set and a read condition in order to block until data is available.

DDS::WaitSet_var ws = new DDS::WaitSet;
DDS::ReadCondition_var rc =
dr->create_readcondition(DDS::ANY_SAMPLE_STATE,

DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

ws->attach_condition(rc);
DDS::Duration_t infinite = {DDS::DURATION_INFINITE_SEC,

DDS::DURATION_INFINITE_NSEC};
DDS::ConditionSeq active;
ws->wait(active, infinite); // error handling not shown
ws->detach_condition(rc);
ResultingDataReader_var res_dr = ResultingDataReader::_narrow(dr);
ResultingSeq data;
DDS::SampleInfoSeq info;
res_dr->take_w_condition(data, info, DDS::LENGTH_UNLIMITED, rc);

2.11 Built-in Topics

2.11.1 Introduction

In OpenDDS, built-in topics are created and published by default to exchange information about DDS participants
operating in the deployment. When OpenDDS is InfoRepo Discovery, the built-in topics are published by this service.
For RTPS Discovery, the internal OpenDDS implementation instantiated in a process populates the caches of the built-
In topic DataReaders.

The IDL struct BuiltinTopicKey_t is used by the built-in topics. This structure contains an array of 16 octets (bytes)
which corresponds to an InfoRepo identifier or a DDSI-RTPS GUID.

2.11.2 Built-in Topics for DCPSInfoRepo Configuration

When starting the DCPSInfoRepo a command line option of -NOBITS may be used to suppress publication of built-in
topics.

Four separate topics are defined for each domain. Each is dedicated to a particular entity (domain participant DCPSPar-
ticipant Topic, topic DCPSParticipant Topic, data writer DCPSPublication Topic, data reader DCPSSubscription Topic)
and publishes instances describing the state for each entity in the domain.

Subscriptions to built-in topics are automatically created for each domain participant. A participant’s support for built-
in topics can be toggled via the [common] DCPSBit configuration option. To view the built-in topic data, simply
obtain the built-in Subscriber and then use it to access the Data Reader for the built-in topic of interest. The Data
Reader can then be used like any other Data Reader.

See Built-in Topic Subscription Example for an example showing how to read from a built-in topic.

If you are not planning on using built-in topics in your application, you can configure OpenDDS to remove built-in
topic support at build time. Doing so can reduce the footprint of the core DDS library by up to 30%. See Disabling
the Building of Built-in Topic Support for information on disabling built-in topic support.

2.11. Built-in Topics 155



OpenDDS, Release 3.28.1

2.11.3 DCPSParticipant Topic

The DCPSParticipant topic publishes information about the Domain Participants of the Domain. Here is the IDL
that defines the structure published for this topic:

struct ParticipantBuiltinTopicData {
BuiltinTopicKey_t key;
UserDataQosPolicy user_data;

};

Each Domain Participant is defined by a unique key and is its own instance within this topic.

2.11.4 DCPSTopic Topic

Note: OpenDDS does not support this built-in topic when configured for RTPS Discovery.

The DCPSTopic topic publishes information about the topics in the domain. Here is the IDL that defines the structure
published for this topic:

struct TopicBuiltinTopicData {
BuiltinTopicKey_t key;
string name;
string type_name;
DurabilityQosPolicy durability;
QosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
TransportPriorityQosPolicy transport_priority;
LifespanQosPolicy lifespan;
DestinationOrderQosPolicy destination_order;
HistoryQosPolicy history;
ResourceLimitsQosPolicy resource_limits;
OwnershipQosPolicy ownership;
TopicDataQosPolicy topic_data;

};

Each topic is identified by a unique key and is its own instance within this built-in topic. The members above identify
the name of the topic, the name of the topic type, and the set of QoS policies for that topic.

2.11.5 DCPSPublication Topic

The DCPSPublication topic publishes information about the Data Writers in the Domain. Here is the IDL that defines
the structure published for this topic:

struct PublicationBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;

(continues on next page)

156 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;
OwnershipStrengthQosPolicy ownership_strength;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

};

Each Data Writer is assigned a unique key when it is created and defines its own instance within this topic. The fields
above identify the Domain Participant (via its key) that the Data Writer belongs to, the topic name and type, and the
various QoS policies applied to the Data Writer.

2.11.6 DCPSSubscription Topic

The DCPSSubscription topic publishes information about the Data Readers in the Domain. Here is the IDL that
defines the structure published for this topic:

struct SubscriptionBuiltinTopicData {
BuiltinTopicKey_t key;
BuiltinTopicKey_t participant_key;
string topic_name;
string type_name;
DurabilityQosPolicy durability;
DeadlineQosPolicy deadline;
LatencyBudgetQosPolicy latency_budget;
LivelinessQosPolicy liveliness;
ReliabilityQosPolicy reliability;
DestinationOrderQosPolicy destination_order;
UserDataQosPolicy user_data;
TimeBasedFilterQosPolicy time_based_filter;
PresentationQosPolicy presentation;
PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

};

Each Data Reader is assigned a unique key when it is created and defines its own instance within this topic. The fields
above identify the Domain Participant (via its key) that the Data Reader belongs to, the topic name and type, and the
various QoS policies applied to the Data Reader.

2.11. Built-in Topics 157



OpenDDS, Release 3.28.1

2.11.7 Built-in Topic Subscription Example

The following code uses a domain participant to get the built-in subscriber. It then uses the subscriber to get the Data
Reader for the DCPSParticipant topic and subsequently reads samples for that reader.

Subscriber_var bit_subscriber = participant->get_builtin_subscriber();
DDS::DataReader_var dr =
bit_subscriber->lookup_datareader(BUILT_IN_PARTICIPANT_TOPIC);

DDS::ParticipantBuiltinTopicDataDataReader_var part_dr =
DDS::ParticipantBuiltinTopicDataDataReader::_narrow(dr);

DDS::ParticipantBuiltinTopicDataSeq part_data;
DDS::SampleInfoSeq infos;
DDS::ReturnCode_t ret = part_dr->read(part_data, infos, 20,

DDS::ANY_SAMPLE_STATE,
DDS::ANY_VIEW_STATE,
DDS::ANY_INSTANCE_STATE);

// Check return status and read the participant data

The code for the other built-in topics is similar.

2.11.8 OpenDDS-specific Built-in Topics

OpenDDSParticipantLocation Topic

The built-in topic OpenDDSParticipantLocation is published by the DDSI-RTPS discovery implementation to give
applications visibility into the details of how each remote participant is connected over the network. If the RtpsRelay
(The RtpsRelay) and/or IETF ICE (Interactive Connectivity Establishment (ICE) for RTPS) are enabled, their usage
is reflected in the OpenDDSParticipantLocation topic data. The topic type ParticipantLocationBuiltinTopicData is
defined in dds/OpenddsDcpsExt.idl in the OpenDDS::DCPS module:

• guid (key) – The GUID of the remote participant. Also, a key into the DCPSParticipant topic.

• location – A bit-mask indicating which fields are populated.

• change_mask – A bit-mask indicating which fields changed.

• local_addr – SPDP address of the remote participant for a local connection.

• local_timestamp – Time that local_addr was set.

• ice_addr – SPDP address of the remote participant for an ICE connection.

• ice_timestamp – Time that ice_addr was set.

• relay_addr – SPDP address of the remote participant using the RtpsRelay.

• relay_timestamp – Time that relay_addr was set.

• local6_addr, local6_timestamp, ice6_addr, ice6_timestamp, relay6_addr, and relay6_timestamp
– Are the IPV6 equivalents.

• lease_duration – The remote participant’s [rtps_discovery] LeaseDuration

158 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/OpenddsDcpsExt.idl


OpenDDS, Release 3.28.1

OpenDDSConnectionRecord Topic

The built-in topic OpenDDSConnectionRecord is published by the DDSI-RTPS discovery implementation and
RTPS_UDP transport implementation to give applications visibility into the details of a participant’s connection to an
RtpsRelay instance. Security must be enabled in the build of OpenDDS (Building OpenDDS with Security Enabled)
to use this topic.

The topic type ConnectionRecord is defined in dds/OpenddsDcpsExt.idl in the OpenDDS::DCPS module:

• guid (key) – The GUID of the remote participant. Also, a key into the DCPSParticipant topic.

• address (key) – The address of the remote participant.

• protocol (key) – The method used to determine connectivity. Currently, “RtpsRelay:STUN” is the only sup-
ported protocol.

• latency – A measured round-trip latency for protocols that support it.

OpenDDSInternalThread Topic

The built-in topic OpenDDSInternalThread is published when OpenDDS is configured with [common]
DCPSThreadStatusInterval. When enabled, the DataReader for this built-in topic will report the status of threads
created and managed by OpenDDS within the current process. The timestamp associated with samples can be used to
determine the health (responsiveness) of the thread.

The topic type InternalThreadBuiltinTopicData is defined in dds/OpenddsDcpsExt.idl in the OpenDDS::DCPSmod-
ule:

• thread_id (key) – A string identifier for the thread.

• utilization – Estimated utilization of this thread (0.0-1.0).

2.12 Run-time Configuration

OpenDDS configuration is concerned with three main areas:

1. Common Configuration Properties – configure the behavior of DCPS entities at a global level. This allows
separately deployed processes in a computing environment to share common settings for the specified behavior
(e.g. all readers and writers should use RTPS discovery). See Common Configuration Properties for details.

2. Discovery Configuration Properties – configure the behavior of the discovery mechanism(s). OpenDDS sup-
ports multiple approaches for discovering and associating writers and readers as detailed in Discovery Configu-
ration.

3. Transport Configuration Properties – configure the transport framework which abstracts the transport layer
from the DCPS layer of OpenDDS. Each pluggable transport can be configured separately. See Transport Con-
figuration for details.

2.12. Run-time Configuration 159

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/OpenddsDcpsExt.idl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/OpenddsDcpsExt.idl


OpenDDS, Release 3.28.1

2.12.1 Configuration Approach

Most of OpenDDS is configured through a key-value store. Keys are strings that are converted to a canonical form before
being stored by 1) converting camel case to snake case, 2) capitalizing all alphabetic characters, 3) replacing all non-
alphanumeric characters with underscores, and 4) stripping leading, trailing, and duplicate underscores. For example,
the key !SectionInstance__PROPERTY is canonicalized into SECTION_INSTANCE_PROPERTY before being stored.
Values are stored as strings and converted to other types as necessary. The documentation for each key contains its
canonical name.

A key has the following parts:

1. section – The section describes the area of functionality that is being configured.

2. instance – (optional) The instance names a particular collection of configuration values. Configuration keys that
do not have an instance imply a singleton or global.

3. property – The property names a variable relative to the section and instance.

Sections, instances, and properties can contain underscores meaning that underscores are not used as delimiters to
separate the section, instance, and property. This ambiguity is resolved by the following rules:

• Sections are known by OpenDDS. For example, OpenDDS will look for RTPS Discovery instances under keys
prefixed by RTPS_DISCOVERY.

• Instances must be introduced by a special key-value pair where the value is prefixed by @. For example,
RTPS_DISCOVERY_MY_DISCOVERY=@MY_DISCOVERY introduces an instance named MY_DISCOVERY under the
RTPS_DISCOVERY section.

Suppose the configuration store contains the following key-pairs: RTPS_DISCOVERY_MY_DISCOVERY=@MY_DISCOVERY
and RTPS_DISCOVERY_MY_DISCOVERY_RESEND_PERIOD=5. In this case, the MY_DISCOVERY instance of
RTPS_DISCOVERY will have a RESEND_PERIOD with a value of 5 (seconds).

This table shows a list of the available configuration section types as they relate to the area of OpenDDS that they
configure.

Table 2: Configuration Sections

Focus Area Section Title
Global Settings [common]
Discovery Configuration [domain]
Configuring for InfoRepo
Discovery

[repository]

Configuring for RTPS Dis-
covery

[rtps_discovery]

Configuring for Static Dis-
covery

[endpoint]
[topic]
[datawriterqos]
[datareaderqos]
[publisherqos]
[subscriberqos]

Transport Configuration [config]
[transport]

Other [ice]

The configuration store can be populated in a number of ways:

• Environment variables

• Command-line arguments

160 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

• Configuration file(s)

• Specific and generic APIs

By default and for backwards compatibility, the different configuration mechanisms are processed in the following
order:

1. Environment variables

2. Command-line arguments (will overwrite configuration from environment variables)

3. Configuration file (will not overwrite configuration from environment variables or command-line arguments)

4. APIs called by the user (will overwrite existing configuration)

However, multiple configuration files can be processed by setting DCPS_SINGLE_CONFIG_FILE=0. This can
be done with an environment variable OPENDDS_DCPS_SINGLE_CONFIG_FILE=0 or a command-line argument
-DCPSSingleConfigFile 0. This causes the different configuration mechanisms to be processed in the following
order:

1. Environment variables

2. Command-line arguments and configuration files are processed sequentially and overwrite existing configuration

3. APIs called by the user (which also overwrite existing configuration)

Users can store configuration data for their applications in the configuration store. Users taking advantage of this
capability should use the section names of APP and USER which are reserved for this purpose.

Configuration with Environment Variables

OpenDDS reads environment variables that begin with OPENDDS_ to populate the configuration store. An environment
variable OPENDDS_KEY=VALUE causes KEY=VALUE to be saved in the configuration store. KEY is canonicalized before
being stored.

To set the ResendPeriod on an rtps_discovery instance named MyDiscovery to 5 seconds using environment
variables, one would set the following:

• OPENDDS_RTPS_DISCOVERY_MY_DISCOVERY=@MY_DISCOVERY

• OPENDDS_RTPS_DISCOVERY_MY_DISCOVERY_RESEND_PERIOD=5

Configuration with Command-line Arguments

This section describes the command-line arguments that are relevant to OpenDDS and how they are processed.
Command-line arguments are passed to the service participant singleton when initializing the domain participant fac-
tory. This is accomplished by using the TheParticipantFactoryWithArgs macro:

#include <dds/DCPS/Service_Participant.h>

int main(int argc, char* argv[])
{
DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

// ...
}

Command-line arguments are parsed in two phases. The following arguments are parse in the first phase:

1. [common] ORBLogFile

2.12. Run-time Configuration 161



OpenDDS, Release 3.28.1

2. [common] ORBVerboseLogging

3. -DCPSSingleConfigFile 0|1 - Enables/disables the legacy behavior of a single configuration file that is pro-
cessed after environment variables and command-line arguments and does not overwrite existing configuration
(default 1). When disabled, arguments processed in the second phase are processed as they are encountered and
overwrite existing configuration.

The following arguments are processed in the second phase:

1. -DCPSConfigFile <path> - Causes configuration to be read from the file indicated by <path>. It is processed
immediately if -DCPSSingleConfigFile 0 and deferred to the end of argument processing, otherwise.

2. -OpenDDSKEY VALUE - Causes KEY=VALUE to be saved in the configuration store. The key KEY is canonicalized
before being stored. To set the [rtps_discovery] ResendPeriod on an [rtps_discovery] instance named
MyDiscovery to 5 seconds using environment variables, one could use the following arguments:

• -OpenDDS_rtps_discovery_MyDiscovery @MY_DISCOVERY

• -OpenDDS_rtps_discovery_MyDiscovery_ResendPeriod 5

3. -DCPSx VALUE - Causes COMMON_DCPS_x=VALUE to be saved in the configuration store. The key
COMMON_DCPS_x is canonicalized before being stored.

4. -FederationX VALUE - Causes COMMON_FEDERATION_X=VALUE to be saved in the configuration store. The
key COMMON_FEDERATION_X is canonicalized before being stored.

Configuration with a File

The -DCPSConfigFile <path> argument described above causes OpenDDS to read configuration from a human-
readable ini-style text file. For example:

./publisher -DCPSConfigFile pub.ini

publisher -DCPSConfigFile pub.ini

For each of the section types with the exception of [common] and [ice], the syntax of a section header takes the form
of [<section_type>/<instance_name>]. For example, a [repository] section type would always be used in a
configuration file like so: [repository/repo_1] where repository is the section type and repo_1 is an instance
name of a repository configuration.

Using instances to configure discovery and transports is explained further in Discovery Configuration and Transport
Configuration respectively.

To set a default configuration file to load, use TheServiceParticipant->default_configuration_file(ACE_TCHAR*
path), like in the following example:

#include <dds/DCPS/Service_Participant.h>

int main(int argc, char* argv[])
{
TheServiceParticipant->default_configuration_file(ACE_TEXT("pub.ini"));

DDS::DomainParticipantFactory_var dpf =
TheParticipantFactoryWithArgs(argc, argv);

// ...
}

162 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

pub.ini would be used unless -DCPSConfigFile is passed to override the default configuration file.

If there is a directory with multiple configuration files, then OPENDDS_CONFIG_DIR can be used to make
-DCPSConfigFile relative to that directory. For example, the following commands would have the same effect:

./publisher -DCPSConfigFile /pretend/this/is/a/long/path/a.ini

./subscriber -DCPSConfigFile /pretend/this/is/a/long/path/b.ini

export OPENDDS_CONFIG_DIR=/pretend/this/is/a/long/path
./publisher -DCPSConfigFile a.ini
./subscriber -DCPSConfigFile b.ini

Configuration with API

ConfigStore API

The configuration store API allows any configuration value to be set and retrieved. The interface for the ConfigStore is
intentionally generic to facilitate multiple language bindings without specific support for every configuration property.
See dds/DdsDcpsInfrastructure.idl and dds/DCPS/ConfigStoreImpl.h for more details.

#include <dds/DCPS/Service_Participant.h>

int main(int argc, char* argv[])
{
// ...
TheServiceParticipant->config_store()->set_string(

"RTPS_DISCOVERY_MY_DISCOVERY", "@MY_DISCOVERY");
TheServiceParticipant->config_store()->set_string(

"RTPS_DISCOVERY_MY_DISCOVERY_RESEND_PERIOD", "5");
// ...

}

import OpenDDS.DCPS.TheServiceParticipant;
import OpenDDS.DCPS.ConfigStore;
// ...
ConfigStore cs = TheServiceParticipant.config_store();
cs.set_string("RTPS_DISCOVERY_MY_DISCOVERY", "@MY_DISCOVERY");
cs.set_string("RTPS_DISCOVERY_MY_DISCOVERY_RESEND_PERIOD", "5");
// ...

Specific APIs

Various classes provide methods that allow an application to configure OpenDDS.

• See Service_Participant in dds/DCPS/Service_Participant.h

• See InfoRepoDiscovery in dds/DCPS/InfoRepoDiscovery/InfoRepoDiscovery.h

• See RtpsDiscoveryConfig in dds/DCPS/RTPS/RtpsDiscoveryConfig.h

• See TransportRegistry in dds/DCPS/transport/framework/TransportRegistry.h

• See RtpsUdpInst in dds/DCPS/transport/rtps_udp/RtpsUdpInst.h

• See TcpInst in dds/DCPS/transport/tcp/TcpInst.h

2.12. Run-time Configuration 163

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DdsDcpsInfrastructure.idl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/ConfigStoreImpl.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/Service_Participant.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/InfoRepoDiscovery/InfoRepoDiscovery.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/RTPS/RtpsDiscoveryConfig.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/framework/TransportRegistry.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/rtps_udp/RtpsUdpInst.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/tcp/TcpInst.h


OpenDDS, Release 3.28.1

• See ShmemInst in dds/DCPS/transport/shmem/ShmemInst.h

2.12.2 Common Configuration Properties

The [common] section of an OpenDDS configuration file contains options such as the debugging output level, the
location of the DCPSInfoRepo process, and memory preallocation settings. A sample [common] section follows:

[common]
DCPSDebugLevel=0
DCPSInfoRepo=localhost:12345
DCPSLivelinessFactor=80
DCPSChunks=20
DCPSChunksAssociationMultiplier=10
DCPSBitLookupDurationMsec=2000
DCPSPendingTimeout=30

It is not necessary to specify every option.

Option values in the [common] section with names that begin with DCPS or ORB1 can be overridden by a command-line
argument. The command-line argument has the same name as the configuration option with a - prepended to it. For
example:

subscriber -DCPSInfoRepo localhost:12345

[common]

DCPSBidirGIOP=<boolean>

Config store key: COMMON_DCPS_BIDIR_GIOP
Default: 1 (enabled)

Note: This property is only applicable when using InfoRepo Discovery.

Use TAO’s BiDirectional GIOP feature for interaction with the The DCPS Information Repository. With
BiDir enabled, fewer sockets are needed since the same socket can be used for both client and server roles.

DCPSBit=<boolean>

Config store key: COMMON_DCPS_BIT
Default: 1 (enabled)

Controls if Built-in Topics are enabled.

1 [common] ORBLogFile and [common] ORBVerboseLogging start with “ORB” because they are inherited from TAO. They are implemented
directly by OpenDDS (not passed to TAO) and are supported either on the command line (using a “-” prefix) or in the configuration file. Other
command-line options that begin with -ORB are passed to TAO’s ORB_init if InfoRepo Discovery is used.

164 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/shmem/ShmemInst.h


OpenDDS, Release 3.28.1

DCPSBitLookupDurationMsec=<msec>

Config store key: COMMON_DCPS_BIT_LOOKUP_DURATION_MSEC
Default: 2000 (2 seconds)

The maximum duration in milliseconds that the framework will wait for latent Built-in Topics information
when retrieving BIT data given an instance handle. The participant code may get an instance handle for
a remote entity before the framework receives and processes the related BIT information. The framework
waits for up to the given amount of time before it fails the operation.

DCPSBitTransportIPAddress=<addr>

Config store key: COMMON_DCPS_BIT_TRANSPORT_IP_ADDRESS
Default: INADDR_ANY

Note: This property is only applicable when using InfoRepo Discovery.

IP address identifying the local interface to be used by TCP Transport for the Built-in Topics.

DCPSBitTransportPort=<port>

Config store key: COMMON_DCPS_BIT_TRANSPORT_PORT
Default: 0

Note: This property is only applicable when using InfoRepo Discovery.

Port used by the TCP Transport for Built-in Topics. If the default of 0 is used, the operating system will
choose a port to use.

DCPSChunkAssociationMultiplier=<n>

Config store key: COMMON_DCPS_CHUNK_ASSOCIATION_MULTIPLIER
Default: 10

Multiplier for the DCPSChunks or the max_samples value in Resource Limits QoS to determine the total
number of shallow copy chunks that are preallocated. Set this to a value greater than the number of con-
nections so the preallocated chunk handles do not run out. A sample written to multiple data readers will
not be copied multiple times but there is a shallow copy handle to that sample used to manage the delivery
to each data reader. The size of the handle is small so there is not great need to set this value close to the
number of connections.

2.12. Run-time Configuration 165



OpenDDS, Release 3.28.1

DCPSChunks=<n>

Config store key: COMMON_DCPS_CHUNKS
Default: 20

Configurable number of chunks that a data writer’s and reader’s cached allocators will preallocate when the
Resource Limits QoS value is infinite. When all of the preallocated chunks are in use, OpenDDS allocates
from the heap. This feature of allocating from the heap when the preallocated memory is exhausted provides
flexibility but performance will decrease when the preallocated memory is exhausted.

DCPSDebugLevel=<n>

Config store key: COMMON_DCPS_DEBUG_LEVEL
Default: 0 (disabled)

Integer value that controls the amount of debug information the DCPS layer logs. Valid values are 0 through
10.

DCPSDefaultAddress=<addr>

Config store key: COMMON_DCPS_DEFAULT_ADDRESS
Default: 0.0.0.0

Default value for the host portion of local_address in transport instances and some other host address
values:

• [transport] local_address (tcp)

• [transport] local_address (udp)

• [transport] local_address (multicast)

• [transport] local_address (rtps_udp)

• [transport] ipv6_local_address (rtps_udp)

• [transport] multicast_interface (rtps_udp)

• [rtps_discovery] SedpLocalAddress

• [rtps_discovery] SpdpLocalAddress

• [rtps_discovery] MulticastInterface

DCPSDefaultDiscovery=DEFAULT_REPO|DEFAULT_RTPS|DEFAULT_STATIC|<name>

Config store key: COMMON_DCPS_DEFAULT_DISCOVERY
Default: DEFAULT_REPO

Specifies a discovery configuration to use for any domain not explicitly configured.

166 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

DEFAULT_REPO

Uses a default InfoRepo Discovery configuration.

DEFAULT_RTPS

Uses a default RTPS Discovery configuration.

DEFAULT_STATIC

Uses a default Static Discovery configuration.

<name>

Name of a user-defined discovery configuration. This can either be a [repository] or
[rtps_discovery] section

See Discovery Configuration for details about configuring discovery.

DCPSGlobalTransportConfig=<name>|$file

Config store key: COMMON_DCPS_GLOBAL_TRANSPORT_CONFIG
Default: The default configuration is used as described in Overview.

The transport configuration that should be used as the global default one.

<name>

Name of a user-defined [config] sections.

$file

$file uses a transport configuration that includes all transport instances defined in the configuration
file.

DCPSInfoRepo=<objref>

Config store key: COMMON_DCPS_INFO_REPO
Default: file://repo.ior

Object reference for locating the The DCPS Information Repository in InfoRepo Discovery. This value is
passed to CORBA::ORB::string_to_object() and can be any Object URL type understandable by TAO
(file, IOR, corbaloc, corbaname). A simplified endpoint description of the form <host>:<port> is also
accepted, which is equivalent to corbaloc::<host>:<port>/DCPSInfoRepo.

DCPSLivelinessFactor=<n>

Config store key: COMMON_DCPS_LIVELINESS_FACTOR
Default: 80

Percent of the Liveliness QoS lease duration after which a liveliness message is sent. A value of 80 implies
a 20% cushion of latency from the last detected heartbeat message.

2.12. Run-time Configuration 167



OpenDDS, Release 3.28.1

DCPSLogLevel=none|error|warning|notice|info|debug

Config store key: COMMON_DCPS_LOG_LEVEL
Default: warning

General logging control.

none

See none log level

error

See error log level

warning

See warning log level

notice

See notice log level

info

See info log level

debug

See debug log level

See Logging for details.

DCPSMonitor=<boolean>

Config store key: COMMON_DCPS_MONITOR
Default: 0

Use the Monitor library to publish data on monitoring topics (see dds/monitor/README).

DCPSPendingTimeout=<sec>

Config store key: COMMON_DCPS_PENDING_TIMEOUT
Default: 0

The maximum duration in seconds a data writer will block to allow unsent samples to drain on deletion.
The default, 0, blocks indefinitely.

DCPSPersistentDataDir=<path>

Config store key: COMMON_DCPS_PERSISTENT_DATA_DIR
Default: OpenDDS-durable-data-dir

168 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/monitor/README


OpenDDS, Release 3.28.1

The path to a directory on where durable data will be stored for PERSISTENT_DURABILITY_QOS. If the
directory does not exist it will be created automatically.

DCPSPublisherContentFilter=<boolean>

Config store key: COMMON_DCPS_PUBLISHER_CONTENT_FILTER
Default: 1

Controls the filter expression evaluation policy for content filtered topics. When the value is 1 the publisher
may drop any samples, before handing them off to the transport when these samples would have been
ignored by all subscribers.

DCPSSecurity=<boolean>

Config store key: COMMON_DCPS_SECURITY
Default: 0

This setting is only available when OpenDDS is compiled with DDS Security. If set to 1, enable DDS
Security framework and built-in plugins. Each Domain Participant using security must be created with the
correct property QoS.

See DDS Security for more information.

DCPSSecurityDebug=<cat>[,<cat>]...

Config store key: COMMON_DCPS_SECURITY_DEBUG
Default: 0 (No security logging)

This setting is only available when OpenDDS is compiled with DDS Security enabled. This controls the
security debug logging granularity by category.

DCPSSecurityDebugLevel=<n>

Config store key: COMMON_DCPS_SECURITY_DEBUG_LEVEL
Default: 0 (No security logging)

This setting is only available when OpenDDS is compiled with DDS Security enabled. This controls the
security debug logging granularity by debug level.

DCPSSecurityFakeEncryption=<boolean>

Config store key: COMMON_DCPS_SECURITY_FAKE_ENCRYPTION
Default: 0 (Real encryption when that’s setup)

2.12. Run-time Configuration 169



OpenDDS, Release 3.28.1

This setting is only available when OpenDDS is compiled with DDS Security enabled. This option, when
set to 1, disables all encryption by making encryption and decryption no-ops. OpenDDS still generates keys
and performs other security bookkeeping, so this option is useful for debugging the security infrastructure
by making it possible to manually inspect all messages.

DCPSThreadStatusInterval=<sec>

Config store key: COMMON_DCPS_THREAD_STATUS_INTERVAL
Default: 0 (disabled)

Enable internal thread status reporting using the specified reporting interval, in seconds.

DCPSTransportDebugLevel=<n>

Config store key: COMMON_DCPS_TRANSPORT_DEBUG_LEVEL
Default: 0 (disabled)

Integer value that controls the amount of debug information the transport layer logs. Valid values are 0
through 5.

DCPSTypeObjectEncoding=Normal|WriteOldFormat|ReadOldFormat

Config store key: COMMON_DCPS_TYPE_OBJECT_ENCODING
Default: Normal

From when XTypes was first implemented in OpenDDS from 3.16.0 until 3.18.0, there was a bug in the
encoding and decoding of TypeObject and related data types for representing user types. This was fixed
in 3.18.0, but if an application needs to be compatible with an application built with 3.16 or 3.17, then it
can use this option to do that and migrate to the correct encoding without taking everything down all at
once.

WriteOldFormat

This setting makes OpenDDS use the incorrect encoding. To start to migrate an existing set of
OpenDDS applications, this should be the setting of applications using OpenDDS 3.18 or later.

ReadOldFormat

This setting allows OpenDDS to read the incorrect encoding, but it will always write the correct one.
Once all application using OpenDDS 3.16 or 3.17 have been upgraded to OpenDDS 3.18 or later,
WriteOldFormat can be set to communicate with ReadOldFormat and Normal.

Normal

The default, correct encoding is used. Once all applications are using both OpenDDS 3.18 or later and
ReadOldFormat, then Normal can be used.

ORBLogFile=<path>

Config store key: COMMON_ORB_LOG_FILE
Default: Output to standard error stream on most platforms

170 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Change log message destination to the file specified, which is opened in appending mode.Page 164, 1

ORBVerboseLogging=0|1|2

Config store key: COMMON_ORB_VERBOSE_LOGGING
Default: 0

Add a prefix to each log message, using a format defined by the ACE library:Page 164, 1

0

No prefix

1

Verbose “lite”, adds timestamp and priority

2

Verbose, in addition to “lite” has host name, PID, program name

pool_size=<n_bytes>

Config store key: COMMON_POOL_SIZE
Default: 41943040 bytes (40 MiB)

Size of Safety Profile memory pool, in bytes.

pool_granularity=<n_bytes>

Config store key: COMMON_POOL_GRANULARITY
Default: 8

Granularity of Safety Profile memory pool in bytes. Must be multiple of 8.

Scheduler=SCHED_RR|SCHED_FIFO|SCHED_OTHER

Config store key: COMMON_SCHEDULER
Default: SCHED_OTHER

Selects the scheduler to use for transport sending threads. Setting the scheduler to a value other than the
default requires privileges on most systems.

SCHED_RR

Round robin scheduling algorithm

SCHED_FIFO

Allows each thread to run until it either blocks or completes before switching to a different thread

2.12. Run-time Configuration 171



OpenDDS, Release 3.28.1

SCHED_OTHER

The default scheduler on most systems

See also:

sched(7)

Transport Priority QoS

scheduler_slice=<usec>

Config store key: COMMON_SCHEDULER_SLICE
Default: 0

Some operating systems require a time slice value to be set when selecting a Scheduler other than the
default. For those systems, this option can be used to set a value in microseconds.

2.12.3 Discovery Configuration

In DDS implementations, participants are instantiated in application processes and must discover one another in order
to communicate. A DDS implementation uses the feature of domains to give context to the data being exchanged
between DDS participants in the same domain. When DDS applications are written, participants are assigned to a
domain and need to ensure their configuration allows each participant to discover the other participants in the same
domain.

OpenDDS offers a centralized discovery mechanism, a peer-to-peer discovery mechanism, and a static discovery mech-
anism. The centralized mechanism uses a separate service running a DCPSInfoRepo process. The RTPS peer-to-peer
mechanism uses the DDSI-RTPS discovery protocol standard to achieve non-centralized discovery. The static discov-
ery mechanism uses the configuration file to determine which writers and readers should be associated and uses the
underlying transport to determine which writers and readers exist. A number of configuration options exist to meet
the deployment needs of DDS applications. Except for static discovery, each mechanism uses default values if no
configuration is supplied either via the command line or configuration file.

The following sections show how to configure the advanced discovery capabilities. For example, some deployments
may need to use multiple DCPSInfoRepo services or DDSI-RTPS discovery to satisfy interoperability requirements.

Domain Configuration

An OpenDDS configuration file uses the [domain] section type to configure one or more discovery domains with
each domain pointing to a discovery configuration in the same file or a default discovery configuration. OpenDDS
applications can use a centralized discovery approach using the DCPSInfoRepo service or a peer-to-peer discovery
approach using the RTPS discovery protocol standard or a combination of the two in the same deployment. A single
domain can refer to only one type of discovery section.

See Configuring for InfoRepo Discovery for configuring InfoRepo Discovery, Configuring for RTPS Discovery for
configuring RTPS Discovery, and Configuring for Static Discovery for configuring Static Discovery.

Ultimately a domain is assigned an integer value and a configuration file can support this in two ways. The first is to
simply make the instance value the integer value assigned to the domain as shown here:

[domain/1]
DiscoveryConfig=DiscoveryConfig1
(more properties...)

172 Chapter 2. Developer’s Guide

https://manpages.debian.org/sched(7)


OpenDDS, Release 3.28.1

Our example configures a single domain identified by the domain keyword and followed by an instance value of /1.
The instance value after the slash in this case is the integer value assigned to the domain. An alternative syntax for this
same content is to use a more recognizable (friendly) name instead of a number for the domain name and then add the
[domain] DomainId property to the section to give the integer value. Here is an example:

[domain/books]
DomainId=1
DiscoveryConfig=DiscoveryConfig1

The domain is given a friendly name of books. The [domain] DomainId property assigns the integer value of 1
needed by a DDS application reading the configuration. Multiple domain instances can be identified in a single con-
figuration file in this format.

Once one or more domain instances are established, the discovery properties must be identified for that domain. The
[domain] DiscoveryConfig property must either point to another section that holds the discovery configuration or
specify one of the internal default values for discovery. The instance name in our example is DiscoveryConfig1.
This instance name must be associated with a section type of either [repository] or [rtps_discovery].

Here is an extension of our example:

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

In this case our domain points to a [repository] section which is used for an OpenDDS DCPSInfoRepo service.
See Configuring for InfoRepo Discovery for more details.

There are going to be occasions when specific domains are not identified in the configuration file. For example, if an
OpenDDS application assigns a domain ID of 3 to its participants and the above example does not supply a configuration
for domain id of 3 then the following can be used:

[common]
DCPSInfoRepo=host3.mydomain.com:12345
DCPSDefaultDiscovery=DEFAULT_REPO

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

The [common] DCPSDefaultDiscovery and [common] DCPSInfoRepo properties tell the application that every
participant that doesn’t have a domain id found in the configuration file to use the The DCPS Information Repository
at host3.mydomain.com:12345.

As shown in Common Configuration Properties the DCPSDefaultDiscovery property has three other values that can
be used. The DEFAULT_RTPS constant value informs participants that don’t have a domain configuration to use RTPS
discovery to find other participants. Similarly, the DEFAULT_STATIC constant value informs the participants that don’t
have a domain configuration to use static discovery to find other participants.

The final option for the DCPSDefaultDiscovery property is to tell an application to use one of the defined discovery
configurations to be the default configuration for any participant domain that isn’t called out in the file. Here is an
example:

2.12. Run-time Configuration 173



OpenDDS, Release 3.28.1

[common]
DCPSDefaultDiscovery=DiscoveryConfig2

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

By adding the DCPSDefaultDiscovery property to the [common] section, any participant that hasn’t been assigned to
a domain id of 1 or 2will use the configuration of DiscoveryConfig2. For more explanation of a similar configuration
for RTPS discovery see Configuring for RTPS Discovery.

[domain/<id>]

DomainId=<n>

Config store key: DOMAIN_<id>_DOMAIN_ID
Required

An integer value representing a domain being associated with a repository.

DomainRepoKey=<k>

Config store key: DOMAIN_<id>_DOMAIN_REPO_KEY

Key value of the mapped repository

Deprecated since version Provided: for backward compatibility.

DiscoveryConfig=<name>

Config store key: DOMAIN_<id>_DISCOVERY_CONFIG
Default: [common] DCPSDefaultDiscovery

Sets the discovery configuration for this domain. It uses the same values as [common]
DCPSDefaultDiscovery.

DefaultTransportConfig=<name>

Config store key: DOMAIN_<id>_DEFAULT_TRANSPORT_CONFIG

174 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

A user-defined string that refers to the instance name of a [config] section. See Transport Configuration.

Configuring for InfoRepo Discovery

This section describes the configuration properties for the InfoRepo Discovery. Assume for example that the The DCPS
Information Repository is started on a host and port of myhost.mydomain.com:12345. Applications can make their
OpenDDS participants aware of how to find this service through command line options or by reading a configuration
file.

In Running the Example the executables were given a command line parameter to find the DCPSInfoRepo service like
so:

publisher -DCPSInfoRepo file://repo.ior

This assumes that the DCPSInfoRepo has been started with the following syntax:

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

%DDS_ROOT%\bin\DCPSInfoRepo -o repo.ior

The DCPSInfoRepo service generates its location object information in this file and participants need to read this file to
ultimately connect. The use of file based IORs to find a discovery service, however, is not practical in most production
environments, so applications instead can use a command line option like the following to simply point to the host and
port where the DCPSInfoRepo is running.

publisher -DCPSInfoRepo myhost.mydomain.com:12345

The above assumes that the DCPSInfoRepo has been started on a host (myhost.mydomain.com) as follows:

$DDS_ROOT/bin/DCPSInfoRepo -ORBListenEndpoints iiop://:12345

%DDS_ROOT%\bin\DCPSInfoRepo -ORBListenEndpoints iiop://:12345

If an application needs to use a configuration file for other settings, it would become more convenient to place discovery
content in the file and reduce command line complexity and clutter. The use of a configuration file also introduces the
opportunity for multiple application processes to share common OpenDDS configuration. The above example can
easily be moved to the [common] section of a configuration file (assume a file of pub.ini):

[common]
DCPSInfoRepo=myhost.mydomain.com:12345

The command line to start our executable would now change to the following:

publisher -DCSPConfigFile pub.ini

A configuration file can specify domains with discovery configuration assigned to those domains. In this case the
[repository] RepositoryIor property is used to take the same information that would be supplied on a command
line to point to a running DCPSInfoRepo service. Two domains are configured here:

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=myhost.mydomain.com:12345

(continues on next page)

2.12. Run-time Configuration 175



OpenDDS, Release 3.28.1

(continued from previous page)

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

The [domain] DiscoveryConfig property under [domain/1] instructs all participants in domain 1 to use the con-
figuration defined in an instance called DiscoveryConfig1. In the above, this is mapped to a [repository] section
that gives the RepositoryIor value of myhost.mydomain.com:12345.

Finally, when configuring a DCPSInfoRepo the DiscoveryConfig property under a domain instance entry can also
contain the value of DEFAULT_REPOwhich instructs a participant using this instance to use the definition of the property
DCPSInfoRepo wherever it has been supplied. Consider the following configuration file as an example:

[common]
DCPSInfoRepo=localhost:12345

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=myhost.mydomain.com:12345

[domain/2]
DiscoveryConfig=DEFAULT_REPO

In this case any participant in domain 2 would be instructed to refer to the discovery property of [common]
DCPSInfoRepo, which is defined in the [common] section of our example. If the DCPSInfoRepo value is not sup-
plied in the [common] section, it could alternatively be supplied as a parameter to the command line like so:

publisher -DCPSInfoRepo localhost:12345 -DCPSConfigFile pub.ini

This sets the value of DCPSInfoRepo such that if participants reading the configuration file pub.ini encounters
DEFAULT_REPO, there is a value for it. If DCPSInfoRepo is not defined in a configuration file or on the command
line, then the OpenDDS default value for DCPSInfoRepo is file://repo.ior. As mentioned prior, this is not likely
to be the most useful in production environments and should lead to setting the value of DCPSInfoRepo by one of the
means described in this section.

Configuring for Multiple DCPSInfoRepo Instances

The DDS entities in a single OpenDDS process can be associated with multiple DCPS information repositories
(DCPSInfoRepo).

The repository information and domain associations can be configured using a configuration file, or via application
API. Internal defaults, command line arguments, and configuration file options will work as-is for existing applications
that do not want to use multiple DCPSInfoRepo associations.

The following is an example of a process that uses multiple DCPSInfoRepo repositories.

Processes A and B are typical application processes that have been configured to communicate with one another and
discover one another in InfoRepo_1. This is a simple use of basic discovery. However, an additional layer of context
has been applied with the use of a specified domain (Domain 1). DDS entities (data readers/data writers) are restricted
to communicate to other entities within that same domain. This provides a useful method of separating traffic when

176 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Fig. 2: Multiple DCPSInfoRepo Configuration

2.12. Run-time Configuration 177



OpenDDS, Release 3.28.1

needed by an application. Processes C and D are configured the same way, but operate in Domain 2 and use InfoRepo_2.
The challenge comes when you have an application process that needs to use multiple domains and have separate
discovery services. This is Process E in our example. It contains two subscribers, one subscribing to publications from
InfoRepo_1 and the other subscribing to publications in InfoRepo_2. What allows this configuration to work can be
found in the configE.ini file.

We will now look at the configuration file (referred to as configE.ini) to demonstrate how Process E can communicate
to both domains and separate DCPSInfoRepo services. For this example we will only show the discovery aspects of
the configuration and not show transport content.

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

When Process E reads in the above configuration it finds the occurrence of multiple domain sections. As described in
Domain Configuration each domain has an instance integer and a property of [domain] DiscoveryConfig defined.

For the first domain ([domain/1]), the DiscoveryConfig property is supplied with the user-defined name of
DiscoveryConfig1 value. This property causes the OpenDDS implementation to find a section title of either
repository or rtps_discovery and an instance name of DiscoveryConfig1. In our example, a [repository/
DiscoveryConfig1] section title is found and this becomes the discovery configuration for domain instance
[domain/1] (integer value 1). The section found now tells us that the address of the DCPSInfoRepo that this do-
main should use can be found by using the RepositoryIor property value. In particular it is host1.mydomain.com
and port 12345. The values of the RepositoryIor can be a full CORBA IOR or a simple host:port string.

A second domain section title [domain/2] is found in this configuration file along with it’s corresponding repository
section [repository/DiscoveryConfig2] that represents the configuration for the second domain of interest and
the InfoRepo_2 repository. There may be any number of repository or domain sections within a single configuration
file.

Note: Domains not explicitly configured are automatically associated with the default discovery configuration.

Note: Individual DCPSInfoRepos can be associated with multiple domains, however domains cannot be shared be-
tween multiple DCPSInfoRepos.

Here are the valid properties for a [repository] section:

[repository/<inst_name>]

RepositoryIor=<ior>

Config store key: REPOSITORY_<inst_name>_REPOSITORY_IOR

Repository IOR or host:port

178 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

RepositoryKey=<key>

Config store key: REPOSITORY_<inst_name>_REPOSITORY_KEY

Unique key value for the repository

Deprecated since version Provided: for backward compatibility.

Configuring for RTPS Discovery

This section describes the configuration properties for the RTPS Discovery. The RTPS specification gives the following
simple description that forms the basis for the discovery approach used by OpenDDS and the two different protocols
used to accomplish the discovery operations. The excerpt from the RTPS v2.3 8.5.1 Overview is as follows:

The RTPS specification splits up the discovery protocol into two independent protocols:

1. Participant Discovery Protocol

2. Endpoint Discovery Protocol

A Participant Discovery Protocol (PDP) specifies how Participants discover each other in the network.
Once two Participants have discovered each other, they exchange information on the Endpoints they contain
using an Endpoint Discovery Protocol (EDP). Apart from this causality relationship, both protocols can
be considered independent.

The configuration options discussed in this section allow a user to specify property values to change the behavior of
the Simple Participant Discovery Protocol (SPDP) and/or the Simple Endpoint Discovery Protocol (SEDP) default
settings.

RTPS discovery can be configured for a single domain or for multiple domains as was done in Configuring for Multiple
DCPSInfoRepo Instances.

A simple configuration is achieved by specifying a property in the [common] section of our example configuration file.

[common]
DCPSDefaultDiscovery=DEFAULT_RTPS

All default values for RTPS discovery are adopted in this form. A variant of this same basic configuration is to specify
a section to hold more specific parameters of RTPS discovery. The following example uses the [common] section to
point to an instance of an [rtps_discovery] section followed by an instance name of TheRTPSConfig which is
supplied by the user.

[common]
DCPSDefaultDiscovery=TheRTPSConfig

[rtps_discovery/TheRTPSConfig]
ResendPeriod=5

The instance [rtps_discovery/TheRTPSConfig] is now the location where properties that vary the default RTPS
settings get specified. In our example the ResendPeriod=5 entry sets the number of seconds between periodic an-
nouncements of available data readers / data writers and to detect the presence of other data readers / data writers on
the network. This would override the default of 30 seconds.

If your OpenDDS deployment uses multiple domains, the following configuration approach combines the use of the
[domain] section title with [rtps_discovery] to allow a user to specify particular settings by domain. It might look
like this:

2.12. Run-time Configuration 179

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=114&view=FitH,213.68


OpenDDS, Release 3.28.1

[common]
DCPSDebugLevel=0

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[rtps_discovery/DiscoveryConfig1]
ResendPeriod=5

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[rtps_discovery/DiscoveryConfig2]
ResendPeriod=5
SedpMulticast=0

Some important implementation notes regarding RTPS discovery in OpenDDS are as follows:

1. Domain IDs should be between 0 and 231 (inclusive) due to the way UDP ports are assigned to domain IDs. In
each OpenDDS process, up to 120 domain participants are supported in each domain.

2. The Multicast Transport does not work with RTPS Discovery due to the way GUIDs are assigned (a warning
will be issued if this is attempted).

The OMG RTPS specification details several properties that can be adjusted from their defaults that influence the behav-
ior of RTPS discovery. Those properties, along with options specific to OpenDDS’s RTPS discovery implementation,
are listed below.

[rtps_discovery/<inst_name>]

ResendPeriod=<sec>

Config store key: RTPS_DISCOVERY_<inst_name>_RESEND_PERIOD
Default: 30

The number of seconds that a process waits between the announcement of participants (see RTPS v2.3
8.5.3 The Simple Participant Discovery Protocol).

MinResendDelay=<msec>

Config store key: RTPS_DISCOVERY_<inst_name>_MIN_RESEND_DELAY
Default: 100

The minimum time in milliseconds between participant announcements.

QuickResendRatio=<frac>

Config store key: RTPS_DISCOVERY_<inst_name>_QUICK_RESEND_RATIO
Default: 0.1

180 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=115&view=FitH,278.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=115&view=FitH,278.68


OpenDDS, Release 3.28.1

Tuning parameter that configures local SPDP resends as a fraction of the resend period.

LeaseDuration=<sec>

Config store key: RTPS_DISCOVERY_<inst_name>_LEASE_DURATION
Default: 300 (5 minutes)

Sent as part of the participant announcement. It tells the peer participants that if they don’t hear from this
participant for the specified duration, then this participant can be considered “not alive”.

LeaseExtension=<sec>

Config store key: RTPS_DISCOVERY_<inst_name>_LEASE_EXTENSION
Default: 0

Extends the lease of discovered participants by the set amount of seconds. Useful on spotty connections to
reduce load on the RtpsRelay.

PB=<port>

Config store key: RTPS_DISCOVERY_<inst_name>_PB
Default: 7400

This number sets the starting point for deriving port numbers used for Simple Endpoint Discovery Protocol
(SEDP). This property is used in conjunction with DG , PG , D0 (or DX), and D1 to construct the necessary
Endpoints for RTPS discovery communication. See RTPS v2.3 9.6.1.1 Discovery traffic for how these
Endpoints are constructed.

DG=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_DG
Default: 250

An integer value representing the Domain Gain. This is a multiplier that assists in formulating Multicast
or Unicast ports for RTPS.

PG=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_PG
Default: 2

An integer that assists in configuring SPDP Unicast ports and serves as an offset multiplier. Participants
are assigned addresses using the formula:

PB +𝐷𝐺× domainId + d1 + PG × participantId

2.12. Run-time Configuration 181

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=165&view=FitH,261.68


OpenDDS, Release 3.28.1

See RTPS v2.3 9.6.1.1 Discovery traffic for how these Endpoints are constructed.

D0=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_D0
Default: The value of the OPENDDS_RTPS_DEFAULT_D0 environment variable if set, else 0

An integer value that assists in providing an offset for calculating an assignable port in SPDP Multicast
configurations. The formula used is:

PB +DG × domainId + d0

See RTPS v2.3 9.6.1.1 Discovery traffic for how these Endpoints are constructed.

D1=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_D1
Default: 10

An integer value that assists in providing an offset for calculating an assignable port in SPDP Unicast
configurations. The formula used is:

PB +DG × domainId + d1 + PG × participantId

See RTPS v2.3 9.6.1.1 Discovery traffic for how these Endpoints are constructed.

DX=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_DX
Default: 2

An integer value that assists in providing an offset for calculating a port in SEDP Multicast configurations.
This is only valid when SedpMulticast=1. The formula used is:

PB +DG × domainId + dx

This is an OpenDDS extension and not part of the OMG DDSI-RTPS specification.

SpdpRequestRandomPort=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_SPDP_REQUEST_RANDOM_PORT
Default: 0

Use a random port for SPDP.

182 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=165&view=FitH,261.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=165&view=FitH,261.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=165&view=FitH,261.68


OpenDDS, Release 3.28.1

SedpMaxMessageSize=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_MAX_MESSAGE_SIZE
Default: 65466 (maximum worst-case UDP payload size)

Set the maximum SEDP message size.

See [transport] max_message_size (rtps_udp).

SedpMulticast=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_MULTICAST
Default: 1

Determines whether Multicast is used for the SEDP traffic. When set to 1, Multicast is used. When set to
0, Unicast is used.

SedpLocalAddress=<addr>:[<port>]

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_LOCAL_ADDRESS
Default: [common] DCPSDefaultAddress

Configure the transport instance created and used by SEDP to bind to the specified local address and port.
In order to leave the port unspecified, it can be omitted from the setting but the trailing : must be present.

SpdpLocalAddress=<addr>[:<port>]

Config store key: RTPS_DISCOVERY_<inst_name>_SPDP_LOCAL_ADDRESS
Default: [common] DCPSDefaultAddress

Address of a local interface, which will be used by SPDP to bind to that specific interface.

SedpAdvertisedLocalAddress=<addr>:[<port>]

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_ADVERTISED_LOCAL_ADDRESS

Sets the address advertised by SEDP. Typically used when the participant is behind a firewall or NAT. In
order to leave the port unspecified, it can be omitted from the setting but the trailing : must be present.

SedpSendDelay=<msec>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_SEND_DELAY
Default: 10

2.12. Run-time Configuration 183



OpenDDS, Release 3.28.1

Time in milliseconds for a built-in SEDP Writer to wait before sending data.

SedpHeartbeatPeriod=<msec>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_HEARTBEAT_PERIOD
Default: 200

Time in milliseconds for a built-in SEDP Writer to announce the availability of data.

SedpNakResponseDelay=<msec>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_NAK_RESPONSE_DELAY
Default: 100

Time in milliseconds for a built-in SEDP Writer to delay the response to a negative acknowledgment.

SpdpSendAddrs=<host>:<port>[,<host>:<port>]...

Config store key: RTPS_DISCOVERY_<inst_name>_SPDP_SEND_ADDRS

A list (comma or whitespace separated) of <host>:<port> pairs used as destinations for SPDP content.
This can be a combination of Unicast and Multicast addresses.

MaxSpdpSequenceMsgResetChecks=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_MAX_SPDP_SEQUENCE_MSG_RESET_CHECKS
Default: 3

Remove a discovered participant after this number of SPDP messages with earlier sequence numbers.

PeriodicDirectedSpdp=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_PERIODIC_DIRECTED_SPDP
Default: 0 (disabled)

A boolean value that determines whether directed SPDP messages are sent to all participants once every
resend period. This setting should be enabled for participants that cannot use multicast to send SPDP
announcements, e.g., an RtpsRelay.

UndirectedSpdp=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_UNDIRECTED_SPDP
Default: 1 (enabled)

184 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

A boolean value that determines whether undirected SPDP messages are sent. This setting should be dis-
abled for participants that cannot use multicast to send SPDP announcements, e.g., an RtpsRelay.

InteropMulticastOverride=<group_address>

Config store key: RTPS_DISCOVERY_<inst_name>_INTEROP_MULTICAST_OVERRIDE

A network address specifying the multicast group to be used for SPDP discovery. This overrides the inter-
operability group of the specification, 239.255.0.1 It can be used, for example, to specify use of a routed
group address to provide a larger discovery scope.

TTL=n

Config store key: RTPS_DISCOVERY_<inst_name>_TTL
Default: 1 (all data is restricted to the local network)

The value of the Time-To-Live (TTL) field of multicast datagrams sent as part of discovery. This value
specifies the number of hops the datagram will traverse before being discarded by the network.

MulticastInterface=<iface>

Config store key: RTPS_DISCOVERY_<inst_name>_MULTICAST_INTERFACE
Default: [common] DCPSDefaultAddress

Specifies the network interface to be used by this discovery instance. This uses a platform-specific format
that identifies the network interface, but can be address assigned to that interface on most platforms.

GuidInterface=<iface>

Config store key: RTPS_DISCOVERY_<inst_name>_GUID_INTERFACE
Default: The system / ACE library default is used

Specifies the network interface to use when determining which local MAC address should appear in a GUID
generated by this node.

SpdpRtpsRelayAddress=<host>:<port>

Config store key: RTPS_DISCOVERY_<inst_name>_SPDP_RTPS_RELAY_ADDRESS

Specifies the address of the RtpsRelay for SPDP messages.

SpdpRtpsRelaySendPeriod=<sec>

Config store key: RTPS_DISCOVERY_<inst_name>_SPDP_RTPS_RELAY_SEND_PERIOD

2.12. Run-time Configuration 185



OpenDDS, Release 3.28.1

Default: 30 seconds

Specifies the interval between SPDP announcements sent to the RtpsRelay.

SedpRtpsRelayAddress=host:port

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_RTPS_RELAY_ADDRESS

Specifies the address of the RtpsRelay for SEDP messages.

RtpsRelayOnly=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_RTPS_RELAY_ONLY
Default: 0 (disabled)

Only send RTPS message to the RtpsRelay (for debugging).

UseRtpsRelay=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_USE_RTPS_RELAY
Default: 0 (disabled)

Send messages to the RtpsRelay. Messages will only be sent if SpdpRtpsRelayAddress and/or
SedpRtpsRelayAddress are set.

SpdpStunServerAddress=<host>:<port>

Config store key: RTPS_DISCOVERY_<inst_name>_SPDP_STUN_SERVER_ADDRESS

Specifies the address of the STUN server to use for SPDP when using ICE.

SedpStunServerAddress=<host>:<port>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_STUN_SERVER_ADDRESS

Specifies the address of the STUN server to use for SEDP when using ICE.

UseIce=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_USE_ICE
Default: 0 (disabled)

186 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Enable or disable ICE for both SPDP and SEDP.

MaxAuthTime=<sec>

Config store key: RTPS_DISCOVERY_<inst_name>_MAX_AUTH_TIME
Default: 300 seconds (5 minutes)

Set the maximum time for authentication with DDS Security.

AuthResendPeriod=<sec>

Config store key: RTPS_DISCOVERY_<inst_name>_AUTH_RESEND_PERIOD
Default: 1 second

Resend authentication messages for DDS Security after this amount of seconds. It is a floating point value,
so fractions of a second can be specified.

SecureParticipantUserData=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_SECURE_PARTICIPANT_USER_DATA
Default: 0 (disabled)

If DDS Security is enabled, the Participant’s USER_DATA QoS is omitted from unsecured discovery mes-
sages.

UseXTypes=no|minimal|complete

Config store key: RTPS_DISCOVERY_<inst_name>_USE_X_TYPES
Default: no

Enables discovery extensions from the XTypes specification. Participants exchange topic type information
in endpoint announcements and extended type information using the Type Lookup Service.

See Representing Types with TypeObject and DynamicType for more information on
CompleteTypeObject and its use in the dynamic binding.

no

XTypes isn’t taken into consideration during discovery. 0 can also be used for backwards compatibility.

minimal

XTypes is used for discovery when possible and only the MinimalTypeObject is provided to remote
participants if available. 1 can also be used for backwards compatibility.

complete

XTypes is used for discovery when possible and only the CompleteTypeObject is provided to remote
participants if available. This requires that opendds_idl -Gxtypes-completewas used when com-
piling the IDL. 2 can also be used for backwards compatibility.

2.12. Run-time Configuration 187



OpenDDS, Release 3.28.1

TypeLookupServiceReplyTimeout=<msec>

Config store key: RTPS_DISCOVERY_<inst_name>_TYPE_LOOKUP_SERVICE_REPLY_TIMEOUT
Default: 5000 milliseconds (5 seconds).

If UseXTypes is enabled, then this sets the timeout for waiting for replies to remote Type Lookup Service
requests.

SedpResponsiveMode=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_RESPONSIVE_MODE
Default: 0 (disabled)

Causes the built-in SEDP endpoints to send additional messages which may reduce latency.

SedpPassiveConnectDuration=<msec>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_PASSIVE_CONNECT_DURATION
Default: 60000 milliseconds (1 minute)

Sets the duration that a passive endpoint will wait for a connection.

SendBufferSize=<bytes>

Config store key: RTPS_DISCOVERY_<inst_name>_SEND_BUFFER_SIZE
Default: 0 (system default value is used, 65466 typical)

Socket send buffer size for both SPDP and SEDP.

See [transport] send_buffer_size (rtps_udp).

RecvBufferSize=<bytes>

Config store key: RTPS_DISCOVERY_<inst_name>_RECV_BUFFER_SIZE
Default: 0 (system default value is used, 65466 typical)

Socket receive buffer size for both SPDP and SEDP.

See [transport] rcv_buffer_size (rtps_udp).

MaxParticipantsInAuthentication=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_MAX_PARTICIPANTS_IN_AUTHENTICATION
Default: 0 (no limit)

188 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

This setting is only available when OpenDDS is compiled with DDS Security enabled. Limits the number
of peer participants that can be concurrently in the process of authenticating – that is, not yet completed
authentication.

SedpReceivePreallocatedMessageBlocks=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_RECEIVE_PREALLOCATED_MESSAGE_BLOCKS
Default: 0 (use [transport] receive_preallocated_message_blocks’s default)

Configure the [transport] receive_preallocated_message_blocks attribute of SEDP’s transport.

SedpReceivePreallocatedDataBlocks=<n>

Config store key: RTPS_DISCOVERY_<inst_name>_SEDP_RECEIVE_PREALLOCATED_DATA_BLOCKS
Default: 0 (use [transport] receive_preallocated_data_blocks’s default)

Configure the [transport] receive_preallocated_data_blocks attribute of SEDP’s transport.

CheckSourceIp=<boolean>

Config store key: RTPS_DISCOVERY_<inst_name>_CHECK_SOURCE_IP
Default: 1 (enabled)

Incoming participant announcements (SPDP) are checked to verify that their source IP address matches
one of:

• An entry in the metatraffic locator list

• The configured RtpsRelay (if any)

• An ICE AgentInfo parameter

Announcements that don’t match any of these are dropped if this check is enabled.

SpdpUserTag=<i>

Config store key: RTPS_DISCOVERY_<inst_name>_SPDP_USER_TAG
Default: 0 (disabled)

Add the OpenDDS-specific UserTag RTPS submessage to the start of SPDP messages. If <i> is 0 (the
default), the submessage is not added. Otherwise this submessage’s contents is the 4-byte unsigned integer
<i>.

2.12. Run-time Configuration 189



OpenDDS, Release 3.28.1

Additional DDSI-RTPS Discovery Features

The DDSI_RTPS discovery implementation creates and manages a transport instance – specifically an object of class
RtpsUdpInst. In order for applications to access this object and enable advanced features (Additional RTPS_UDP
Features), the RtpsDiscovery class provides the method sedp_transport_inst(domainId, participant).

Configuring for Static Discovery

Static discovery may be used when a DDS domain has a fixed number of processes and data readers/writers that are all
known a priori. Data readers and writers are collectively known as endpoints. Using only the configuration file, the
static discovery mechanism must be able to determine a network address and the QoS settings for each endpoint. The
static discovery mechanism uses this information to determine all potential associations between readers and writers.
A domain participant learns about the existence of an endpoint through hints supplied by the underlying transport.

Note: Currently, static discovery can only be used for endpoints using the RTPS/UDP Transport.

Static discovery introduces the following configuration file sections:

• The [topic] section is used to introduce a topic.

• The [datawriterqos], [datareaderqos], [publisherqos], and [subscriberqos] sections are used to
describe a QoS of the associated type.

• The [endpoint] section describes a data reader or writer.

Data reader and writer objects must be identified by the user so that the static discovery mechanism can associate
them with the correct [endpoint] section in the configuration file. This is done by setting the User Data QoS of
the DomainParticipantQos to an octet sequence of length 6. The representation of this octet sequence occurs in
the [endpoint] participant as a string with two hexadecimal digits per octet. Similarly, the user_data of the
DataReaderQos or DataWriterQos must be set to an octet sequence of length 3 corresponding to the entity value
in the [endpoint/*] section. For example, suppose the configuration file contains the following:

[topic/MyTopic]
type_name=TestMsg::TestMsg

[endpoint/MyReader]
type=reader
topic=MyTopic
config=MyConfig
domain=34
participant=0123456789ab
entity=cdef01

[config/MyConfig]
transports=MyTransport

[transport/MyTransport]
transport_type=rtps_udp
use_multicast=0
local_address=1.2.3.4:30000

The corresponding code to configure the DomainParticipantQos is:

190 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

DDS::DomainParticipantQos dp_qos;
domainParticipantFactory->get_default_participant_qos(dp_qos);
dp_qos.user_data.value.length(6);
dp_qos.user_data.value[0] = 0x01;
dp_qos.user_data.value[1] = 0x23;
dp_qos.user_data.value[2] = 0x45;
dp_qos.user_data.value[3] = 0x67;
dp_qos.user_data.value[4] = 0x89;
dp_qos.user_data.value[5] = 0xab;

The code to configure the DataReaderQos is similar:

DDS::DataReaderQos qos;
subscriber->get_default_datareader_qos(qos);
qos.user_data.value.length(3);
qos.user_data.value[0] = 0xcd;
qos.user_data.value[1] = 0xef;
qos.user_data.value[2] = 0x01;

The domain id, which is 34 in the example, should be passed to the call to create_participant.

In the example, the endpoint configuration for MyReader references MyConfigwhich in turn references MyTransport.
Transport configuration is described in Transport Configuration. The important detail for static discovery is that at least
one of the transports contains a known network address (1.2.3.4:30000). An error will be issued if an address cannot
be determined for an endpoint. The static discovery implementation also checks that the QoS of a data reader or data
writer object matches the QoS specified in the configuration file.

[topic/<inst_name>]

name=<name>

Config store key: TOPIC_<inst_name>_NAME
Default: The <inst_name> of the topic section

Use this to override the name of the topic in the DDS API.

type_name=<name>

Config store key: TOPIC_<inst_name>_TYPE_NAME
Required

Identifier which uniquely defines the sample type. This is typically a CORBA interface repository type
name.

[datawriterqos/<inst_name>]

durability.kind=VOLATILE|TRANSIENT_LOCAL

Config store key: DATAWRITERQOS_<inst_name>_DURABILITY_KIND

2.12. Run-time Configuration 191



OpenDDS, Release 3.28.1

See Durability QoS.

deadline.period.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAWRITERQOS_<inst_name>_DEADLINE_PERIOD_SEC

See Deadline QoS.

deadline.period.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAWRITERQOS_<inst_name>_DEADLINE_PERIOD_NANOSEC

See Deadline QoS.

latency_budget.duration.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAWRITERQOS_<inst_name>_LATENCY_BUDGET_DURATION_SEC

See Latency Budget QoS.

latency_budget.duration.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAWRITERQOS_<inst_name>_LATENCY_BUDGET_DURATION_NANOSEC

See Latency Budget QoS.

liveliness.kind=AUTOMATIC|MANUAL_BY_TOPIC|MANUAL_BY_PARTICIPANT

Config store key: DATAWRITERQOS_<inst_name>_LIVELINESS_KIND

See Liveliness QoS.

liveliness.lease_duration.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAWRITERQOS_<inst_name>_LIVELINESS_LEASE_DURATION_SEC

See Liveliness QoS.

liveliness.lease_duration.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAWRITERQOS_<inst_name>_LIVELINESS_LEASE_DURATION_NANOSEC

192 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

See Liveliness QoS.

reliability.kind=BEST_EFFORT|RELIABILE

Config store key: DATAWRITERQOS_<inst_name>_RELIABILITY_KIND

See Reliability QoS.

reliability.max_blocking_time.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAWRITERQOS_<inst_name>_RELIABILITY_MAX_BLOCKING_TIME_SEC

See Reliability QoS.

reliability.max_blocking_time.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAWRITERQOS_<inst_name>_RELIABILITY_MAX_BLOCKING_TIME_NANOSEC

See Reliability QoS.

destination_order.kind=BY_SOURCE_TIMESTAMP|BY_RECEPTION_TIMESTAMP

Config store key: DATAWRITERQOS_<inst_name>_DESTINATION_ORDER_KIND

See Destination Order QoS.

history.kind=KEEP_LAST|KEEP_ALL

Config store key: DATAWRITERQOS_<inst_name>_HISTORY_KIND

See History QoS.

history.depth=<numeric>

Config store key: DATAWRITERQOS_<inst_name>_HISTORY_DEPTH

See History QoS.

resource_limits.max_samples=<numeric>

Config store key: DATAWRITERQOS_<inst_name>_RESOURCE_LIMITS_MAX_SAMPLES

2.12. Run-time Configuration 193



OpenDDS, Release 3.28.1

See Resource Limits QoS.

resource_limits.max_instances=<numeric>

Config store key: DATAWRITERQOS_<inst_name>_RESOURCE_LIMITS_MAX_INSTANCES

See Resource Limits QoS.

resource_limits.max_samples_per_instance=<numeric>

Config store key: DATAWRITERQOS_<inst_name>_RESOURCE_LIMITS_MAX_SAMPLES_PER_INSTANCE

See Resource Limits QoS.

transport_priority.value=<numeric>

Config store key: DATAWRITERQOS_<inst_name>_TRANSPORT_PRIORITY_VALUE

See Transport Priority QoS.

lifespan.duration.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAWRITERQOS_<inst_name>_LIFESPAN_DURATION_SEC

See Lifespan QoS.

lifespan.duration.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAWRITERQOS_<inst_name>_LIFESPAN_DURATION_NANOSEC

See Lifespan QoS.

ownership.kind=SHARED|EXCLUSIVE

Config store key: DATAWRITERQOS_<inst_name>_OWNERSHIP_KIND

See Ownership QoS.

ownership_strength.value=<numeric>

Config store key: DATAWRITERQOS_<inst_name>_OWNERSHIP_STRENGTH_VALUE

194 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

See Ownership Strength QoS.

[datareaderqos/<inst_name>]

durability.kind=VOLATILE|TRANSIENT_LOCAL

Config store key: DATAREADERQOS_<inst_name>_DURABILITY_KIND

See Durability QoS.

deadline.period.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAREADERQOS_<inst_name>_DEADLINE_PERIOD_SEC

See Deadline QoS.

deadline.period.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAREADERQOS_<inst_name>_DEADLINE_PERIOD_NANOSEC

See Deadline QoS.

latency_budget.duration.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAREADERQOS_<inst_name>_LATENCY_BUDGET_DURATION_SEC

See Latency Budget QoS.

latency_budget.duration.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAREADERQOS_<inst_name>_LATENCY_BUDGET_DURATION_NANOSEC

See Latency Budget QoS.

liveliness.kind=AUTOMATIC|MANUAL_BY_TOPIC|MANUAL_BY_PARTICIPANT

Config store key: DATAREADERQOS_<inst_name>_LIVELINESS_KIND

See Liveliness QoS.

2.12. Run-time Configuration 195



OpenDDS, Release 3.28.1

liveliness.lease_duration.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAREADERQOS_<inst_name>_LIVELINESS_LEASE_DURATION_SEC

See Liveliness QoS.

liveliness.lease_duration.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAREADERQOS_<inst_name>_LIVELINESS_LEASE_DURATION_NANOSEC

See Liveliness QoS.

reliability.kind=BEST_EFFORT|RELIABILE

Config store key: DATAREADERQOS_<inst_name>_RELIABILITY_KIND

See Reliability QoS.

reliability.max_blocking_time.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAREADERQOS_<inst_name>_RELIABILITY_MAX_BLOCKING_TIME_SEC

See Reliability QoS.

reliability.max_blocking_time.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key: DATAREADERQOS_<inst_name>_RELIABILITY_MAX_BLOCKING_TIME_NANOSEC

See Reliability QoS.

destination_order.kind=BY_SOURCE_TIMESTAMP|BY_RECEPTION_TIMESTAMP

Config store key: DATAREADERQOS_<inst_name>_DESTINATION_ORDER_KIND

See Destination Order QoS.

history.kind=KEEP_LAST|KEEP_ALL

Config store key: DATAREADERQOS_<inst_name>_HISTORY_KIND

See History QoS.

196 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

history.depth=<numeric>

Config store key: DATAREADERQOS_<inst_name>_HISTORY_DEPTH

See History QoS.

resource_limits.max_samples=<numeric>

Config store key: DATAREADERQOS_<inst_name>_RESOURCE_LIMITS_MAX_SAMPLES

See Resource Limits QoS.

resource_limits.max_instances=<numeric>

Config store key: DATAREADERQOS_<inst_name>_RESOURCE_LIMITS_MAX_INSTANCES

See Resource Limits QoS.

resource_limits.max_samples_per_instance=<numeric>

Config store key: DATAREADERQOS_<inst_name>_RESOURCE_LIMITS_MAX_SAMPLES_PER_INSTANCE

See Resource Limits QoS.

time_based_filter.minimum_separation.sec=<numeric>|DURATION_INFINITE_SEC

Config store key: DATAREADERQOS_<inst_name>_TIME_BASED_FILTER_MINIMUM_SEPARATION_SEC

See Time Based Filter QoS.

time_based_filter.minimum_separation.nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key:
DATAREADERQOS_<inst_name>_TIME_BASED_FILTER_MINIMUM_SEPARATION_NANOSEC

See Time Based Filter QoS.

reader_data_lifecycle.autopurge_nowriter_samples_delay.
sec=<numeric>|DURATION_INFINITE_SEC

Config store key:
DATAREADERQOS_<inst_name>_READER_DATA_LIFECYCLE_AUTOPURGE_NOWRITER_SAMPLES_DELAY_SEC

2.12. Run-time Configuration 197



OpenDDS, Release 3.28.1

See Reader Data Lifecycle QoS.

reader_data_lifecycle.autopurge_nowriter_samples_delay.
nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key:
DATAREADERQOS_<inst_name>_READER_DATA_LIFECYCLE_AUTOPURGE_NOWRITER_SAMPLES_DELAY_NANOSEC

See Reader Data Lifecycle QoS.

reader_data_lifecycle.autopurge_dispose_samples_delay.
sec=<numeric>|DURATION_INFINITE_SEC

Config store key:
DATAREADERQOS_<inst_name>_READER_DATA_LIFECYCLE_AUTOPURGE_DISPOSE_SAMPLES_DELAY_SEC

See Reader Data Lifecycle QoS.

reader_data_lifecycle.autopurge_dispose_samples_delay.
nanosec=<numeric>|DURATION_INFINITE_NANOSEC

Config store key:
DATAREADERQOS_<inst_name>_READER_DATA_LIFECYCLE_AUTOPURGE_DISPOSE_SAMPLES_DELAY_NANOSEC

See Reader Data Lifecycle QoS.

[publisherqos/<inst_name>]

presentation.access_scope=INSTANCE|TOPIC|GROUP

Config store key: PUBLISHERQOS_<inst_name>_PRESENTATION_ACCESS_SCOPE

See Presentation QoS.

presentation.coherent_access=true|false

Config store key: PUBLISHERQOS_<inst_name>_PRESENTATION_COHERENT_ACCESS

See Presentation QoS.

presentation.ordered_access=true|false

Config store key: PUBLISHERQOS_<inst_name>_PRESENTATION_ORDERED_ACCESS

198 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

See Presentation QoS.

partition.name=<name>[,<name>]...

Config store key: PUBLISHERQOS_<inst_name>_PARTITION_NAME

See Partition QoS.

[subscriberqos/<inst_name>]

presentation.access_scope=INSTANCE|TOPIC|GROUP

Config store key: SUBSCRIBERQOS_<inst_name>_PRESENTATION_ACCESS_SCOPE

See Presentation QoS.

presentation.coherent_access=true|false

Config store key: SUBSCRIBERQOS_<inst_name>_PRESENTATION_COHERENT_ACCESS

See Presentation QoS.

presentation.ordered_access=true|false

Config store key: SUBSCRIBERQOS_<inst_name>_PRESENTATION_ORDERED_ACCESS

See Presentation QoS.

partition.name=<name>[,<name>]...

Config store key: SUBSCRIBERQOS_<inst_name>_PARTITION_NAME

See Partition QoS.

[endpoint/<inst_name>]

domain=<numeric>

Config store key: ENDPOINT_<inst_name>_DOMAIN
Required

Domain id for endpoint in range 0-231. Used to form GUID of endpoint.

2.12. Run-time Configuration 199



OpenDDS, Release 3.28.1

participant=<hexstring>

Config store key: ENDPOINT_<inst_name>_PARTICIPANT
Required

String of 12 hexadecimal digits. Used to form GUID of endpoint. All endpoints with the same do-
main/participant combination should be in the same process.

entity=<hexstring>

Config store key: ENDPOINT_<inst_name>_ENTITY
Required

String of 6 hexadecimal digits. Used to form GUID of endpoint. The combination of do-
main/participant/entity should be unique.

type=reader|writer

Config store key: ENDPOINT_<inst_name>_TYPE
Required

Determines if the entity is a data reader or data writer.

topic=<inst_name>

Config store key: ENDPOINT_<inst_name>_TOPIC
Required

The [topic] to use.

datawriterqos=<inst_name>

Config store key: ENDPOINT_<inst_name>_DATAWRITERQOS

The [datawriterqos] to use.

datareaderqos=<inst_name>

Config store key: ENDPOINT_<inst_name>_DATAREADERQOS

The [datareaderqos] to use.

200 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

publisherqos=<inst_name>

Config store key: ENDPOINT_<inst_name>_PUBLISHERQOS

The [publisherqos] to use.

subscriberqos=<inst_name>

Config store key: ENDPOINT_<inst_name>_SUBSCRIBERQOS

The [subscriberqos] to use.

config=<inst_name>

Config store key: ENDPOINT_<inst_name>_CONFIG

The [config] to use.

2.12.4 Transport Configuration

Beginning with OpenDDS 3.0, a new transport configuration design has been implemented. The basic goals of this
design were to:

• Allow simple deployments to ignore transport configuration and deploy using intelligent defaults (with no trans-
port code required in the publisher or subscriber).

• Enable flexible deployment of applications using only configuration files and command line options.

• Allow deployments that mix transports within individual data writers and writers. Publishers and subscribers
negotiate the appropriate transport implementation to use based on the details of the transport configuration, QoS
settings, and network reachability.

• Support a broader range of application deployments in complex networks.

• Support optimized transport development (such as collocated and shared memory transports - note that these are
not currently implemented).

• Integrate support for the Reliability QoS policy with the underlying transport.

• Whenever possible, avoid dependence on the ACE Service Configurator and its configuration files.

Unfortunately, implementing these new capabilities involved breaking of backward compatibility with OpenDDS trans-
port configuration code and files from previous releases. See docs/OpenDDS_3.0_Transition.txt for information
on how to convert your existing application to use the new transport configuration design.

2.12. Run-time Configuration 201

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/OpenDDS_3.0_Transition.txt


OpenDDS, Release 3.28.1

Overview

Transport Concepts

This section provides an overview of the concepts involved in transport configuration and how they interact.

Each data reader and writer uses a Transport Configuration consisting of an ordered set of Transport Instances. Each
transport instance specifies a transport implementation and can customize the configuration parameters defined by that
transport. Transport Configurations and Transport Instances are managed by the Transport Registry and can be created
via configuration files or through programming APIs.

Transport Configurations can be specified for Domain Participants, Publishers, Subscribers, Data Writers, and Data
Readers. When a Data Reader or Writer is enabled, it uses the most specific configuration it can locate, either directly
bound to it or accessible through its parent entity. For example, if a Data Writer specifies a Transport Configuration, it
always uses it. If the Data Writer does not specify a configuration, it tries to use that of its Publisher or Domain Partici-
pant in that order. If none of these entities have a transport configuration specified, the Global Transport Configuration
is obtained from the Transport Registry. The Global Transport Configuration can be specified by the user via either
configuration file, command line option, or a member function call on the Transport Registry. If not defined by the
user, a default transport configuration is used which contains all available transport implementations with their default
configuration parameters. If you don’t specifically load or link in any other transport implementations, OpenDDS uses
the TCP Transport for all communication.

How OpenDDS Selects a Transport

Currently, the behavior for OpenDDS is that Data Writers actively connect to Data Readers, which are passively awaiting
those connections. Data Readers “listen” for connections on each of the Transport Instances that are defined in their
Transport Configuration. Data Writers use their Transport Instances to “connect” to those of the Data Readers. Because
the logical connections discussed here don’t correspond to the physical connections of the transport, OpenDDS often
refers to them as Data Links.

When a Data Writer tries to connect to a Data Reader, it first attempts to see if there is an existing data link that it can
use to communicate with that Data Reader. The Data Writer iterates (in definition order) through each of its Transport
Instances and looks for an existing data link to the Transport Instances that the reader defined. If an existing data link
is found it is used for all subsequent communication between the Data Writer and Reader.

If no existing data link is found, the Data Writer attempts to connect using the different Transport Instances in the
order they are defined in its Transport Configuration. Any Transport Instances not “matched” by the other side are
skipped. For example, if the writer specifies udp and tcp transport instances and the reader only specifies tcp, the udp
transport instance is ignored. Matching algorithms may also be affected by QoS, configuration of the instances, and
other specifics of the transport implementation. The first pair of Transport Instances that successfully “connect” results
in a data link that is used for all subsequent data sample publication.

Configuration File Examples

The following examples explain the basic features of transport configuration via files and describe some common use
cases. These are followed by full reference documentation for these features.

202 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Single Transport Configuration

The simplest way to provide a transport configuration for your application is to use the OpenDDS configuration file.
Here is a sample configuration file that might be used by an application running on a computer with two network
interfaces that only wants to communicate using one of them:

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mytcp

[transport/mytcp]
transport_type=tcp
local_address=myhost

This file does the following (starting from the bottom up):

1. Defines a transport instance named mytcp with a transport type of tcp and the local address specified as myhost,
which is the host name corresponding to the network interface we want to use.

2. Defines a transport configuration named myconfig that uses the transport instance mytcp as its only transport.

3. Makes the transport configuration named myconfig the global transport configuration for all entities in this
process.

A process using this configuration file utilizes our customized transport configuration for all Data Readers and Writers
created by it (unless we specifically bind another configuration in the code as described in Using Multiple Configura-
tions).

Using Mixed Transports

This example configures an application to primarily use multicast and to “fall back” to tcp when it is unable to use
multicast. Here is the configuration file:

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mymulticast,mytcp

[transport/mymulticast]
transport_type=multicast

[transport/mytcp]
transport_type=tcp

The transport configuration named myconfig now includes two transport instances, mymulticast and mytcp. Neither
of these transport instances specify any parameters besides [transport] transport_type, so they use the default
configuration of these transport implementations. Users are free to use any of the transport-specific configuration
parameters that are listed in the following reference sections.

Assuming that all participating processes use this configuration file, the application attempts to use multicast to initiate
communication between data writers and readers. If the initial multicast communication fails for any reason (possibly
because an intervening router is not passing multicast traffic) tcp is used to initiate the connection.

2.12. Run-time Configuration 203



OpenDDS, Release 3.28.1

Using Multiple Configurations

For many applications, one configuration is not equally applicable to all communication within a given process. These
applications must create multiple Transport Configurations and then assign them to the different entities of the process.

For this example consider an application hosted on a computer with two network interfaces that requires communication
of some data over one interface and the remainder over the other interface. Here is our configuration file:

[common]
DCPSGlobalTransportConfig=config_a

[config/config_a]
transports=tcp_a

[config/config_b]
transports=tcp_b

[transport/tcp_a]
transport_type=tcp
local_address=hosta

[transport/tcp_b]
transport_type=tcp
local_address=hostb

Assuming hosta and hostb are the host names assigned to the two network interfaces, we now have separate config-
urations that can use tcp on the respective networks. The above file sets the config_a configuration as the default,
meaning we must manually bind any entities we want to use the other side to the config_b configuration.

OpenDDS provides two mechanisms to assign configurations to entities:

• Via source code by attaching a configuration to an entity

• Via configuration file by associating a configuration with a domain

Here is the source code mechanism (using a domain participant):

DDS::DomainParticipant_var dp =
dpf->create_participant(MY_DOMAIN,

PARTICIPANT_QOS_DEFAULT,
DDS::DomainParticipantListener::_nil(),
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

OpenDDS::DCPS::TransportRegistry::instance()->bind_config("config_b", dp);

Any Data Writers or Readers owned by this Domain Participant should now use the config_b configuration.

When directly binding a configuration to a data writer or reader, the bind_config call must occur before the reader or
writer is enabled. This is because the configuration is fixed on enable() and this is done automatically by default when
an entity is created. This is not an issue when binding configurations to domain participants, publishers, or subscribers.
Setting Entity Factory QoS autoenable_created_entities on the publisher or subscriber to false is required to
use bind_config succesfully on a reader or writer. For example:

DDS::PublisherQos pub_qos;
participant->get_default_publisher_qos(pub_qos);
pub_qos.entity_factory.autoenable_created_entities = false;

(continues on next page)

204 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

DDS::Publisher_var publisher = participant->create_publisher(pub_qos, /*...*/);
DDS::DataWriter_var datawriter1 = publisher->create_datawriter(/*...*/);
TheTransportRegistry->bind_config("tcp1", datawriter1);
datawriter1->enable();

The QoS can also be set on the domain participant or the service participant instead of the publisher or subscriber, but
that requires manually calling enable() all the child entities of that entity.

Transport Registry Example

OpenDDS allows developers to also define transport configurations and instances via C++ APIs. The
OpenDDS::DCPS::TransportRegistry class is used to construct OpenDDS::DCPS::TransportConfig and
OpenDDS::DCPS::TransportInst objects. The TransportConfig and TransportInst classes contain public
data member corresponding to the options defined below. This section contains the code equivalent of the simple
transport configuration file described in . First, we need to include the correct header files:

#include <dds/DCPS/transport/framework/TransportRegistry.h>
#include <dds/DCPS/transport/framework/TransportConfig.h>
#include <dds/DCPS/transport/framework/TransportInst.h>
#include <dds/DCPS/transport/tcp/TcpInst.h>

using namespace OpenDDS::DCPS;

Next we create the transport configuration, create the transport instance, configure the transport instance, and then add
the instance to the configuration’s collection of instances:

TransportConfig_rch cfg = TheTransportRegistry->create_config("myconfig");
TransportInst_rch inst = TheTransportRegistry->create_inst("mytcp", // name

"tcp"); // type

// Must cast to TcpInst to get access to transport-specific options
TcpInst_rch tcp_inst = dynamic_rchandle_cast<TcpInst>(inst);
tcp_inst->local_address_str_ = "myhost";

// Add the inst to the config
cfg->instances_.push_back(inst);

Lastly, we can make our newly defined transport configuration the global transport configuration:

TheTransportRegistry->global_config(cfg);

This code should be executed before any Data Readers or Writers are enabled.

See the header files included above for the full list of public data members and member functions that can be used. See
the option descriptions in the following sections for a full understanding of the semantics of these settings.

Stepping back and comparing this code to the original configuration file from, the configuration file is much simpler
than the corresponding C++ code and has the added advantage of being modifiable at run-time. It is easy to see why
we recommend that almost all applications should use the configuration file mechanism for transport configuration.

2.12. Run-time Configuration 205



OpenDDS, Release 3.28.1

Transport Configuration Properties

Transport Configurations are specified in the OpenDDS configuration file via sections with the format of [config/
<name>], where <name> is a unique name for that configuration within that process.

[config/<inst_name>]

transports=<inst_name>|<template_name>[,<inst_name>|<template_name>...]

Config store key: CONFIG_<inst_name>_TRANSPORTS
Required

The ordered list of transport instance or transport template names that this configuration will
utilize. This field is required for every transport configuration.

swap_bytes=<boolean>

Config store key: CONFIG_<inst_name>_SWAP_BYTES
Default: 0 (disabled)

A value of 0 causes DDS to serialize data in the source machine’s native endianness; a value of 1 causes
DDS to serialize data in the opposite endianness. The receiving side will adjust the data for its endianness
so there is no need to match this option between machines. The purpose of this option is to allow the
developer to decide which side will make the endian adjustment, if necessary.

passive_connect_duration=<msec>

Config store key: CONFIG_<inst_name>_PASSIVE_CONNECT_DURATION
Default: 10000 (10 sec)

Timeout (milliseconds) for initial passive connection establishment. A value of 0 would wait indefinitely
(not recommended).

Without a suitable connection timeout, the subscriber endpoint can potentially enter a state of deadlock
while waiting for the remote side to initiate a connection. Because there can be multiple transport instances
on both the publisher and subscriber side, this option needs to be set to a high enough value to allow the
publisher to iterate through the combinations until it succeeds.

In addition to the user-defined configurations, OpenDDS can implicitly define two transport configurations. The first
is the default configuration and includes all transport implementations that are linked into the process. If none are
found, then only [transport] transport_type=tcp is used. Each of these transport instances uses the default
configuration for that transport implementation. This is the global transport configuration used when the user does not
define one.

The second implicit transport configuration is defined whenever an OpenDDS configuration file is used. It is
given the same name as the file being read and includes all the transport instances defined in that file, in the
alphabetical order of their names. The user can most easily utilize this configuration by using the [common]
DCPSGlobalTransportConfig=$file option in the same file.

206 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Transport Instance Properties

Transport instances are specified in the OpenDDS configuration file via sections with the format of [transport/
<name>], where <name> is a unique name for that instance within that process. Each transport instance must specify
the [transport] transport_type option with a valid transport implementation type. The following sections list
the other options that can be specified, starting with those options common to all transport types and following with
those specific to each transport type.

When using dynamic libraries, the OpenDDS transport libraries are dynamically loaded whenever an instance of that
type is defined in a configuration file. When using custom transport implementations or static linking, the application
developer is responsible for ensuring that the transport implementation code is linked with their executables. See
Plugins for more information.

[transport/<inst_name>]

transport_type=tcp|udp|multicast|shmem|rtps_udp

Config store key: TRANSPORT_<inst_name>_TRANSPORT_TYPE
Required

Type of the transport; the list of available transports can be extended programmatically via the transport
framework.

tcp

Use the TCP Transport. See TCP Transport Configuration Properties for properties specific to this
transport.

udp

Use the UDP Transport. See UDP Transport Configuration Properties for properties specific to this
transport.

multicast

Use the Multicast Transport. See Multicast Transport Configuration Properties for properties specific
to this transport.

shmem

Use the Shared Memory Transport. See Shared Memory Transport Configuration Properties for prop-
erties specific to this transport.

rtps_udp

Use the RTPS/UDP Transport. See RTPS UDP Transport Configuration Properties for properties
specific to this transport.

max_packet_size=<n>

Config store key: TRANSPORT_<inst_name>_MAX_PACKET_SIZE
Default: 2147481599

The maximum size of a transport packet, including its transport header, sample header, and sample data.

2.12. Run-time Configuration 207



OpenDDS, Release 3.28.1

max_samples_per_packet=<n>

Config store key: TRANSPORT_<inst_name>_MAX_SAMPLES_PER_PACKET
Default: 10

Maximum number of samples in a transport packet.

optimum_packet_size=<n>

Config store key: TRANSPORT_<inst_name>_OPTIMUM_PACKET_SIZE
Default: 4096 (4 KiB)

Transport packets greater than this size will be sent over the wire even if there are still queued samples to be
sent. This value may impact performance depending on your network configuration and application nature.

thread_per_connection=<boolean>

Config store key: TRANSPORT_<inst_name>_THREAD_PER_CONNECTION
Default: 0 (disabled)

Enable or disable the thread per connection send strategy. This option will increase performance when
writing to multiple data readers on different process as long as the overhead of thread context switching
does not outweigh the benefits of parallel writes. This balance of network performance to context switching
overhead is best determined by experimenting. If a machine has multiple network cards, it may improve
performance by creating a transport for each network card.

datalink_release_delay=<msec>

Config store key: TRANSPORT_<inst_name>_DATALINK_RELEASE_DELAY
Default: 10000 (10 sec)

This is the delay in milliseconds that a datalink will be released after having no associations. Increasing this
value may reduce the overhead of re-establishment when reader/writer associations are added and removed
frequently.

datalink_control_chunks=<n>

Config store key: TRANSPORT_<inst_name>_DATALINK_CONTROL_CHUNKS
Default: 32

The number of chunks used to size allocators for transport control samples.

208 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

receive_preallocated_message_blocks=<n>

Config store key: TRANSPORT_<inst_name>_RECEIVE_PREALLOCATED_MESSAGE_BLOCKS
Default: 0 (use default)

Set to a positive number to override the number of message blocks that the allocator reserves memory for
eagerly (on startup).

receive_preallocated_data_blocks=<n>

Config store key: TRANSPORT_<inst_name>_RECEIVE_PREALLOCATED_DATA_BLOCKS
Default: 0 (use default)

Set to a positive number to override the number of data blocks that the allocator reserves memory for eagerly
(on startup).

TCP Transport Configuration Properties

This section describes the configuration properties for the TCP Transport. A properly configured transport provides
added resilience to underlying stack disturbances. Almost all of the options available to customize the connection and
reconnection strategies have reasonable defaults, but ultimately these values should to be chosen based upon a careful
study of the quality of the network and the desired QoS in the specific DDS application and target environment.

You can also configure the publisher and subscriber transport implementations programmatically, as described in Trans-
port Registry Example. Configuring subscribers and publishers should be identical, but different addresses/ports should
be assigned to each Transport Instance.

[transport/<inst_name>] (tcp)

active_conn_timeout_period=<msec>

Config store key: TRANSPORT_<inst_name>_ACTIVE_CONN_TIMEOUT_PERIOD
Default: 5000 (5 sec)

The time period (milliseconds) for the active connection side to wait for the connection to be established.
If not connected within this period then the on_publication_lost() callbacks will be called.

conn_retry_attempts=<n>

Config store key: TRANSPORT_<inst_name>_CONN_RETRY_ATTEMPTS
Default: 3

Number of reconnect attempts before giving up and calling the on_publication_lost() and
on_subscription_lost() callbacks.

2.12. Run-time Configuration 209



OpenDDS, Release 3.28.1

conn_retry_initial_delay=<msec>

Config store key: TRANSPORT_<inst_name>_CONN_RETRY_INITIAL_DELAY
Default: 500

Initial delay (milliseconds) for reconnect attempt. As soon as a lost connection is detected, a reconnect is
attempted. If this reconnect fails, a second attempt is made after this specified delay.

conn_retry_backoff_multiplier=<n>

Config store key: TRANSPORT_<inst_name>_CONN_RETRY_BACKOFF_MULTIPLIER
Default: 2.0

The backoff multiplier for reconnection tries. After the initial delay described above, subsequent de-
lays are determined by the product of this multiplier and the previous delay. For example, with a
conn_retry_initial_delay of 500 and a conn_retry_backoff_multiplier of 1.5, the second re-
connect attempt will be 0.5 seconds after the first retry connect fails; the third attempt will be 0.75 seconds
after the second retry connect fails; the fourth attempt will be 1.125 seconds after the third retry connect
fails.

enable_nagle_algorithm=<boolean>

Config store key: TRANSPORT_<inst_name>_ENABLE_NAGLE_ALGORITHM
Default: 0 (disabled)

Enable or disable the Nagle’s algorithm. Enabling the Nagle’s algorithm may increase throughput at the
expense of increased latency.

local_address=<host>:<port>

Config store key: TRANSPORT_<inst_name>_LOCAL_ADDRESS
Default: [common] DCPSDefaultAddress

Hostname and port of the connection acceptor. If only the host is specified and the port number is omitted,
the : is still required on the host specifier.

The local_address option is used by the peer to establish a connection. By default, the TCP transport
selects an ephemeral port number on the NIC with the FQDN (fully qualified domain name) resolved.
Therefore, you may wish to explicitly set the address if you have multiple NICs or if you wish to specify
the port number. When you configure inter-host communication, local_address can not be localhost and
should be configured with an externally visible address (i.e. 192.168.0.2), or you can leave it unspecified
in which case the FQDN and an ephemeral port will be used.

FQDN resolution is dependent upon system configuration. In the absence of a FQDN (e.g. example.
opendds.org), OpenDDS will use any discovered short names (e.g. example). If that fails, it will use the
name resolved from the loopback address (e.g. localhost).

210 Chapter 2. Developer’s Guide

https://en.wikipedia.org/wiki/Nagle%27s_algorithm


OpenDDS, Release 3.28.1

Note: OpenDDS IPv6 support requires that the underlying ACE/TAO components be built with IPv6
support enabled. The local_address needs to be an IPv6 decimal address or a FQDN with port number.
The FQDN must be resolvable to an IPv6 address.

max_output_pause_period=<msec>

Config store key: TRANSPORT_<inst_name>_MAX_OUTPUT_PAUSE_PERIOD
Default: 0 (disabled)

Maximum period (milliseconds) of not being able to send queued messages. If there are samples queued
and no output for longer than this period then the connection will be closed and on_*_lost() callbacks
will be called. The default value of 0 means that this check is not made.

passive_reconnect_duration=<msec>

Config store key: TRANSPORT_<inst_name>_PASSIVE_RECONNECT_DURATION
Default: 2000 (2 seconds)

The time period (milliseconds) for the passive connection side to wait for the connection to be reconnected.
If not reconnected within this period then the on_*_lost() callbacks will be called.

pub_address=<host>:<port>

Config store key: TRANSPORT_<inst_name>_PUB_ADDRESS

Override the address sent to peers with the configured string. This can be used for firewall traversal and
other advanced network configurations.

TCP Reconnection Properties

When a TCP connection gets closed OpenDDS attempts to reconnect. The reconnection process is (a successful re-
connect ends this sequence):

• Upon detecting a lost connection immediately attempt to reconnect.

• If that fails, then wait [transport] conn_retry_initial_delay (tcp) milliseconds and attempt recon-
nect.

• While we have not tried more than [transport] conn_retry_attempts (tcp), wait (previous wait time *
[transport] conn_retry_backoff_multiplier (tcp)) milliseconds and attempt to reconnect.

2.12. Run-time Configuration 211



OpenDDS, Release 3.28.1

UDP Transport Configuration Properties

This section describes the configuration properties for the UDP Transport.

[transport/<inst_name>] (udp)

local_address=<host>:<port>

Config store key: TRANSPORT_<inst_name>_LOCAL_ADDRESS
Default: [common] DCPSDefaultAddress

Hostname and port of the listening socket. The port can be omitted, in which case the value should end in
:.

send_buffer_size=<n>

Config store key: TRANSPORT_<inst_name>_SEND_BUFFER_SIZE
Default: Platform value of ACE_DEFAULT_MAX_SOCKET_BUFSIZ

Total send buffer size in bytes for UDP payload.

rcv_buffer_size=<n>

Config store key: TRANSPORT_<inst_name>_RCV_BUFFER_SIZE
Default: Platform value of ACE_DEFAULT_MAX_SOCKET_BUFSIZ

Total receive buffer size in bytes for UDP payload.

Multicast Transport Configuration Properties

This section describes the configuration properties for the Multicast Transport.

This transport has the following restrictions:

• At most, one DDS domain may be used per multicast group;

• A given participant may only have a single multicast transport attached per multicast group; if you wish to
send and receive samples on the same multicast group in the same process, independent participants must be
used.

[transport/<inst_name>] (multicast)

default_to_ipv6=<boolean>

Config store key: TRANSPORT_<inst_name>_DEFAULT_TO_IPV6
Default: 0 (disabled)

212 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

The default_to_ipv6 and port_offset options affect how default multicast group addresses are se-
lected. If default_to_ipv6 is set to 1 (enabled), then the default IPv6 address will be used ([FF01::80]).

group_address=<host>:<port>

Config store key: TRANSPORT_<inst_name>_GROUP_ADDRESS
Default: 224.0.0.128:,[FF01::80]:

This property may be used to manually define a multicast group to join to exchange data. Both IPv4 and
IPv6 addresses are supported. OpenDDS IPv6 support requires that the underlying ACE/TAO components
be built with IPv6 support enabled.

local_address=<address>

Config store key: TRANSPORT_<inst_name>_LOCAL_ADDRESS
Default: [common] DCPSDefaultAddress

If non-empty, address of a local network interface which is used to join the multicast group. On hosts with
multiple network interfaces, it may be necessary to specify that the multicast group should be joined on a
specific interface.

nak_delay_intervals=<n>

Config store key: TRANSPORT_<inst_name>_NAK_DELAY_INTERVALS
Default: 4

The number of intervals between naks after the initial nak.

nak_depth=<n>

Config store key: TRANSPORT_<inst_name>_NAK_DEPTH
Default: 32

The number of datagrams to retain in order to service repair requests (reliable only).

nak_interval=<msec>

Config store key: TRANSPORT_<inst_name>_NAK_INTERVAL
Default: 500

The minimum number of milliseconds to wait between repair requests (reliable only). This interval is
randomized to prevent potential collisions between similarly associated peers. Use this option so that naks
will be not be sent repeatedly for unrecoverable packets before nak_timeout.

2.12. Run-time Configuration 213



OpenDDS, Release 3.28.1

nak_max=<n>

Config store key: TRANSPORT_<inst_name>_NAK_MAX
Default: 3

The maximum number of times a missing sample will be nak’ed. The maximum delay between repair
requests is bounded to double the minimum value.

nak_timeout=<msec>

Config store key: TRANSPORT_<inst_name>_NAK_TIMEOUT
Default: 30000 (30 sec)

The maximum number of milliseconds to wait before giving up on a repair response (reliable only).

port_offset=<n>

Config store key: TRANSPORT_<inst_name>_PORT_OFFSET
Default: 49152

Used to set the port number when not specifying a group address. When a group address is specified, the
port number within it is used. If no group address is specified, the port offset is used as a port number. This
value should not be set less than 49152.

rcv_buffer_size=<n>

Config store key: TRANSPORT_<inst_name>_RCV_BUFFER_SIZE
Default: 0 (system default buffer size)

The size of the socket receive buffer in bytes. A value of zero indicates that the system default value is used.

reliable=<boolean>

Config store key: TRANSPORT_<inst_name>_RELIABLE
Default: 1 (enabled)

Enables reliable communication.

syn_backoff=<n>

Config store key: TRANSPORT_<inst_name>_SYN_BACKOFF
Default: 2.0

214 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

The exponential base used during handshake retries; smaller values yield shorter delays between attempts.

Given the values of syn_backoff and syn_interval, it is possible to calculate the delays between hand-
shake attempts (bounded by syn_timeout):

delay = syn_interval * syn_backoff ^ number_of_retries

For example, if the default configuration options are assumed, the delays between handshake attempts would
be: 0, 250, 1000, 2000, 4000, and 8000 milliseconds respectively.

syn_interval=<msec>

Config store key: TRANSPORT_<inst_name>_SYN_INTERVAL
Default: 250

The minimum number of milliseconds to wait between handshake attempts during association.

syn_timeout=<msec>

Config store key: TRANSPORT_<inst_name>_SYN_TIMEOUT
Default: 30000 (30 sec)

The maximum number of milliseconds to wait before giving up on a handshake response during association.

ttl=<n>

Config store key: TRANSPORT_<inst_name>_TTL
Default: 1 (all data is restricted to the local network)

The value of the time-to-live (TTL) field of any datagrams sent. This value specifies the number of hops
the datagram will traverse before being discarded by the network.

async_send=<boolean>

Config store key: TRANSPORT_<inst_name>_ASYNC_SEND
Default: 0 (disabled)

Send datagrams using asynchronous I/O on platforms that support it efficiently.

2.12. Run-time Configuration 215



OpenDDS, Release 3.28.1

RTPS UDP Transport Configuration Properties

This section describes the configuration properties for the RTPS/UDP Transport.

To provide an RTPS variant of the single configuration example from Single Transport Configuration, the configuration
file below simply introduces the myrtps transport and sets [transport] transport_type=rtps_udp. All other
items remain the same.

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=myrtps

[transport/myrtps]
transport_type=rtps_udp
local_address=myhost

To extend our examples to a mixed transport configuration as shown in Using Mixed Transports, below shows the use of
an rtps_udp transport mixed with a TCP Transport transport. The interesting pattern that this allows for is a deployed
OpenDDS application that can be, for example, communicating using tcp with other OpenDDS participants while
communicating in an interoperability configuration with a non-OpenDDS participant using rtps_udp.

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mytcp,myrtps

[transport/myrtps]
transport_type=rtps_udp

[transport/mytcp]
transport_type=tcp

Some implementation notes related to using the rtps_udp transport protocol are as follows:

1. RTPS v2.3 8.7.2.2.7 WRITER_DATA_LIFECYCLE notes that the same Data sub-message should dispose and
unregister an instance. OpenDDS may use two Data sub-messages.

2. RTPS UDP transport instances can not be shared by different Domain Participants. Configuration templates can
be used to workaround this.

3. Transport auto-selection (negotiation) is partially supported with RTPS such that the rtps_udp transport goes
through a handshaking phase only in reliable mode.

[transport/<inst_name>] (rtps_udp)

use_multicast=<boolean>

Config store key: TRANSPORT_<inst_name>_USE_MULTICAST
Default: 1 (enabled)

The rtps_udp transport can use Unicast or Multicast. When set to 0 (false) the transport uses Unicast,
otherwise a value of 1 (true) will use Multicast.

216 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=130&view=FitH,310.68


OpenDDS, Release 3.28.1

multicast_group_address=<host>:<port>

Config store key: TRANSPORT_<inst_name>_MULTICAST_GROUP_ADDRESS
Default: 239.255.0.2:7401

When use_multicast is enabled, this is the multicast network address that should be used. If <port> is
not specified for the network address, port 7401 will be used.

ipv6_multicast_group_address=<network_address>

Config store key: TRANSPORT_<inst_name>_IPV6_MULTICAST_GROUP_ADDRESS
Default: [FF03::2]:7401

When the transport is set to multicast, this is the multicast network address that should be used. If <port>
is not specified for the network address, port 7401 will be used.

multicast_interface=<iface>

Config store key: TRANSPORT_<inst_name>_MULTICAST_INTERFACE
Default: [common] DCPSDefaultAddress

Specifies the network interface to be used by this transport instance. This uses a platform-specific format
that identifies the network interface.

local_address=<addr>:[<port>]

Config store key: TRANSPORT_<inst_name>_LOCAL_ADDRESS
Default: [common] DCPSDefaultAddress

Bind the socket to the given address and port. Port can be omitted but the trailing : is required.

ipv6_local_address=<addr>:[<port>]

Config store key: TRANSPORT_<inst_name>_IPV6_LOCAL_ADDRESS
Default: [common] DCPSDefaultAddress

Bind the socket to the given address and port. Port can be omitted but the trailing : is required.

advertised_address=<addr>:[<port>]

Config store key: TRANSPORT_<inst_name>_ADVERTISED_ADDRESS

2.12. Run-time Configuration 217



OpenDDS, Release 3.28.1

Sets the address advertised by the transport. Typically used when the participant is behind a firewall or
NAT. Port can be omitted but the trailing : is required.

ipv6_advertised_address=<addr>:[<port>]

Config store key: TRANSPORT_<inst_name>_IPV6_ADVERTISED_ADDRESS

Sets the address advertised by the transport. Typically used when the participant is behind a firewall or
NAT. Port can be omitted but the trailing : is required.

send_delay=<msec>

Config store key: TRANSPORT_<inst_name>_SEND_DELAY
Default: 10

Time in milliseconds for an RTPS Writer to wait before sending data.

nak_depth=<n>

Config store key: TRANSPORT_<inst_name>_NAK_DEPTH
Default: 32

The number of data samples to retain in order to service repair requests (reliable only).

nak_response_delay=<msec>

Config store key: TRANSPORT_<inst_name>_NAK_RESPONSE_DELAY
Default: 200

Protocol tuning parameter that allows the RTPS Writer to delay the response (expressed in milliseconds)
to a request for data from a negative acknowledgment.

See RTPS v2.3 8.4.7.1 RTPS Writer for more information.

heartbeat_period=<msec>

Config store key: TRANSPORT_<inst_name>_HEARTBEAT_PERIOD
Default: 1000 (1 sec)

Protocol tuning parameter that specifies in milliseconds how often an RTPS Writer announces the avail-
ability of data.

See RTPS v2.3 8.4.7.1 RTPS Writer for more information.

218 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=70&view=FitH,209.68
https://www.omg.org/spec/DDSI-RTPS/2.3/PDF#page=70&view=FitH,209.68


OpenDDS, Release 3.28.1

ResponsiveMode=<boolean>

Config store key: TRANSPORT_<inst_name>_RESPONSIVE_MODE
Default: 0 (disabled)

Causes reliable writers and readers to send additional messages which may reduce latency.

max_message_size=<n>

Config store key: TRANSPORT_<inst_name>_MAX_MESSAGE_SIZE
Default: 65466 (maximum worst-case UDP payload size)

The maximum message size.

send_buffer_size=<bytes>

Config store key: TRANSPORT_<inst_name>_SEND_BUFFER_SIZE
Default: 0 (system default value is used, 65466 typical)

Socket send buffer size for sending RTPS messages.

rcv_buffer_size=<bytes>

Config store key: TRANSPORT_<inst_name>_RCV_BUFFER_SIZE
Default: 0 (system default value is used, 65466 typical)

Socket receive buffer size for receiving RTPS messages.

ttl=<n>

Config store key: TRANSPORT_<inst_name>_TTL
Default: 1 (all data is restricted to the local network)

The value of the time-to-live (TTL) field of any multicast datagrams sent. This value specifies the number
of hops the datagram will traverse before being discarded by the network.

DataRtpsRelayAddress=<host>:<port>

Config store key: TRANSPORT_<inst_name>_DATA_RTPS_RELAY_ADDRESS

Specifies the address of the RtpsRelay for RTPS messages.

2.12. Run-time Configuration 219



OpenDDS, Release 3.28.1

RtpsRelayOnly=<boolean>

Config store key: TRANSPORT_<inst_name>_RTPS_RELAY_ONLY
Default: 0

Only send RTPS message to the RtpsRelay (for debugging).

UseRtpsRelay=<boolean>

Config store key: TRANSPORT_<inst_name>_USE_RTPS_RELAY
Default: 0

Send messages to the RtpsRelay. Messages will only be sent if DataRtpsRelayAddress is set.

DataStunServerAddress=<host>:<port>

Config store key: TRANSPORT_<inst_name>_DATA_STUN_SERVER_ADDRESS

Specifies the address of the STUN server to use for RTPS when using ICE.

UseIce=<boolean>

Config store key: TRANSPORT_<inst_name>_USE_ICE
Default: 0

Enable or disable ICE for this transport instance.

Additional RTPS UDP Features

The RTPS UDP transport implementation has capabilities that can only be enabled by API. These features cannot be
enabled using configuration files.

The RtpsUdpInst class has a method count_messages(bool flag) via inheritance from TransportInst. With
count_messages enabled, the transport will track various counters and make them available to the application us-
ing the method append_transport_statistics(TransportStatisticsSequence& seq). The elements of that
sequence are defined in IDL: OpenDDS::DCPS::TransportStatistics and detailed in the tables below.

220 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Table 3: TransportStatistics

Type Name Description
string transport The name of the transport.
MessageCountSequencemessage_countSet of message counts grouped by remote address.

See the MessageCount table below.
GuidCountSequencewriter_resend_countMap of counts indicating how many times a local writer has resent a data sample.

Each element in the sequence is a structure containing a GUID and a count.
GuidCountSequencereader_nack_countMap of counts indicating how many times a local reader has requested a sample to

be resent.

Table 4: MessageCount

Type Name Description
Locator_t locator A byte array containing an IPv4 or IPv6 address.
MessageCountKind kind Key indicating the type of message count for transports that use multiple

protocols.
boolean relay Indicates that the locator is a relay.
uint32 send_count Number of messages sent to the locator.
uint32 send_bytes Number of bytes sent to the locator.
uint32 send_fail_count Number of sends directed at the locator that failed.
uint32 send_fail_bytes Number of bytes directed at the locator that failed.
uint32 recv_count Number of messages received from the locator.
uint32 recv_bytes Number of bytes received from the locator.

Shared Memory Transport Configuration Properties

This section describes the configuration properties for the Shared Memory Transport. This transport type is supported
Unix-like platforms with POSIX/XSI shared memory and on Windows platforms. The shared memory transport type
can only provide communication between transport instances on the same host. As part of transport negotiation, if there
are multiple transport instances available for communication between hosts, the shared memory transport instances will
be skipped so that other types can be used.

[transport/<inst_name>] (shmem)

pool_size=<bytes>

Config store key: TRANSPORT_<inst_name>_POOL_SIZE
Default: 16777216 (16 MiB)

The size of the single shared-memory pool allocated.

datalink_control_size=<bytes>

Config store key: TRANSPORT_<inst_name>_DATALINK_CONTROL_SIZE
Default: 4096 (4 KiB)

2.12. Run-time Configuration 221



OpenDDS, Release 3.28.1

The size of the control area allocated for each data link. This allocation comes out of the shared-memory
pool defined by pool_size.

host_name=<host>

Config store key: TRANSPORT_<inst_name>_HOST_NAME
Default: Uses fully qualified domain name

Override the host name used to identify the host machine.

2.12.5 ICE Configuration

The [ice] section of an OpenDDS configuration file contains settings for the ICE Agent. See Interactive Connectivity
Establishment (ICE) for RTPS for details about OpenDDS’s implementation of ICE. A sample [ice] section follows:

[ice]
Ta=50
ConnectivityCheckTTL=300
ChecklistPeriod=10
IndicationPeriod=15
NominatedTTL=300
ServerReflexiveAddressPeriod=30
ServerReflexiveIndicationCount=10
DeferredTriggeredCheckTTL=300
ChangePasswordPeriod=300

[ice]

Ta=<msec>

Config store key: ICE_TA
Default: 50

Minimum interval between ICE sends.

ConnectivityCheckTTL=<sec>

Config store key: ICE_CONNECTIVITY_CHECK_TTL
Default: 300 (5 minutes)

Maximum duration of connectivity check.

ChecklistPeriod=<sec>

Config store key: ICE_CHECKLIST_PERIOD
Default: 10

222 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Attempt to cycle through all of the connectivity checks for a candidate in this amount of time.

IndicationPeriod=<sec>

Config store key: ICE_INDICATION_PERIOD
Default: 15

Send STUN indications to peers to maintain NAT bindings at this period.

NominatedTTL=<sec>

Config store key: ICE_NOMINATED_TTL
Default: 300 (5 minutes)

Forget a valid candidate if an indication is not received in this amount of time.

ServerReflexiveAddressPeriod=<sec>

Config store key: ICE_SERVER_REFLEXIVE_ADDRESS_PERIOD
Default: 30

Send a messages to the STUN server at this period.

ServerReflexiveIndicationCount=<integer>

Config store key: ICE_SERVER_REFLEXIVE_INDICATION_COUNT
Default: 10

Send this many indications before sending a new binding request to the STUN server.

DeferredTriggeredCheckTTL=<sec>

Config store key: ICE_DEFERRED_TRIGGERED_CHECK_TTL
Default: 300 (5 minutes)

Purge deferred checks after this amount of time.

ChangePasswordPeriod=<sec>

Config store key: ICE_CHANGE_PASSWORD_PERIOD
Default: 300 (5 minutes)

Change the ICE password after this amount of time.

2.12. Run-time Configuration 223



OpenDDS, Release 3.28.1

2.12.6 Discovery and Transport Configuration Templates

OpenDDS supports dynamic configuration of RTPS Discovery and Transports by means of configuration templates in
OpenDDS configuration files. This feature adds 3 optional file sections, [DomainRange], [Customization], and
[transport_template]. Configuration templates are processed at application startup; however, creation of domain,
discovery, and transport objects is deferred until a participant is created in a corresponding domain.

Without templates an OpenDDS application with participants using RTPS discovery in 5 different domains will have a
configuration file with 5 separate, but nearly identical, [domain] sections. The same functionality can be accomplished
with a single [DomainRange/1-5] section using templates.

Configuring Discovery for a Set of Similar Domains

[DomainRange/<minimum_domain_id>-<maximum_domain_id>]

Domain ranges must have a minimum and maximum domain, such as [DomainRange/1-5]. [DomainRange]
sections are templates for the [domain] sections and accept all [domain] configuration properties and the
following configuration properties:

DiscoveryTemplate=<rtps_discovery_inst_name>

Config store key:
DOMAIN_RANGE_<minimum_domain_id>-<maximum_domain_id>_DISCOVERY_TEMPLATE

Required

Domain ranges uses this rather than the [domain] DiscoveryConfig property to denote the correspond-
ing [rtps_discovery] section.

Customization=<customization_name>

Config store key: DOMAIN_RANGE_<minimum_domain_id>-<maximum_domain_id>_CUSTOMIZATION

Use this [Customization] section.

See Example Configuration File for a [DomainRange] example.

Configuring a Set of Similar Transports

[transport_template/<template_name>]

[transport_template] sections are templates for the [transport] sections and accept all [transport]
configuration properties and the following configuration properties:

instantiation_rule=|per_participant

Config store key: TRANSPORT_TEMPLATE_<template_name>_INSTANTIATION_RULE
Default: (empty string, a transport instance is created for each domain)

224 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

per_participant

A separate transport instance will be created for each DomainParticipant. This allows applications to
have multiple participants per domain when using RTPS Discovery.

Customization=<customization_name>

Config store key: TRANSPORT_TEMPLATE_<template_name>_CUSTOMIZATION

Use this [Customization] section.

To associate a transport template with a domain range in a configuration file, set the [common]
DCPSGlobalTransportConfig property to the name of the [config] whose [config] transports prop-
erty is the name of the [transport_template]. For example, for a global config setting:

[common]
DCPSGlobalTransportConfig=primary_config

a corresponding config could be:

[config/primary_config]
transports=auto_config_rtps

and the partial transport template would be:

[transport_template/auto_config_rtps]
transport_type=rtps_udp

Domain participants that belong to a domain that is configured by a template can bind to non-global transport config-
urations using the bind_config function. See Using Multiple Configurations for a discussion of bind_config.

If [transport_template] instantiation_rule=per_participant, a separate transport instance will be cre-
ated for each participant in the domain.

See Example Configuration File for a [transport_template] example.

Adding Customizations

[Customization/<customization_name>]

This section can be used to modify values based the on the domain ID so they are unique for each domain.

multicast_group_address=|add_domain_id_to_ip_addr|add_domain_id_to_port

Config store key: CUSTOMIZATION_<customization_name>_MULTICAST_GROUP_ADDRESS
Default: (empty string, not modified)

Modifies [transport] multicast_group_address (rtps_udp).

add_domain_id_to_ip_addr

Adds the domain ID to the last octet of the multicast group address.

2.12. Run-time Configuration 225



OpenDDS, Release 3.28.1

add_domain_id_to_port

Use the domain ID in the port calculation for the multicast group address.

InteropMulticastOverride=|AddDomainId

Config store key: CUSTOMIZATION_<customization_name>_INTEROP_MULTICAST_OVERRIDE
Default: (empty string, not modified)

Modifies [rtps_discovery] InteropMulticastOverride.

AddDomainId

Adds the domain id to the last octet of the multicast address used for SPDP.

Example Configuration File

The following is an example configuration file for domains 2 through 10. It includes customizations to add the do-
main ID to [rtps_discovery] InteropMulticastOverride and [transport] multicast_group_address
(rtps_udp).

[common]
DCPSGlobalTransportConfig=the_config

[DomainRange/2-10]
DiscoveryTemplate=DiscoveryConfigTemplate

[Customization/discovery_customization]
InteropMulticastOverride=AddDomainId

[Customization/transport_customization]
multicast_group_address=add_domain_id_to_ip_addr,add_domain_id_to_port

[rtps_discovery/DiscoveryConfigTemplate]
InteropMulticastOverride=239.255.4.0
Customization=discovery_customization
SedpMulticast=1

[config/the_config]
transports=auto_config_rtps

[transport_template/auto_config_rtps]
transport_type=rtps_udp
instantiation_rule=per_participant
Customization=transport_customization
multicast_group_address=239.255.2.0

226 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.12.7 Logging

By default, the OpenDDS framework will only log serious errors and warnings that can’t be conveyed to the user in
the API. An OpenDDS user may increase the amount of logging via the log level and debug logging via controls at the
DCPS, Transport, or Security layers.

The default destination of these log messages is the process’s standard error stream. See Common Configuration Prop-
erties for options controlling the destination and formatting of log messages.

The highest level logging is controlled by the general log levels listed in the following table.

Table 5: :header-rows: 1

Level Values Description

N/A
[common]
DCPSLogLevel=none
log_level:
LogLevel::None
ACE_Log_Priority: N/A

Disables all logging.

Er-
ror

[common]
DCPSLogLevel=error
log_level:
LogLevel::Error
ACE_Log_Priority:
LM_ERROR

Logs issues that may prevent OpenDDS from functioning properly or func-
tioning as configured.

Warn-
ing

[common]
DCPSLogLevel=warning
log_level:
LogLevel::Warning
ACE_Log_Priority:
LM_WARNING

Log issues that should probably be addressed, but don’t prevent OpenDDS
from functioning. This is the default.

No-
tice

[common]
DCPSLogLevel=notice
log_level:
LogLevel::Notice
ACE_Log_Priority:
LM_NOTICE

Logs details of issues that are returned to the user via the API, for example
through a DDS::ReturnCode_t.

Info
[common]
DCPSLogLevel=info
log_level:
LogLevel::Info
ACE_Log_Priority:
LM_INFO

Logs a small amount of basic information, such as the version of OpenDDS
being used.

De-
bug

[common]
DCPSLogLevel=debug
log_level:
LogLevel::Debug
ACE_Log_Priority:
LM_DEBUG

This level doesn’t directly control any logging but will enable at least DCPS
and security debug level 1. For backwards compatibility, setting DCPS de-
bug logging to greater than zero will set this log level. Setting the log level
to below this level will disable all debug logging.

The log level can be set a number of ways. To do it with command line arguments, pass:

-DCPSLogLevel notice

Using a configuration file option is similar:

2.12. Run-time Configuration 227



OpenDDS, Release 3.28.1

[common]
DCPSLogLevel=notice

Doing this from code can be done using an enumerator or a string:

OpenDDS::DCPS::log_level.set(OpenDDS::DCPS::LogLevel::Notice);
OpenDDS::DCPS::log_level.set_from_string("notice");

Passing invalid levels to the text-based methods will cause warning messages to be logged unconditionally, but will not
cause the DomainParticipantFactory to fail to initialize.

DCPS Layer Debug Logging

Debug logging in the DCPS layer of OpenDDS is controlled by the [common] DCPSDebugLevel configuration option
and command-line option. It can also be set in application code using:

OpenDDS::DCPS::set_DCPS_debug_level(level)

The level defaults to a value of 0 and has values of 0 to 10 as defined below:

• 0 – debug logging is disabled

• 1 – logs that should happen once per process

• 2 – logs that should happen once per DDS entity

• 4 – logs that are related to administrative interfaces

• 6 – logs that should happen every Nth sample write/read

• 8 – logs that should happen once per sample write/read

• 10 – logs that may happen more than once per sample write/read

Transport Layer Debug Logging

OpenDDS transport debug layer logging is controlled via the [common] DCPSTransportDebugLevel con-
figuration option. For example, to add transport layer logging to any OpenDDS application that uses
TheParticipantFactoryWithArgs, add the following option to the command line:

-DCPSTransportDebugLevel level

The transport layer logging level can also be configured by setting the variable:

OpenDDS::DCPS::Transport_debug_level = level;

Valid transport logging levels range from 0 to 5 with increasing verbosity of output.

Note: Transport logging level 6 is available to generate system trace logs. Using this level is not recommended as
the amount of data generated can be overwhelming and is mostly of interest only to OpenDDS developers. Setting the
logging level to 6 requires defining the DDS_BLD_DEBUG_LEVEL macro to 6 and rebuilding OpenDDS.

There are additional debug logging options available through the transport_debug object that are separate from the
logging controlled by the transport debug level. For the moment this can only be configured using C++; for example:

228 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

OpenDDS::DCPS::transport_debug.log_progress = true;

Table 6: Transport Debug Logging Categories

Option Description
log_progress Log progress for RTPS entity discovery and association.
log_dropped_messagesLog received RTPS messages that were dropped.
log_nonfinal_messagesLog non-final RTPS messages send or received. Useful to gauge lost messages and resends.
log_fragment_storageLog fragment reassembly process for transports where that applies. Also logged when the

transport debug level is set to the most verbose.
log_remote_countsLog number of associations and pending associations of RTPS entities.

Security Debug Logging

When OpenDDS is compiled with security enabled, debug logging for security can be enabled using [common]
DCPSSecurityDebug. Security logging is divided into categories, although [common] DCPSSecurityDebugLevel
is also provided, which controls the categories in a similar manner and using the same scale as [common]
DCPSDebugLevel.

Table 7: Security Debug Logging Categories

Option Debug
Level

Description

N/A 0 The default. Security related messages are not logged.
access_error1 Log errors from permission and governance file parsing.
new_entity_error1 Log security-related errors that prevented a DDS entity from being created.
cleanup_error1 Log errors from cleaning up DDS entities in the security plugins.
access_warn 2 Log warnings from permission and governance file parsing.
auth_warn 3 Log warnings from the authentication and handshake that happen when two secure par-

ticipants discover each other.
encdec_error3 Log errors from the encryption and decryption of RTPS messages.
new_entity_warn3 Log security-related warnings from creating a DDS entity.
bookkeeping 4 Log generation of crypto handles and keys for local DDS entities and tracking crypto

handles and keys for remote DDS entities.
auth_debug 4 Log debug information from the authentication and handshake that happen when two

secure participants discover each other.
encdec_warn 4 Log warnings from the encryption and decryption of RTPS messages.
encdec_debug8 Log debug information from the encryption and decryption of RTPS messages.
showkeys 9 Log the whole key when generating it, receiving it, and using it.
chlookup 10 Very verbosely prints the steps being taken when looking up a crypto handle for decrypt-

ing. This is most useful to see what keys a participant has.
all 10 Enable all the security related logging.

Categories are passed to DCPSecurityDebug using a comma limited list:

-DCPSSecurityDebug=access_warn,showkeys

Unknown categories will cause warning messages, but will not cause the DomainParticipantFactory to fail to
initialize.

Like the other debug levels, security logging can also be programmatically configured. All the following are equivalent:

2.12. Run-time Configuration 229



OpenDDS, Release 3.28.1

OpenDDS::DCPS::security_debug.access_warn = true;
OpenDDS::DCPS::security_debug.set_debug_level(1);
OpenDDS::DCPS::security_debug.parse_flags(ACE_TEXT("access_warn"));

2.13 opendds_idl

opendds_idl is one of the code generators used in the process of building OpenDDS and OpenDDS applications. It
can be used in a number of different ways to customize how source code is generated from IDL files. See Processing
the IDL for an overview of the default usage pattern.

The OpenDDS IDL compiler is invoked using the opendds_idl executable, located in bin/ (on the PATH). It parses
a single IDL file and generates the serialization and key support code that OpenDDS requires to marshal and demar-
shal the types described in the IDL file, as well as the type support code for the data readers and writers. For each
IDL file processed, such as xyz.idl, it generates three files: xyzTypeSupport.idl, xyzTypeSupportImpl.h, and
xyzTypeSupportImpl.cpp. In the typical usage, opendds_idl is passed a number of options and the IDL file name
as a parameter. For example,

opendds_idl [options...] Foo.idl

Subsequent sections describe all of the command-line options and the ways that opendds_idl can be used to generate
alternate mappings.

2.13.1 opendds_idl Command Line Options

--help, -h

Prints a help message and exits.

-v

Enables verbose/debug logging.

--version, -V

Prints version numbers of both TAO and OpenDDS.

--idl-version VERSION

Set the version of the IDL specification to use. The default is 4.

--list-idl-versions

List the versions of IDL at least partially supported and exits.

--syntax-only

Just check syntax of input files and exit without generating any code.

-Wb,export_macro=MACRO

Use the export macro for generating C++ implementation code named MACRO. By default export macros are
not used. --export is an alias for this.

-Wb,export_include=FILE

Add an additional header FILE to #include in generated code that has the export macro.

-Wb,pch_include=FILE

Include a pre-compiled header FILE in generated C++ files.

230 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/bin/


OpenDDS, Release 3.28.1

-Dname[=value]

Define a preprocessor macro named name optionally with value value for IDL.

-Idir

Adds dir to the preprocessor include path for IDL.

-o OUTPUT_PATH

Output directory where generated files are put. By default this is the current working directory.

-Wb,java

Generate Java Bindings for generated TypeSupport implementation classes. See Java Bindings for more infor-
mation.

-Gitl

Generate “Intermediate Type Language” descriptions of topic types. These files are used by the Wireshark
dissector or other external applications.

-GfaceTS

Generate FACE (Future Airborne Capability Environment) Transport Services API. See Safety Profile for more
information.

-Gv8

Generate type support for converting data samples to/from V8 JavaScript objects -Wb,v8 is an alias for this.

-Gxtypes-complete

Generate complete XTypes TypeObjects which can be used to provide type information to applications that don’t
have compile-time knowledge of the IDL. By default only minimal TypeObjects are generated. See Dynamic
Language Binding for more information.

-Gequality

Generate == and != for structs and unions. The members of the struct or union must have a type that could appear
in a DDS topic and be supported by opendds_idl.

-Lface

Generates IDL-to-C++ mapping for FACE. See Safety Profile for more information.

-Lspcpp

Generates IDL-to-C++ mapping for Safety Profile.

-Lc++11

Generates IDL-to-C++11 mapping.

-Wb,tao_include_prefix=S

Prefix the string S to #include directives meant to include headers generated by tao_idl.

-St

Suppress generation of IDL TypeCodes when one of the -L options are present.

--unknown-annotations REACTION

Control the reaction to unknown IDL annotations. REACTION can be:

• warn-once – the default, warn once per annotation with the same name.

• warn-all – warn for every use of an unknown annotation.

• error – similar to warn-all, but causes the compiler to exit with an error status when finished.

• ignore – ignore all unknown annotations.

2.13. opendds_idl 231



OpenDDS, Release 3.28.1

--no-dcps-data-type-warnings

Don’t warn about #pragma DCPS_DATA_TYPE. See Identifying Topic Types for more information.

--[no-]default-nested

Un-annotated types/modules are treated as nested. By default all types are nested by default See Topic Types vs.
Nested Types for details.

--default-extensibility EXT

Set the default XTypes extensibility. EXT can be:

• final

• appendable (default)

• mutable

--default-autoid VALUE

Set the default XTypes auto member-id assignment strategy. VALUE can be sequential (the default) or hash.

--default-try-construct VALUE

Set the default XTypes try-construct strategy. VALUE can be discard (the default), use-default, or trim.

--old-typeobject-encoding

Added in version 3.18.

Use the pre-3.18 encoding of TypeObjects when deriving TypeIdentifiers.

--default-enum-extensibility-zero

Added in version 3.22.

Do not set the type flags for enums. This flag is for simulating the behavior of OpenDDS before 3.22.

--old-typeobject-member-order

Added in version 3.24.

Use the pre-3.24 struct and union member order for TypeObjects, which is ordered by member id instead of
declared order. See 3.24.0 news entry for more info.

The code generation options allow the application developer to use the generated code in a wide variety of environ-
ments. Since IDL may contain preprocessing directives (#include, #define, etc.), the C++ preprocessor is invoked
by opendds_idl. The -I and -D options allow customization of the preprocessing step. The -Wb,export_macro
option lets you add an export macro to your class definitions. This is required if the generated code is going to reside
in a shared library and the compiler (such as Visual C++ or GCC) uses the export macro (dllexport on Visual C++ /
overriding hidden visibility on GCC). The -Wb,pch_include option is required if the generated implementation code
is to be used in a project that uses precompiled headers.

2.13.2 Using the IDL-to-C++11 Mapping

The IDL-to-C++11 Mapping is a separate specification from the OMG. Like the “classic” IDL-to-C++ Mapping,
IDL-to-C++11 describes how IDL constructs (structs, sequences, unions, etc.) should appear in C++. Since the IDL-
to-C++11 Mapping assumes a C++11 (or higher) compiler and standard library, the code generated is easier to use and
looks more natural to C++ developers who are not familiar with the classic mapping. For example, IDL strings, arrays,
and sequences map to their equivalents in the std namespace: string, array, and vector. All of the details of the
mapping are spelled out in the specification document (available at https://www.omg.org/spec/CPP11), however the
easiest way to get started with the mapping is to generate code from IDL and examine the generated header file.

In the default mode of opendds_idl (as described in Processing the IDL), responsibility for generating the language
mapping is delegated to tao_idl (using the IDL-to-C++ classic mapping). In this case, opendds_idl is only respon-
sible for generating the OpenDDS-specific additions such as TypeSupport.idl and the marshal/demarshal functions.

232 Chapter 2. Developer’s Guide

https://www.omg.org/spec/CPP11


OpenDDS, Release 3.28.1

Contrast this with using opendds_idl for IDL-to-C++11. In this case, opendds_idl takes over responsibility for
generating the language mapping. This is indicated by the -Lc++11 command-line option.

Starting with a user-written file Foo.idl, running opendds_idl -Lc++11 <other options> Foo.idl generates
these output files:

• FooTypeSupport.idl

– IDL local interfaces for *TypeSupport, *DataWriter, *DataReader

• FooC.h

– IDL-to-C++11 language mapping

• FooTypeSupportImpl.h and .cpp

– Additional source code needed for OpenDDS

FooTypeSupport.idl is the same as it was when using the classic mapping. After it’s generated by opendds_idl, it needs
to be processed by tao_idl to generate FooTypeSupportC.h, FooTypeSupportC.inl, and FooTypeSupportC.
cpp.

Unlike when using the classic mapping, Foo.idl is not processed by tao_idl.

Foo.idl can contain the following IDL features:

• modules, typedefs, and constants

• basic types

• constructed types: enums, structs and unions

– Note that setting a union value through a modifier method automatically sets the discriminator. In cases
where there are multiple possible values for the discriminator, a 2-argument modifier method is provided.
Using this is preferred to using _d().

– If you chose to use the _d() method of the generated union types, take note that it can only be used to set
a value that selects the same union member as the one that’s currently selected. OpenDDS treats this as a
precondition (it is not checked within the implementation).

• strings (narrow and wide), sequences, and arrays

– Bounded strings and sequences are supported, but bounds checks are not currently enforced. Due to this
limitation, distinct types are not used for bounded instantiations.

• annotations – see Defining Data Types with IDL and IDL Annotations

• #includes of IDL files that are also used with the IDL-to-C++11 mapping

When using MPC to generate projects, the opendds_cxx11 base project should be used to inherit the correct settings
for code generation. If the generated code will be part of a shared library, use the -Wb,export_include option (in
addition to -Wb,export_macro) so that the generated headers have an #include for the export header.

When using CMake to generate projects, see Using OpenDDS in a CMake Project.

2.13. opendds_idl 233



OpenDDS, Release 3.28.1

2.14 The DCPS Information Repository

The DCPS Information Repository is a non-interoperable and OpenDDS-specific service to distribute discovery in-
formation. See Configuring for RTPS Discovery for interoperable discovery. The DCPS Information Repository is
scheduled for deprecation with OpenDDS 4 and scheduled for removal with OpenDDS 5.

There is no interoperability guarantee between multiple OpenDDS releases when you are using the DCPS Information
Repository. All applications using a specific DCPS Information Repository must use the same OpenDDS release as
that DCPS Information Repository.

2.14.1 DCPS Information Repository Options

The table below shows the command line options for the DCPSInfoRepo server:

Table 8: DCPS Information Repository Options

Option Description Default
-o file Write the IOR of the DCPSInfo object to the specified file repo.ior
-NOBITS Disable the publication of built-in topics Built-in top-

ics are pub-
lished

-a
address

Listening address for built-in topics (when built-in topics are published). Random port

-z Turn on verbose transport logging Minimal
transport
logging.

-r Resurrect from persistent file 1 (true)
-FederationId
<id>

Unique identifier for this repository within any federation. This is supplied as a 32
bit decimal numeric value.

N/A

-FederateWith
<ref>

Repository federation reference at which to join a federation. This is supplied as
a valid CORBA object reference in string form: stringified IOR, file: or corbaloc:
reference string.

N/A

-? Display the command line usage and exit N/A

OpenDDS clients often use the IOR file that DCPSInfoRepo outputs to locate the service. The -o option allows you
to place the IOR file into an application-specific directory or file name. This file can subsequently be used by clients
with the file:// IOR prefix.

Applications that do not use built-in topics may want to disable them with -NOBITS to reduce the load on the server.
If you are publishing the built-in topics, then the -a option lets you pick the listen address of the tcp transport that is
used for these topics.

Using the -z option causes the invocation of many transport-level debug messages. This option is only effective when
the DCPS library is built with the DCPS_TRANS_VERBOSE_DEBUG environment variable defined.

The -FederationId and -FederateWith options are used to control the federation of multiple DCPSInfoRepo
servers into a single logical repository. See Repository Federation for descriptions of the federation capabilities and
how to use these options.

File persistence is implemented as an ACE Service object and is controlled via service config directives. Currently
available configuration options are:

234 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Table 9: InfoRepo persistence directives

Options Description Defaults
-file Name of the persistent file InforepoPersist
-reset Wipe out old persistent data. 0 (false)

The following directive:

static PersistenceUpdater_Static_Service "-file info.pr -reset 1"

will persist DCPSInfoRepo updates to local file info.pr. If a file by that name already exists, its contents will be
erased. Used with the command-line option -r, the DCPSInfoRepo can be reincarnated to a prior state. When using
persistence, start the DCPSInfoRepo process using a TCP fixed port number with the following command line option.
This allows existing clients to reconnect to a restarted InfoRepo.

-ORBListenEndpoints iiop://:<port>

2.14.2 Repository Federation

Note: Repository federation should be considered an experimental feature.

Repository Federation allows multiple DCPS Information Repository servers to collaborate with one another into a
single federated service. This allows applications obtaining service metadata and events from one repository to obtain
them from another if the original repository is no longer available.

While the motivation to create this feature was the ability to provide a measure of fault tolerance to the DDS service
metadata, other use cases can benefit from this feature as well. This includes the ability of initially separate systems to
become federated and gain the ability to pass data between applications that were not originally reachable. An example
of this would include two platforms which have independently established internal DDS services passing data between
applications; at some point during operation the systems become reachable to each other and federating repositories
allows data to pass between applications on the different platforms.

The current federation capabilities in OpenDDS provide only the ability to statically specify a federation of repositories
at startup of applications and repositories. A mechanism to dynamically discover and join a federation is planned for a
future OpenDDS release.

OpenDDS automatically detects the loss of a repository by using the Liveliness QoS policy on a Built-in Topic. When
a federation is used, the liveliness QoS policy is modified to a non-infinite value. When liveliness is lost for a Built-in
Topic an application will initiate a failover sequence causing it to associate with a different repository server. Because
the federation implementation currently uses a Built-in Topic ParticipantDataDataReaderListener entity, ap-
plications should not install their own listeners for this topic. Doing so would affect the federation implementation’s
capability to detect repository failures.

The federation implementation distributes repository data within the federation using a reserved DDS domain. The
default domain used for federation is defined by the constant Federator::DEFAULT_FEDERATIONDOMAIN.

Currently only static specification of federation topology is available. This means that each DCPS Information Repos-
itory, as well as each application using a federated DDS service, needs to include federation configuration as part of
its configuration data. This is done by specifying each available repository within the federation to each participating
process and assigning each repository to a different key value in the configuration files as described in Configuring for
Multiple DCPSInfoRepo Instances.

Each application and repository must include the same set of repositories in its configuration information. Failover
sequencing will attempt to reach the next repository in numeric sequence (wrapping from the last to the first) of the

2.14. The DCPS Information Repository 235



OpenDDS, Release 3.28.1

repository key values. This sequence is unique to each application configured, and should be different to avoid over-
loading any individual repository.

Once the topology information has been specified, then repositories will need to be started with two additional command
line arguments. These are shown in DCPS Information Repository Options. One, -FederationId <value>, specifies
the unique identifier for a repository within the federation. This is a 32 bit numeric value and needs to be unique for all
possible federation topologies.

The second command line argument required is -FederateWith <ref>. This causes the repository to join a federation
at the <ref> object reference after initialization and before accepting connections from applications.

Only repositories which are started with a federation identification number may participate in a federation. The first
repository started should not be given a -FederateWith command line directive. All others are required to have this
directive in order to establish the initial federation. There is a command line tool (federation) supplied that can be
used to establish federation associations if this is not done at startup. See Federation Management for a description. It
is possible, with the current static-only implementation, that the failure of a repository before a federation topology is
entirely established could result in a partially unusable service. Due to this current limitation, it is highly recommended
to always establish the federation topology of repositories prior to starting the applications.

Federation Management

A new command line tool has been provided to allow some minimal run-time management of repository federation.
This tool allows repositories started without the -FederateWith option to be commanded to participate in a federation.
Since the operation of the federated repositories and failover sequencing depends on the presence of connected topology,
it is recommended that this tool be used before starting applications that will be using the federated set of repositories.

The command is named repoctl and is located in the bin/ directory. It has a command format syntax of:

repoctl <cmd> <arguments>

Some options contain endpoint information. This information consists of an optional host specification, separated from
a required port specification by a colon. This endpoint information is used to create a CORBA object reference using
the corbaloc: syntax in order to locate the ‘Federator’ object of the repository server.

Table 10: repoctl Repository Management Command

Com-
mand

Syntax Description

join repoctl join
<target> <peer> [
<federation domain>
]

Calls the <peer> to join <target> to the federation. <federation domain>
is passed if present, or the default Federation Domain value is passed.

leave repoctl leave
<target>

Causes the <target> to gracefully leave the federation, removing all managed
associations between applications using <target> as a repository with appli-
cations that are not using <target> as a repository.

shutdownrepoctl shutdown
<target>

Causes the <target> to shutdown without removing any managed associations.
This is the same effect as a repository which has crashed during operation.

kill repoctl kill
<target>

Kills the <target> repository regardless of its federation status.

help repoctl help Prints a usage message and quits.

A join command specifies two repository servers (by endpoint) and asks the second to join the first in a federation:

repoctl join 2112 otherhost:1812

236 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/bin/


OpenDDS, Release 3.28.1

This generates a CORBA object reference of corbaloc::otherhost:1812/Federator that the federator connects
to and invokes a join operation. The join operation invocation passes the default Federation Domain value (because
we did not specify one) and the location of the joining repository which is obtained by resolving the object reference
corbaloc::localhost:2112/Federator.

Table 11: Federation Management Command Arguments

Option Description
<target> This is endpoint information that can be used to locate the Federator::Manager CORBA interface of

a repository which is used to manage federation behavior. This is used to command leave and shutdown
federation operations and to identify the joining repository for the join command.

<peer> This is endpoint information that can be used to locate the Federator::Manager CORBA interface
of a repository which is used to manage federation behavior. This is used to command join federation
operations.

<federation
domain>

This is the domain specification used by federation participants to distribute service metadata amongst
the federated repositories. This only needs to be specified if more than one federation exists among the
same set of repositories, which is currently not supported. The default domain is sufficient for single
federations.

Federation Example

To illustrate the setup and use of a federation, this section walks through a simple example that establishes a federation
and a working service that uses it.

This example is based on a two repository federation, with the simple Message publisher and subscriber from Using
DCPS configured to use the federated repositories.

Configuring the Federation Example

There are two configuration files to create for this example one each for the message publisher and subscriber.

The Message Publisher configuration pub.ini for this example is as follows:

[common]
DCPSDebugLevel=0

[domain/information]
DomainId=42
DomainRepoKey=1

[repository/primary]
RepositoryKey=1
RepositoryIor=corbaloc::localhost:2112/InfoRepo

[repository/secondary]
RepositoryKey=2
RepositoryIor=file://repo.ior

Note that the DCPSInfo attribute/value pair has been omitted from the [common] section. The user domain is 42, so
that domain is configured to use the primary repository for service metadata and events.

The [repository/primary] and [repository/secondary] sections define the primary and secondary reposito-
ries to use within the federation (of two repositories) for this application. The RepositoryKey attribute is an internal

2.14. The DCPS Information Repository 237



OpenDDS, Release 3.28.1

key value used to uniquely identify the repository (and allow the domain to be associated with it, as in the preceding
[domain/information] section). The RepositoryIor attributes contain string values of resolvable object refer-
ences to reach the specified repository. The primary repository is referenced at port 2112 of the localhost and is
expected to be available via the TAO IORTable with an object name of /InfoRepo. The secondary repository is
expected to provide an IOR value via a file named repo.ior in the local directory.

The subscriber process is configured with the sub.ini file as follows:

[common]
DCPSDebugLevel=0

[domain/information]
DomainId=42
DomainRepoKey=1

[repository/primary]
RepositoryKey=1
RepositoryIor=file://repo.ior

[repository/secondary]
RepositoryKey=2
RepositoryIor=corbaloc::localhost:2112/InfoRepo

Note that this is the same as the pub.ini file except the subscriber has specified that the repository located at port 2112
of the localhost is the secondary and the repository located by the repo.ior file is the primary. This is opposite of
the assignment for the publisher. It means that the publisher is started using the repository at port 2112 for metadata
and events while the subscriber is started using the repository located by the IOR contained in the file. In each case, if
a repository is detected as unavailable the application will attempt to use the other repository if it can be reached.

The repositories do not need any special configuration specifications in order to participate in federation, and so no
files are required for them in this example.

Running the Federation Example

The example is executed by first starting the repositories and federating them, then starting the application publisher
and subscriber processes the same way as was done in the example of Running the Example.

Start the first repository as:

$DDS/bin/DCPSInfoRepo -o repo.ior -FederationId 1024

The -o repo.ior option ensures that the repository IOR will be placed into the file as expected by the configuration
files. The -FederationId 1024 option assigns the value 1024 to this repository as its unique id within the federation.

Start the second repository as:

$DDS/bin/DCPSInfoRepo \
-ORBListenEndpoints iiop://localhost:2112 \
-FederationId 2048 -FederateWith file://repo.ior

Note that this is all intended to be on a single command line. The -ORBListenEndpoints iiop://localhost:2112
option ensures that the repository will be listening on the port that the previous configuration files are expecting.
The -FederationId 2048 option assigns the value 2048 as the repositories unique id within the federation. The
-FederateWith file://repo.ior option initiates federation with the repository located at the IOR contained
within the named file - which was written by the previously started repository.

238 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Once the repositories have been started and federation has been established (this will be done automatically after the
second repository has initialized), the application publisher and subscriber processes can be started and should execute
as they did for the previous example in Running the Example.

2.15 Java Bindings

2.15.1 Introduction

OpenDDS provides JNI bindings. Java applications can make use of the complete OpenDDS middleware just like C++
applications.

See the java/INSTALL file for information on getting started, including the prerequisites and dependencies.

Java versions 9 and up use the Java Platform Module System. To use OpenDDS with one of these Java versions, set
the MPC feature java_pre_jpms to 0. OpenDDS’s configure script will attempt to detect the Java version and set this
automatically.

See the java/FAQ file for information on common issues encountered while developing applications with the Java
bindings.

2.15.2 IDL and Code Generation

The OpenDDS Java binding is more than just a library that lives in one or two .jar files. The DDS specification defines
the interaction between a DDS application and the DDS middleware. In particular, DDS applications send and receive
messages that are strongly-typed and those types are defined by the application developer in IDL.

In order for the application to interact with the middleware in terms of these user-defined types, code must be gener-
ated at compile-time based on this IDL. C++, Java, and even some additional IDL code is generated. In most cases,
application developers do not need to be concerned with the details of all the generated files. Scripts included with
OpenDDS automate this process so that the end result is a native library (.so or .dll) and a Java library (.jar or just
a classes directory) that together contain all of the generated code.

Below is a description of the generated files and which tools generate them. In this example, Foo.idl contains a single
struct Bar contained in module Baz (IDL modules are similar to C++ namespaces and Java packages). To the right of
each file name is the name of the tool that generates it, followed by some notes on its purpose.

Table 12: Generated files descriptions

File Generation Tool
Foo.idl Developer-written description of the DDS sample type
Foo{C,S}. {h,inl,cpp} tao_idl: C++ representation of the IDL
FooTypeSupport.idl opendds_idl: DDS type-specific interfaces
FooTypeSupport{C,S}. {h,inl,cpp} tao_idl
Baz/BarSeq{Helper,Holder}.java idl2jni
Baz/BarData{Reader,Writer}*.java idl2jni
Baz/BarTypeSupport*.java idl2jni (except TypeSupportImpl, see below)
FooTypeSupportJC. {h,cpp} idl2jni: JNI native method implementations
FooTypeSupportImpl. {h,cpp} opendds_idl: DDS type-specific C++ impl.
Baz/BarTypeSupportImpl.java opendds_idl: DDS type-specific Java impl.
Baz/Bar*.java idl2jni: Java representation of IDL struct
FooJC. {h,cpp} idl2jni: JNI native method implementations

Foo.idl:

2.15. Java Bindings 239

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/INSTALL
https://en.wikipedia.org/wiki/Java_Platform_Module_System
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/FAQ


OpenDDS, Release 3.28.1

module Baz {
@topic
struct Bar {
long x;

};
};

2.15.3 Setting up an OpenDDS Java Project

These instructions assume you have completed the installation steps in the java/INSTALL document, including having
the various environment variables defined.

1. Start with an empty directory that will be used for your IDL and the code generated from it. java/tests/
messenger/messenger_idl/ is set up this way.

2. Create an IDL file describing the data structure you will be using with OpenDDS. See Messenger.idl for an
example. This file will contain at least struct/union annotated with @topic. For the sake of these instructions,
we will call the file Foo.idl.

3. The C++ generated classes will be packaged in a shared library to be loaded at run-time by the JVM. This requires
the packaged classes to be exported for external visibility. ACE provides a utility script for generating the correct
export macros. The script usage is shown here:

$ACE_ROOT/bin/generate_export_file.pl Foo > Foo_Export.h

%ACE_ROOT%\bin\generate_export_file.pl Foo > Foo_Export.h

4. Create an MPC file, Foo.mpc, from this template:

project: dcps_java {
idlflags += -Wb,stub_export_include=Foo_Export.h \

-Wb,stub_export_macro=Foo_Export
dcps_ts_flags += -Wb,export_macro=Foo_Export
idl2jniflags += -Wb,stub_export_include=Foo_Export.h \
-Wb,stub_export_macro=Foo_Export

dynamicflags += FOO_BUILD_DLL

specific {
jarname = DDS_Foo_types

}

TypeSupport_Files {
Foo.idl

}
}

You can leave out the specific {...} block if you do not need to create a jar file. In this case you can directly
use the Java .class files which will be generated under the classes subdirectory of the current directory.

5. Run MPC to generate platform-specific build files.

$ACE_ROOT/bin/mwc.pl -type gnuace

240 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/INSTALL
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/java/tests/messenger/messenger_idl/
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/java/tests/messenger/messenger_idl/


OpenDDS, Release 3.28.1

%ACE_ROOT%\bin\mwc.pl -type [CompilerType]

CompilerType can be any supported MPC type (such as “vs2019”)

Make sure this is running ActiveState Perl or Strawberry Perl.

6. Compile the generated C++ and Java code

make

Build the generated .sln (Solution) file using your preferred method. This can be either the Visual Studio IDE
or one of the command-line tools. If you use the IDE, start it from a command prompt using devenv so that it
inherits the environment variables. Command-line tools for building include ms build and invoking the IDE
(devenv) with the appropriate arguments.

When this completes successfully you have a native library and a Java .jar file. The native library names are
Foo.dll (Release) or Food.dll (Debug) on Windows and libFoo.so on Linux.

You can change the locations of these libraries (including the .jar file) by adding a line such as the following
to the Foo.mpc file:

libout = $(PROJECT_ROOT)/lib

where PROJECT_ROOT can be any environment variable defined at build-time.

7. You now have all of the Java and C++ code needed to compile and run a Java OpenDDS application. The
generated .jar file needs to be added to your classpath, along with the .jar files that come from OpenDDS
(in the lib directory). The generated C++ library needs to be available for loading at run-time:

Add the directory containing libFoo.so to the LD_LIBRARY_PATH.

Add the directory containing Foo.dll (or Food.dll) to the PATH. If you are using the debug version (Food.
dll) you will need to inform the OpenDDS middleware that it should not look for Foo.dll. To do this, add
-Dopendds.native.debug=1 to the Java VM arguments.

See the publisher and subscriber directories in java/tests/messenger/ for examples of publishing and sub-
scribing applications using the OpenDDS Java bindings.

8. If you make subsequent changes to Foo.idl, start by re-running MPC (step #5 above). This is needed because
certain changes to Foo.idl will affect which files are generated and need to be compiled.

2.15.4 A Simple Message Publisher

This section presents a simple OpenDDS Java publishing process. The complete code for this can be found at java/
tests/messenger/publisher/TestPublisher.java. Uninteresting segments such as imports and error handling
have been omitted here. The code has been broken down and explained in logical subsections.

2.15. Java Bindings 241

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/java/tests/messenger/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/tests/messenger/publisher/TestPublisher.java
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/tests/messenger/publisher/TestPublisher.java


OpenDDS, Release 3.28.1

Initializing the Participant

DDS applications are boot-strapped by obtaining an initial reference to the Participant Factory. A call to the static
method TheParticipantFactory.WithArgs() returns a Factory reference. This also transparently initializes the
C++ Participant Factory. We can then create Participants for specific domains.

public static void main(String[] args) {

DomainParticipantFactory dpf =
TheParticipantFactory.WithArgs(new StringSeqHolder(args));

if (dpf == null) {
System.err.println ("Domain Participant Factory not found");
return;

}
final int DOMAIN_ID = 42;
DomainParticipant dp = dpf.create_participant(DOMAIN_ID,
PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

if (dp == null) {
System.err.println ("Domain Participant creation failed");
return;

}

Object creation failure is indicated by a null return. The third argument to create_participant() takes a Participant
events listener. If one is not available, a null can be passed instead as done in our example.

Registering the Data Type and Creating a Topic

Next we register our data type with the DomainParticipant using the register_type() operation. We can specify
a type name or pass an empty string. Passing an empty string indicates that the middleware should simply use the
identifier generated by the IDL compiler for the type.

MessageTypeSupportImpl servant = new MessageTypeSupportImpl();
if (servant.register_type(dp, "") != RETCODE_OK.value) {
System.err.println ("register_type failed");
return;

}

Next we create a topic using the type support servant’s registered name.

Topic top = dp.create_topic("Movie Discussion List",
servant.get_type_name(),
TOPIC_QOS_DEFAULT.get(), null,
DEFAULT_STATUS_MASK.value);

Now we have a topic named “Movie Discussion List” with the registered data type and default QoS policies.

242 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Creating a Publisher

Next, we create a publisher:

Publisher pub = dp.create_publisher(
PUBLISHER_QOS_DEFAULT.get(),
null,
DEFAULT_STATUS_MASK.value);

Creating a DataWriter and Registering an Instance

With the publisher, we can now create a DataWriter:

DataWriter dw = pub.create_datawriter(
top, DATAWRITER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

The DataWriter is for a specific topic. For our example, we use the default DataWriter QoS policies and a null
DataWriterListener.

Next, we narrow the generic DataWriter to the type-specific DataWriter and register the instance we wish to publish.
In our data definition IDL we had specified the subject_id field as the key, so it needs to be populated with the instance
id (99 in our example):

MessageDataWriter mdw = MessageDataWriterHelper.narrow(dw);
Message msg = new Message();
msg.subject_id = 99;
int handle = mdw.register(msg);

Our example waits for any peers to be initialized and connected. It then publishes a few messages which are distributed
to any subscribers of this topic in the same domain.

msg.from = "OpenDDS-Java";
msg.subject = "Review";
msg.text = "Worst. Movie. Ever.";
msg.count = 0;
int ret = mdw.write(msg, handle);

2.15.5 Setting up the Subscriber

Much of the initialization code for a subscriber is identical to the publisher. The subscriber needs to create a participant
in the same domain, register an identical data type, and create the same named topic.

public static void main(String[] args) {

DomainParticipantFactory dpf =
TheParticipantFactory.WithArgs(new StringSeqHolder(args));

if (dpf == null) {
System.err.println ("Domain Participant Factory not found");
return;

}
DomainParticipant dp = dpf.create_participant(42,
PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

(continues on next page)

2.15. Java Bindings 243



OpenDDS, Release 3.28.1

(continued from previous page)

if (dp == null) {
System.err.println("Domain Participant creation failed");
return;

}

MessageTypeSupportImpl servant = new MessageTypeSupportImpl();
if (servant.register_type(dp, "") != RETCODE_OK.value) {

System.err.println ("register_type failed");
return;

}
Topic top = dp.create_topic("Movie Discussion List",

servant.get_type_name(),
TOPIC_QOS_DEFAULT.get(), null,
DEFAULT_STATUS_MASK.value);

Creating a Subscriber

As with the publisher, we create a subscriber:

Subscriber sub = dp.create_subscriber(
SUBSCRIBER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

Creating a DataReader and Listener

Providing a DataReaderListener to the middleware is the simplest way to be notified of the receipt of data and to
access the data. We therefore create an instance of a DataReaderListenerImpl and pass it as a DataReader creation
parameter:

DataReaderListenerImpl listener = new DataReaderListenerImpl();
DataReader dr = sub.create_datareader(
top, DATAREADER_QOS_DEFAULT.get(), listener,
DEFAULT_STATUS_MASK.value);

Any incoming messages will be received by the Listener in the middleware’s thread. The application thread is free to
perform other tasks at this time.

2.15.6 The DataReader Listener Implementation

The application defined DataReaderListenerImpl needs to implement the specification’s DDS.
DataReaderListener interface. OpenDDS provides an abstract class DDS._DataReaderListenerLocalBase.
The application’s listener class extends this abstract class and implements the abstract methods to add application-
specific functionality.

Our example DataReaderListener stubs out most of the Listener methods. The only method implemented is the
message available callback from the middleware:

public class DataReaderListenerImpl extends DDS._DataReaderListenerLocalBase {

private int num_reads_;

(continues on next page)

244 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

public synchronized void on_data_available(DDS.DataReader reader) {
++num_reads_;
MessageDataReader mdr = MessageDataReaderHelper.narrow(reader);
if (mdr == null) {
System.err.println ("read: narrow failed.");
return;

}

The Listener callback is passed a reference to a generic DataReader. The application narrows it to a type-specific
DataReader:

MessageHolder mh = new MessageHolder(new Message());
SampleInfoHolder sih = new SampleInfoHolder(new SampleInfo(0, 0, 0,

new DDS.Time_t(), 0, 0, 0, 0, 0, 0, 0, false));
int status = mdr.take_next_sample(mh, sih);

It then creates holder objects for the actual message and associated SampleInfo and takes the next sample from the
DataReader. Once taken, that sample is removed from the DataReader’s available sample pool.

if (status == RETCODE_OK.value) {

System.out.println ("SampleInfo.sample_rank = "+ sih.value.sample_rank);
System.out.println ("SampleInfo.instance_state = "+

sih.value.instance_state);

if (sih.value.valid_data) {

System.out.println("Message: subject = " + mh.value.subject);
System.out.println(" subject_id = " + mh.value.subject_id);
System.out.println(" from = " + mh.value.from);
System.out.println(" count = " + mh.value.count);
System.out.println(" text = " + mh.value.text);
System.out.println("SampleInfo.sample_rank = " +

sih.value.sample_rank);
}
else if (sih.value.instance_state ==

NOT_ALIVE_DISPOSED_INSTANCE_STATE.value) {
System.out.println ("instance is disposed");

}
else if (sih.value.instance_state ==

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.value) {
System.out.println ("instance is unregistered");

}
else {

System.out.println ("DataReaderListenerImpl::on_data_available: "+
"received unknown instance state "+
sih.value.instance_state);

}

} else if (status == RETCODE_NO_DATA.value) {
System.err.println ("ERROR: reader received DDS::RETCODE_NO_DATA!");

} else {
(continues on next page)

2.15. Java Bindings 245



OpenDDS, Release 3.28.1

(continued from previous page)

System.err.println ("ERROR: read Message: Error: "+ status);
}

}

}

The SampleInfo contains meta-information regarding the message such as the message validity, instance state, etc.

2.15.7 Cleaning up OpenDDS Java Clients

An application should clean up its OpenDDS environment with the following steps:

dp.delete_contained_entities();

Cleans up all topics, subscribers and publishers associated with that Participant.

dpf.delete_participant(dp);

The DomainParticipantFactory reclaims any resources associated with the DomainParticipant.

TheServiceParticipant.shutdown();

Shuts down the ServiceParticipant. This cleans up all OpenDDS associated resources. Cleaning up these re-
sources is necessary to prevent the DCPSInfoRepo from forming associations between endpoints which no longer
exist.

2.15.8 Configuring the Example

OpenDDS offers a file-based configuration mechanism. The syntax of the configuration file is similar to a Windows INI
file. The properties are divided into named sections corresponding to common and individual transports configuration.

The Messenger example has common properties for the DCPSInfoRepo objects location and the global transport con-
figuration:

[common]
DCPSInfoRepo=file://repo.ior
DCPSGlobalTransportConfig=$file

and a transport instance section with a transport type property:

[transport/1]
transport_type=tcp

The [transport/1] section contains configuration information for the transport instance named 1. It is defined to be
of type tcp. The global transport configuration setting above causes this transport instance to be used by all readers
and writers in the process.

See Run-time Configuration for a complete description of all OpenDDS configuration parameters.

246 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.15.9 Running the Example

To run the Messenger Java OpenDDS application, use the following commands:

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

$JAVA_HOME/bin/java -ea -cp classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.
→˓jar:classes TestPublisher -DCPSConfigFile pub_tcp.ini

$JAVA_HOME/bin/java -ea -cp classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.
→˓jar:classes TestSubscriber -DCPSConfigFile sub_tcp.ini

The -DCPSConfigFile command-line argument passes the location of the OpenDDS configuration file.

2.15.10 Java Message Service (JMS) Support

OpenDDS provides partial support for JMS version 1.1. Enterprise Java applications can make use of the complete
OpenDDS middleware just like standard Java and C++ applications.

See the INSTALL file in the java/jms/ directory for information on getting started with the OpenDDS JMS support,
including the prerequisites and dependencies.

2.16 Modeling SDK

The OpenDDS Modeling SDK is a modeling tool that can be used by the application developer to define the required
middleware components and data structures as a UML model and then generate the code to implement the model using
OpenDDS. The generated code can then be compiled and linked with the application to provide seamless middleware
support to the application.

2.16.1 Overview

Model Capture

UML models defining DCPS elements and policies along with data definitions are captured using the graphical model
capture editors included in the Eclipse plug-ins. The elements of the UML models follow the structure of the DDS
UML Platform Independent Model (PIM) defined in the DDS specification (OMG: formal/2015-04-10).

Opening a new OpenDDS model within the plug-ins begins with a top level main diagram. This diagram includes any
package structures to be included in the model along with the local QoS policy definitions, data definitions, and DCPS
elements of the model. Zero or more of the policy or data definition elements can be included. Zero or one DCPS
elements definition can be included in any given model.

Creating separate models for QoS policies only, data definitions only, or DCPS elements only is supported. References
to other models allows externally defined models to be included in a model. This allows sharing of data definitions and
QoS policies among different DCPS models as well as including externally defined data in a new set of data definitions.

2.16. Modeling SDK 247

https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/java/jms/


OpenDDS, Release 3.28.1

Fig. 3: Graphical modeling of the data definitions

248 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Fig. 4: Graphical modeling of the DCPS entities

2.16. Modeling SDK 249



OpenDDS, Release 3.28.1

Code Generation

Once models have been captured, source code can be generated from them. This source code can then be compiled
into link libraries providing the middleware elements defined in the model to applications that link the library. Code
generation is done using a separate forms based editor.

Specifics of code generation are unique to the individual generation forms and are kept separate from the models for
which generation is being performed. Code generation is performed on a single model at a time and includes the ability
to tailor the generated code as well as specifying search paths to be used for locating resources at build time.

It is possible to generate model variations (distinct customizations of the same model) that can then be created within
the same application or different applications. It is also possible to specify locations to search for header files and link
libraries at build time. See Generated Code for details.

Programming

In order to use the middleware defined by models, applications need to link in the generated code. This is done through
header files and link libraries. Support for building applications using the MPC portable build tool is included in the
generated files for a model. See Developing Applications for details.

2.16.2 Installation and Getting Started

Unlike the OpenDDS Middleware which is compiled from source code by the developer, the compiled Modeling SDK
is available for download via an Eclipse Update Site.

Prerequisites

• Java Runtime Environment (JRE)

• Eclipse IDE

Installation

1. From Eclipse, open the “Help” menu and select “Install New Software”.

2. Click the hyperlink for “Available Software Sites”.

3. The standard eclipse.org sites (Eclipse Project Updates and Galileo) should be enabled. If they are disabled,
enable them now.

4. Add a new Site entry named OpenDDS with URL http://download.opendds.org/modeling/eclipse_44/

5. Click OK to close the Preferences dialog and return to the Install dialog.

6. In the “Work with” combo box, select the new entry for OpenDDS.

7. Select the “OpenDDS Modeling SDK” and click Next.

8. Review the “Install Details” list and click Next. Review the license, select Accept (if you do accept it), and click
Finish.

9. Eclipse will download the OpenDDS plug-ins and various plug-ins from eclipse.org that they depend on.
There will be a security warning because the OpenDDS plug-ins are not signed. There also may be a prompt to
accept a certificate from eclipse.org.

10. Eclipse will prompt the user to restart in order to use the newly installed software.

250 Chapter 2. Developer’s Guide

http://download.opendds.org/modeling/eclipse_44/


OpenDDS, Release 3.28.1

Fig. 5: Eclipse Software Installation Dialog

2.16. Modeling SDK 251



OpenDDS, Release 3.28.1

Getting Started

The OpenDDS Modeling SDK contains an Eclipse Perspective. Open it by going to the Window menu and selecting
Open Perspective -> Other -> OpenDDS Modeling.

To get started using the OpenDDS Modeling SDK, see the help content installed in Eclipse. Start by going to the Help
menu and selecting Help Contents. There is a top-level item for OpenDDS Modeling SDK Guide that contains all of
the OpenDDS-specific content describing the modeling and code generation activities.

2.16.3 Developing Applications

In order to build an application using the OpenDDS Modeling SDK, one must understand a few key concepts. The
concepts concern:

1. The support library

2. Generated model code

3. Application code

Modeling Support Library

The OpenDDS Modeling SDK includes a support library, found at tools/modeling/codegen/model. This support
library, when combined with the code generated by the Modeling SDK, greatly reduces the amount of code needed to
build an OpenDDS application.

The support library is a C++ library which is used by an OpenDDS Modeling SDK application. Two classes in the
support library that most developers will need are the Application and Service classes.

The Application Class

The OpenDDS::Model::Application class takes care of initialization and finalization of the OpenDDS library. It
is required for any application using OpenDDS to instantiate a single instance of the Application class, and further
that the Application object not be destroyed while communicating using OpenDDS.

The Application class initializes the factory used to create OpenDDS participants. This factory requires the user-
provided command line arguments. In order to provide them, the Application object must be provided the same
command line arguments.

The Service Class

The OpenDDS::Model::Service class is responsible for the creation of OpenDDS entities described in an OpenDDS
Modeling SDK model. Since the model can be generic, describing a much broader domain than an individual applica-
tion uses, the Service class uses lazy instantiation to create OpenDDS entities.

In order to properly instantiate these entities, it must know:

• The relationships among the entities

• The transport configuration used by entities

252 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tools/modeling/codegen/model


OpenDDS, Release 3.28.1

Generated Code

The OpenDDS Modeling SDK generates model-specific code for use by an OpenDDS Modeling SDK application.
Starting with a .codegen file (which refers to an .opendds model file), the files described in the table below. The
process of generating code is documented in the Eclipse help.

File Name Description
<ModelName>.idl Data types from the model’s DataLib
<ModelName>_T.h C++ class from the model’s DcpsLib
<ModelName>_T.cpp C++ implementation of the model’s DcpsLib
<ModelName>.mpc MPC project file for the generated C++ library
<ModelName>.mpb MPC base project for use by the application
<ModelName>_paths.mpb MPC base project with paths, see Dependencies Between Models
<ModelName>Traits.h Transport configuration from the .codegen file
<ModelName>Traits.cpp Transport configuration from the .codegen file

The DCPS Model Class

The DCPS library models relationships between DDS entities, including Topics, DomainParticipants,
Publishers, Subscribers, DataWriters and DataReaders, and their corresponding Domains.

For each DCPS library in your model, the OpenDDS Modeling SDK generates a class named after the DCPS library.
This DCPS model class is named after the DCPS library, and is found in the <ModelName>_T.h file in the code
generation target directory.

The model class contains an inner class, named Elements, defining enumerated identifiers for each DCPS entity mod-
eled in the library and each type referenced by the library’s Topics. This Elements class contains enumeration definitions
for each of:

• DomainParticipants

• Types

• Topics

• Content Filtered Topics

• Multi Topics

• Publishers

• Subscribers

• Data Writers

• Data Readers

In addition, the DCPS model class captures the relationships between these entities. These relationships are used by
the Service class when instantiating DCPS entities.

2.16. Modeling SDK 253



OpenDDS, Release 3.28.1

The Traits Class

Entities in a DCPS model reference their transport configuration by name. The Model Customization tab of the Codegen
file editor is used to define the transport configuration for each name.

There can be more than one set of configurations defined for a specific code generation file. These sets of configura-
tions are grouped into instances, each identified by a name. Multiple instances may be defined, representing different
deployment scenarios for models using the application.

For each of these instances, a Traits class is generated. The traits class provides the transport configuration modeled
in the Codegen editor for a specific transport configuration name.

The Service Typedef

The Service is a template which needs two parameters: (1) the entity model, in the DCPS model Elements
class, (2) transport configuration, in a Traits class. The OpenDDS Modeling SDK generates one type-
def for each combination of DCPS library and transport configuration model instance. The typedef is named
<InstanceName><DCPSLibraryName>Type.

Data Library Generated Code

From the data library, IDL is generated, which is processed by the IDL compilers. The IDL compilers generate type
support code, which is used to serialize and deserialize data types.

QoS Policy Library Generated Code

There are no specific compilation units generated from the QoS policy library. Instead, the DCPS library stores the
QoS policies of the entities it models. This QoS policy is later queried by the Service class, which sets the QoS policy
upon entity creation.

Application Code Requirements

Required headers

The application will need to include the Traits header, in addition to the Tcp.h header (for static linking). These will
include everything required to build a publishing application. Here is the #include section of an example publishing
application, MinimalPublisher.cpp.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"

254 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Exception Handling

It is recommended that Modeling SDK applications catch both CORBA::Exception objects and std::exception
objects.

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
// Create and use OpenDDS Modeling SDK (see below)

} catch (const CORBA::Exception& e) {
// Handle exception and return non-zero

} catch (const OpenDDS::DCPS::Transport::Exception& te) {
// Handle exception and return non-zero

} catch (const std::exception& ex) {
// Handle exception and return non-zero

}
return 0;

}

Instantiation

As stated above, an OpenDDS Modeling SDK application must create an OpenDDS::Model::Application object
for the duration of its lifetime. This Application object, in turn, is passed to the constructor of the Service object
specified by one of the typedef declarations in the traits headers.

The service is then used to create OpenDDS entities. The specific entity to create is specified using one of the enumer-
ated identifiers specified in the Elements class. The Service provides this interface for entity creation:

DDS::DomainParticipant_var participant(Elements::Participants::Values part);
DDS::TopicDescription_var topic(Elements::Participants::Values part,

Elements::Topics::Values topic);
DDS::Publisher_var publisher(Elements::Publishers::Values publisher);
DDS::Subscriber_var subscriber(Elements::Subscribers::Values subscriber);
DDS::DataWriter_var writer(Elements::DataWriters::Values writer);
DDS::DataReader_var reader(Elements::DataReaders::Values reader);

It is important to note that the service also creates any required intermediate entities, such as DomainParticipants,
Publishers, Subscribers, and Topics, when necessary.

Publisher Code

Using the writer() method shown above, MinimalPublisher.cpp continues:

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
OpenDDS::Model::Application application(argc, argv);
MinimalLib::DefaultMinimalType model(application, argc, argv);

using OpenDDS::Model::MinimalLib::Elements;
DDS::DataWriter_var writer = model.writer(Elements::DataWriters::writer);

2.16. Modeling SDK 255



OpenDDS, Release 3.28.1

What remains is to narrow the DataWriter to a type-specific data writer, and send samples.

data1::MessageDataWriter_var msg_writer =
data1::MessageDataWriter::_narrow(writer);

data1::Message message;
// Populate message and send
message.text = "Worst. Movie. Ever.";
DDS::ReturnCode_t error = msg_writer->write(message, DDS::HANDLE_NIL);
if (error != DDS::RETCODE_OK) {
// Handle error

}

In total our publishing application, MinimalPublisher.cpp, looks like this:

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
OpenDDS::Model::Application application(argc, argv);
MinimalLib::DefaultMinimalType model(application, argc, argv);

using OpenDDS::Model::MinimalLib::Elements;
DDS::DataWriter_var writer = model.writer(Elements::DataWriters::writer);

data1::MessageDataWriter_var msg_writer =
data1::MessageDataWriter::_narrow(writer);

data1::Message message;
// Populate message and send
message.text = "Worst. Movie. Ever.";
DDS::ReturnCode_t error = msg_writer->write(message, DDS::HANDLE_NIL);
if (error != DDS::RETCODE_OK) {
// Handle error

}
} catch (const CORBA::Exception& e) {
// Handle exception and return non-zero

} catch (const std::exception& ex) {
// Handle exception and return non-zero

}
return 0;

}

Note this minimal example ignores logging and synchronization, which are issues that are not specific to the OpenDDS
Modeling SDK.

256 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Subscriber Code

The subscriber code is much like the publisher. For simplicity, OpenDDS Modeling SDK subscribers may want
to take advantage of a base class for Reader Listeners, called OpenDDS::Modeling::NullReaderListener. The
NullReaderListener implements the entire DataReaderListener interface and logs every callback.

Subscribers can create a listener by deriving a class from NullReaderListener and overriding the interfaces of
interest, for example on_data_available.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"
#include <model/NullReaderListener.h>

class ReaderListener : public OpenDDS::Model::NullReaderListener {
public:
virtual void on_data_available(DDS::DataReader_ptr reader)
ACE_THROW_SPEC((CORBA::SystemException)) {
data1::MessageDataReader_var reader_i =
data1::MessageDataReader::_narrow(reader);

if (!reader_i) {
// Handle error
ACE_OS::exit(-1);

}

data1::Message msg;
DDS::SampleInfo info;

// Read until no more messages
while (true) {
DDS::ReturnCode_t error = reader_i->take_next_sample(msg, info);
if (error == DDS::RETCODE_OK) {
if (info.valid_data) {
std::cout << "Message: " << msg.text.in() << std::endl;

}
} else {
if (error != DDS::RETCODE_NO_DATA) {
// Handle error

}
break;

}
}

}
};

In the main function, create a data reader from the service object:

DDS::DataReader_var reader = model.reader(Elements::DataReaders::reader);

Naturally, the DataReaderListener must be associated with the data reader in order to get its callbacks.

2.16. Modeling SDK 257



OpenDDS, Release 3.28.1

DDS::DataReaderListener_var listener(new ReaderListener);
reader->set_listener(listener, OpenDDS::DCPS::DEFAULT_STATUS_MASK);

The remaining subscriber code has the same requirements of any OpenDDS Modeling SDK application, in that it must
initialize the OpenDDS library through an OpenDDS::Modeling::Application object, and create a Service object
with the proper DCPS model Elements class and traits class.

An example subscribing application, MinimalSubscriber.cpp, follows.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"
#include <model/NullReaderListener.h>

class ReaderListener : public OpenDDS::Model::NullReaderListener {
public:
virtual void on_data_available(DDS::DataReader_ptr reader)
ACE_THROW_SPEC((CORBA::SystemException)) {
data1::MessageDataReader_var reader_i =
data1::MessageDataReader::_narrow(reader);

if (!reader_i) {
// Handle error
ACE_OS::exit(-1);

}

data1::Message msg;
DDS::SampleInfo info;

// Read until no more messages
while (true) {
DDS::ReturnCode_t error = reader_i->take_next_sample(msg, info);
if (error == DDS::RETCODE_OK) {
if (info.valid_data) {
std::cout << "Message: " << msg.text.in() << std::endl;

}
} else {
if (error != DDS::RETCODE_NO_DATA) {
// Handle error

}
break;

}
}

}
};

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
try {
OpenDDS::Model::Application application(argc, argv);
MinimalLib::DefaultMinimalType model(application, argc, argv);

(continues on next page)

258 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

using OpenDDS::Model::MinimalLib::Elements;

DDS::DataReader_var reader = model.reader(Elements::DataReaders::reader);

DDS::DataReaderListener_var listener(new ReaderListener);
reader->set_listener(listener, OpenDDS::DCPS::DEFAULT_STATUS_MASK);

// Call on_data_available in case there are samples which are waiting
listener->on_data_available(reader);

// At this point the application can wait for an exteral "stop" indication
// such as blocking until the user terminates the program with Ctrl-C.

} catch (const CORBA::Exception& e) {
e._tao_print_exception("Exception caught in main():");
return -1;

} catch (const std::exception& ex) {
// Handle error
return -1;

}
return 0;

}

MPC Projects

In order to make use of the OpenDDS Modeling SDK support library, OpenDDS Modeling SDK MPC projects should
inherit from the dds_model project base. This is in addition to the dcpsexe base from which non-Modeling SDK
projects inherit.

project(*Publisher) : dcpsexe, dds_model {
// project configuration

}

The generated model library will generate an MPC project file and base project file in the target directory, and take
care of building the model shared library. OpenDDS modeling applications must both (1) include the generated model
library in their build and (2) ensure their projects are built after the generated model libraries.

project(*Publisher) : dcpsexe, dds_model {
// project configuration
libs += Minimal
after += Minimal

}

Both of these can be accomplished by inheriting from the model library’s project base, named after the model library.

project(*Publisher) : dcpsexe, dds_model, Minimal {
// project configuration

}

Note that the Minimal.mpb file must now be found by MPC during project file creation. This can be accomplished
through the -include command line option.

2.16. Modeling SDK 259



OpenDDS, Release 3.28.1

Using either form, the MPC file must tell the build system where to look for the generated model library.

project(*Publisher) : dcpsexe, dds_model, Minimal {
// project configuration
libpaths += model

}

This setting based upon what was provided to the Target Folder setting in the Codegen file editor.

Finally, like any other MPC project, its source files must be included:

Source_Files {
MinimalPublisher.cpp

}

The final MPC project looks like this for the publisher:

project(*Publisher) : dcpsexe, dds_model, Minimal {
exename = publisher
libpaths += model

Source_Files {
MinimalPublisher.cpp

}
}

And similar for the subscriber:

project(*Subscriber) : dcpsexe, dds_model, Minimal {
exename = subscriber
libpaths += model

Source_Files {
MinimalSubscriber.cpp

}
}

Dependencies Between Models

One final consideration – the generated model library could itself depend on other generated model libraries. For
example, there could be an external data type library which is generated to a different directory.

This possibility could cause a great deal of maintenance of project files, as models change their dependencies over time.
To help overcome this burden, the generated model library records the paths to all of its externally referenced model
libraries in a separate MPB file named <ModelName>_paths.mpb. Inheriting from this paths base project will inherit
the needed settings to include the dependent model as well.

Our full MPC file looks like this:

project(*Publisher) : dcpsexe, dds_model, Minimal, Minimal_paths {
exename = publisher
libpaths += model

Source_Files {
(continues on next page)

260 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

MinimalPublisher.cpp
}

}

project(*Subscriber) : dcpsexe, dds_model, Minimal, Minimal_paths {
exename = subscriber
libpaths += model

Source_Files {
MinimalSubscriber.cpp

}
}

2.17 Alternate Interfaces to Data

The DDS-DCPS approach to data transfer using synchronization of strongly-typed caches (DataWriter and DataReader)
is not appropriate for all applications. Therefore OpenDDS provides two different alternate interface approaches which
are described in this section. These are not defined by OMG specifications and may change in future releases of
OpenDDS, including minor updates. The two approaches are:

• Recorder and Replayer

– These interfaces allow the application to create untyped stand-ins for DataReaders and/or DataWriters

– Recorder can be used with the Dynamic Language Binding XTypes features (Dynamic Language Binding)
to access typed data samples through a reflection-based API

• Observer

– Observers play a role similar to the spec-defined Listeners (attached to DataReaders and/or DataWriters).
Unlike the Listeners, Observers don’t need to interact with the DataReader/Writer caches to access the data
samples.

The XTypes Dynamic Language Binding (Dynamic Language Binding) provides a set of related features that can be
used to create DataWriters and DataReaders that work with a generic data container (DynamicData) instead of a specific
IDL-generated data type.

2.17.1 Recorder and Replayer

The Recorder feature of OpenDDS allows applications to record samples published on arbitrary topics without any
prior knowledge of the data type used by that topic. Analogously, the Replayer feature allows these recorded samples
to by re-published back into the same or other topics. What makes these features different from other Data Readers and
Writers are their ability to work with any data type, even if unknown at application build time. Effectively, the samples
are treated as if each one contains an opaque byte sequence.

The purpose of this section is to describe the public API for OpenDDS to enable the recording/replaying use-case.

2.17. Alternate Interfaces to Data 261



OpenDDS, Release 3.28.1

API Structure

Two new user-visible classes (that behave somewhat like their DDS Entity counterparts) are defined in the
OpenDDS::DCPS namespace, along with the associated Listener interfaces. Listeners may be optionally implemented
by the application. The Recorder class acts similarly to a DataReader and the Replayer class acts similarly to a
DataWriter.

Both Recorder and Replayer make use of the underlying OpenDDS discovery and transport libraries as if they were
DataReader and DataWriter, respectively. Regular OpenDDS applications in the domain will “see” the Recorder
objects as if they were remote DataReaders and Replayers as if they were DataWriters.

Usage Model

The application creates any number of Recorders and Replayers as necessary. This could be based on using the
built-in topics to dynamically discover which topics are active in the Domain. Creating a Recorder or Replayer
requires the application to provide a topic name and type name (as in DomainParticipant::create_topic())
and also the relevant QoS data structures. The Recorder requires SubscriberQos and DataReaderQos whereas the
Replayer requires PublisherQos and DataWriterQos. These values are used in discovery’s reader/writer matching.
See the section on QoS processing below for how the Recorder and Replayer use QoS. Here is the code needed to
create a recorder:

OpenDDS::DCPS::Recorder_var recorder =
service_participant->create_recorder(domain_participant,

topic.in(),
sub_qos,
dr_qos,
recorder_listener);

Data samples are made available to the application via the RecorderListener using a simple “one callback per
sample” model. The sample is delivered as an OpenDDS::DCPS::RawDataSample object. This object includes the
timestamp for that data sample as well as the marshaled sample value. Here is a class definition for a user-defined
Recorder Listener.

class MessengerRecorderListener : public OpenDDS::DCPS::RecorderListener
{
public:

MessengerRecorderListener();

virtual void on_sample_data_received(OpenDDS::DCPS::Recorder*,
const OpenDDS::DCPS::RawDataSample& sample);

virtual void on_recorder_matched(OpenDDS::DCPS::Recorder*,
const DDS::SubscriptionMatchedStatus& status );

};

The application can store the data wherever it sees fit (in memory, file system, database, etc.). At any later time, the
application can provide that same sample to a Replayer object configured for the same topic. It’s the application’s
responsibility to make sure the topic types match. Here is an example call that replays a sample to all readers connected
on a replayer’s topic:

replayer->write(sample);

262 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Because the stored data is dependent on the definition of the data structure, it can’t be used across different versions of
OpenDDS or different versions of the IDL used by the OpenDDS participants.

QoS Processing

The lack of detailed knowledge about the data sample complicates the use of many normal DDS QoS properties on the
Replayer side. The properties can be divided into a few categories:

• Supported

– Liveliness

– Time-Based Filter

– Lifespan

– Durability (transient local level, see details below)

– Presentation (topic level only)

– Transport Priority (pass-thru to transport)

• Unsupported

– Deadline (still used for reader/writer match)

– History

– Resource Limits

– Durability Service

– Ownership and Ownership Strength (still used for reader/writer match)

• Affects reader/writer matching and built-in topics but otherwise ignored

– Partition

– Reliability (still used by transport negotiation)

– Destination Order

– Latency Budget

– User/Group Data

Durability details

On the Recorder side, transient local durability works just the same as any normal DataReader. Durable data is
received from matched DataWriters. On the Replayerside there are some differences. As opposed to the normal
DDS DataWriter, Replayer is not caching/storing any data samples (they are simply sent to the transport). Because
instances are not known, storing data samples according to the usual History and Resource Limits rules is not possible.
Instead, transient local durability can be supported with a “pull” model whereby the middleware invokes a method on
the ReplayerListener when a new remote DataReader is discovered. The application can then call a method on the
Replayer with any data samples that should be sent to that newly-joined DataReader. Determining which samples
these are is left to the application.

2.17. Alternate Interfaces to Data 263



OpenDDS, Release 3.28.1

Recorder With XTypes Dynamic Language Binding

The Recorder class includes support for the Dynamic Language Binding from XTypes (Dynamic Language Binding).
Type information for each matched DataWriter (that supports XTypes complete TypeObjects) is stored in the Recorder.
Users can call Recorder::get_dynamic_data, passing a RawDataSample to get back a DynamicData object which
includes type information – see DynamicData::type().

A tool called inspect, uses the Recorder and Dynamic Language Binding allow for the printing of any type, so long
as the topic name, type name, and domain ID are known. The DataWriter must include code generation for complete
TypeObjects. See tools/inspect/Inspect.cpp for this tool’s source code. It can be used as a standalone tool or
an example for developing your own applications using these APIs.

2.17.2 Observer

To observe the most important events happening within OpenDDS, applications can create classes that derive from
the Observer base class (in dds/DCPS/Observer.h). The design of Observer is intended to allow applications to
have a single Observer object observing many Entities, however this is flexible to allow many different use cases. The
following events can be observed:

• DataWriter/Reader enabled, deleted

• DataWriter/Reader QoS changed

• DataWriter/Reader peer associated, disassociated

• DataWriter sample sent, instance disposed, instance unregistered

• DataReader sample received (enters the cache), read, taken, instance disposed, instance unregistered

Attaching Observers to Entities

Entity is the spec-defined base interface of the following types:

• DataWriter, DataReader

– As seen above in Observer, the Observer events originate in the DataWriter and DataReader Entities

• DomainParticipant, Publisher, Subscriber

– Among their other roles, these Entities act as containers (either directly or indirectly) for DataWriters and
DataReaders.

– If a smaller-scoped Entity (such as a DataWriter) has no Observer for the event in question, its containing
Entity (in this example, a Publisher) is checked for an Observer.

• Topic

– Although it is an Entity, no Observer events are generated by Topics or Entities they contain (since they
don’t contain any Entities)

The class EntityImpl (in dds/DCPS/EntityImpl.h) is OpenDDS’s base class for all Entity types. EntityImpl
includes public methods for Observer registration: set_observer and get_observer. These methods are not part
of the IDL interfaces, so invoking them the requires a cast to the implementation (Impl) of Entity.

DDS::DataWriter_var dw = /* ... */;
EntityImpl* entity = dynamic_cast<EntityImpl*>(dw.in());
Observer_rch observer = make_rch<MyObserver>();
entity->set_observer(observer, Observer::e_SAMPLE_SENT);

264 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/inspect/Inspect.cpp
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/Observer.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/EntityImpl.h


OpenDDS, Release 3.28.1

Note that since the Observer class is an internal (not IDL) interface, it uses the “RCH” (Reference Counted Handle)
smart pointer classes. Observer itself inherits from RcObject, and uses of Observer-derived classes should use the
RcHandle template and its associated functions, as in the example above. See dds/DCPS/RcHandle_T.h for details.

Writing Observer-Derived Classes

The virtual methods in the Observer class are divided into 3 groups based on the general category of events they
observe:

1. Operations on the observed Entity itself

• on_enabled, on_deleted, on_qos_changed

• The only parameter to these methods is the Entity, so the Observer implementation can use the public
methods on the Entity.

2. Events relating to associating with remote matched endpoints

• on_associated, on_disassociated

• In addition to the Entity, the Observer implementation receives a GUID_t structure which is the internal
representation of remote Entity identity. The GUID_t values from on_associated could be stored or
logged to correlate them with the values from on_disassociated.

3. Events relating to data samples moving through the system

• on_sample_sent, on_sample_received, on_sample_read, on_sample_taken, on_disposed,
on_unregistered

• In addition to the Entity, the Observer implementation receives an instance of the Sample structure. The
definition of this structure is nested within Observer. See below for details.

The Observer::Sample structure

The Observer::Sample structure contains the following fields:

• instance and instance_state

– Describe the instance that this sample belongs to, using the spec-defined types

• timestamp and sequence_number

– Attributes of the sample itself: timestamp uses a spec-defined type whereas sequence_number uses the
OpenDDS internal type for DDSI-RTPS 64-bit sequence numbers.

• data and data_dispatcher

– Since Observer is an un-typed interface, the contents of the data sample itself are represented only as a
void pointer

– Implementations that need to process this data can use the data_dispatcher object to interpret it. See
the class definition of ValueDispatcher in dds/DCPS/ValueDispatcher.h for more details.

2.17. Alternate Interfaces to Data 265

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/RcHandle_T.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/ValueDispatcher.h


OpenDDS, Release 3.28.1

2.18 Safety Profile

2.18.1 Overview

The Safety Profile configuration allows OpenDDS to be used in environments that have a restricted set of operating
system and standard library functions available and that require dynamic memory allocation to occur only at system
start-up.

OpenDDS Safety Profile (and the corresponding features in ACE) were developed for the Open Group’s FACE spec-
ification, edition 2.1. It can be used along with the support for FACE Transport Services to create FACE-conformant
DDS applications, or it can be used by general DDS applications that are not written to the FACE Transport Services
APIs. This latter use-case is described by this section of the developer’s guide. For more information on the former
use-case see the file FACE/README.txt in the source distribution.

2.18.2 Safety Profile Subset of OpenDDS

The following features of OpenDDS are not available when it is configured for Safety Profile:

• DCPSInfoRepo and its associated libraries and tools

• Transport types: tcp, udp, multicast, shared memory

– The rtps_udp transport type is available (uses UDP unicast or multicast)

• OpenDDS Monitor library and monitoring GUI

When developing the Safety Profile, the following DDS Compliance Profiles were disabled:

• content_subscription

• ownership_kind_exclusive

• object_model_profile

• persistence_profile

See Disabling the Building of Compliance Profile Features for more details on compliance profiles. It is possible that
enabling any of these compliance profiles in a Safety Profile build will result in a compile-time or run-time error.

To build OpenDDS Safety Profile, pass the command line argument --safety-profile to the configure script along
with any other arguments needed for your platform or configuration. When safety profile is enabled in the configure
script, the four compliance profiles listed above default to disabled. See Installation for more information about the
configure script.

2.18.3 Safety Profile Configurations of ACE

OpenDDS uses ACE as its platform abstraction library, and in OpenDDS’s Safety Profile configuration, one of the
following safety profile configurations must be enabled in ACE:

• FACE Safety Base (always uses the memory pool)

• FACE Safety Extended with Memory Pool

• FACE Safety Extended with Standard C++ Dynamic Allocation

OpenDDS’s configure script will automatically configure ACE. Pass the command line argument
--safety-profile=base to select the Safety Base profile. Otherwise a --safety-profile (no equals sign)
configuration will default to Safety Extended with Memory Pool.

266 Chapter 2. Developer’s Guide

https://www.opengroup.org/face/tech-standard-2.1
https://www.opengroup.org/face/tech-standard-2.1
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/FACE/README.txt


OpenDDS, Release 3.28.1

The Safety Extended with Standard C++ Dynamic Allocation configuration is not automatically generated by the config-
ure script, but the file build/target/ACE_wrappers/ace/config.h can be edited after it is generated by configure
(and before running make). Remove the macro definition for ACE_HAS_ALLOC_HOOKS to disable the memory pool.

ACE’s safety profile configurations have been tested on Linux and on LynxOS-178 version 2.3.2+patches. Other plat-
forms may work too but may require additional configuration.

2.18.4 Run-time Configurable Options

The memory pool used by OpenDDS can be configured by setting values in the [common] section of the configuration
file. See [common] pool_size and [common] pool_granularity.

2.18.5 Running ACE and OpenDDS Tests

After configuring and building OpenDDS Safety Profile, note that there are two sub-directories of the top level that
each contain some binary artifacts:

• build/host has the build-time code generators tao_idl and opendds_idl

• build/target has the run-time libraries for safety profile ACE and OpenDDS and the OpenDDS tests

Therefore, testing needs to be relative to the build/target sub-directory. Source-in the generated file build/
target/setenv.sh to get all of the needed environment variables.

ACE tests are not built by default, but once this environment is set up all it takes to build them is generating makefiles
and running make:

1. cd $ACE_ROOT/tests

2. $ACE_ROOT/bin/mwc.pl -type gnuace

3. make

Run ACE tests by changing to the $ACE_ROOT/tests directory and using run_test.pl. Pass any -Config XYZ
options required for your configuration (use run_test.pl -h to see the available Config options).

Run OpenDDS tests by changing to the $DDS_ROOT and using tests/auto_run_tests.pl. Pass -Config
OPENDDS_SAFETY_PROFILE, -Config SAFETY_BASE (if using safety base), -Config RTPS, and -Config options
corresponding to each disabled compliance profile, by default: -Config DDS_NO_OBJECT_MODEL_PROFILE
-Config DDS_NO_OWNERSHIP_KIND_EXCLUSIVE -Config DDS_NO_PERSISTENCE_PROFILE -Config
DDS_NO_CONTENT_SUBSCRIPTION.

Alternatively, an individual test can be run using run_test.pl from that test’s directory. Pass the same set of -Config
options to run_test.pl.

2.18.6 Using the Memory Pool in Applications

When the Memory Pool is enabled at build time, all dynamic allocations made by code in OpenDDS or in ACE (methods
invoked by OpenDDS) go through the pool. Since the pool is a general purpose dynamic allocator, it may be desirable
for application code to use the pool too. Since these APIs are internal to OpenDDS, they may change in future releases.

The class OpenDDS::DCPS::MemoryPool (dds/DCPS/MemoryPool.h) contains the pool implementation. However,
most client code shouldn’t interact directly with it. The class OpenDDS::DCPS::SafetyProfilePool (dds/DCPS/
SafetyProfilePool.h) adapts the pool to the ACE_Allocator interface. OpenDDS::DCPS::PoolAllocator<T>
(dds/DCPS/PoolAllocator.h) adapts the pool to the C++ Allocator concept (C++03). Since the PoolAllocator
is stateless, it depends on the ACE_Allocator’s singleton. When OpenDDS is configured with the memory pool,
ACE_Allocator’s singleton instance will point to an object of class SafetyProfilePool.

2.18. Safety Profile 267

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/auto_run_tests.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/MemoryPool.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/SafetyProfilePool.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/SafetyProfilePool.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/PoolAllocator.h


OpenDDS, Release 3.28.1

Application code that makes use of C++ Standard Library classes can either use PoolAllocator directly, or make use
of the macros defined in dds/DCPS/PoolAllocator.h (for example String).

Application code that allocates raw (untyped) buffers of dynamic memory can use SafetyProfilePool either directly
or via the ACE_Allocator::instance() singleton.

Application code that allocates objects from the heap can use the PoolAllocator<T> template.

Classes written by the application developer can derive from PoolAllocationBase (see dds/DCPS/
PoolAllocationBase.h) to inherit class-scoped operators new and delete, thus redirecting all dynamic allocation
of these classes to the pool.

2.19 DDS Security

OpenDDS includes an implementation of the DDS Security specification. This allows participants to encrypt messages
and to authenticate remote participants before engaging with them.

Important: Library filename: OpenDDS_Security

MPC base project name: opendds_security

CMake target Name: OpenDDS::Security

Initialization header: dds/DCPS/security/BuiltInPlugins.h

2.19.1 Building OpenDDS with Security Enabled

OpenDDS isn’t built with security enabled by default. See Security for more information.

2.19.2 Architecture of the DDS Security Specification

The DDS Security specification defines plugin APIs for Authentication, Access Control, and Cryptographic operations.
These APIs provide a level of abstraction for DDS implementations as well as allowing for future extensibility and
version control. Additionally, the specification defines Built-In implementations of each of these plugins, which allows
for a baseline of functionality and interoperability between DDS implementations. OpenDDS implements these Built-
In plugins, and this document assumes that the Built-In plugins are being used. Developers using OpenDDS may also
implement their own custom plugins, but those efforts are well beyond the scope of this document.

2.19.3 Terms and Background Info

DDS Security uses current industry standards and best-practices in security. As such, this document makes use of
several security concepts which may warrant additional research by OpenDDS users.

268 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/PoolAllocator.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/PoolAllocationBase.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/PoolAllocationBase.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/opendds_security.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/security/BuiltInPlugins.h


OpenDDS, Release 3.28.1

Term Group References
Public Key Cryptography (including Private Keys)

• Public Key Cryptography
• RSA
• Elliptic Curve Cryptography

Public Key Certificate
• Public Key Certificate
• Certificate Authority
• X.509
• PEM

Signed Documents
• Digital Signature

2.19.4 Required DDS Security Artifacts

Per-Domain Artifacts

These are shared by all participants within the secured DDS Domain:

• Identity CA Certificate

• Permissions CA Certificate (may be same as Identity CA Certificate)

• Governance Document

– Signed by Permissions CA using its private key

Per-Participant Artifacts

These are specific to the individual Domain Participants within the DDS Domain:

• Identity Certificate and its Private Key

– Issued by Identity CA (or a CA that it authorized to act on its behalf)

• Permissions Document

– Contains a “subject name” which matches the participant certificate’s Subject

– Signed by Permissions CA using its private key

2.19.5 Required OpenDDS Configuration

The following configuration steps are required to enable OpenDDS Security features:

1. Select RTPS Discovery and the RTPS-UDP Transport; because DDS Security only works with these configura-
tions, both must be specified for any security-enabled participant.

2. Enable OpenDDS security-features, which can be done two ways:

• Via API: TheServiceParticipant->set_security(true); or

• Via config file: setting [common] DCPSSecurity to 1.

2.19. DDS Security 269

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Digital_signature


OpenDDS, Release 3.28.1

DDS Security Configuration via Property Qos Policy

When the application creates a DomainParticipant, the DomainParticipantQos passed to the
create_participant() method contains Property QoS, which has a sequence of name-value pairs. The fol-
lowing properties must be included to enable security. Except where noted, these values take the form of a URI starting
with either the scheme file: followed by a filesystem path (absolute or relative) or the scheme data:, followed by
the literal data.

Name Value Notes
dds.sec.auth.identity_ca Certificate PEM file Can be the same as permissions_ca
dds.sec.access.permissions_ca Certificate PEM file Can be the same as identity_ca
dds.sec.access.governance Signed XML (.p7s) Signed by permissions_ca
dds.sec.auth.
identity_certificate

Certificate PEM file Signed by identity_ca

dds.sec.auth.private_key Private Key PEM file Private key for
identity_certificate

dds.sec.auth.password Private Key Password (not a
URI)

Optional, Base64 encoded

dds.sec.access.permissions Signed XML (.p7s) Signed by permissions_ca

Example Code

Below is an example of code that sets the Participant QoS’s Property QoS in order to configure DDS Security.

// DDS Security artifact file locations
const char auth_ca_file[] = "file:identity_ca_cert.pem";
const char perm_ca_file[] = "file:permissions_ca_cert.pem";
const char id_cert_file[] = "file:test_participant_01_cert.pem";
const char id_key_file[] = "file:test_participant_01_private_key.pem";
const char governance_file[] = "file:governance_signed.p7s";
const char permissions_file[] = "file:permissions_01_signed.p7s";

// DDS Security property names
const char DDSSEC_PROP_IDENTITY_CA[] = "dds.sec.auth.identity_ca";
const char DDSSEC_PROP_IDENTITY_CERT[] = "dds.sec.auth.identity_certificate";
const char DDSSEC_PROP_IDENTITY_PRIVKEY[] = "dds.sec.auth.private_key";
const char DDSSEC_PROP_PERM_CA[] = "dds.sec.access.permissions_ca";
const char DDSSEC_PROP_PERM_GOV_DOC[] = "dds.sec.access.governance";
const char DDSSEC_PROP_PERM_DOC[] = "dds.sec.access.permissions";

void append(DDS::PropertySeq& props, const char* name, const char* value)
{
const DDS::Property_t prop = {name, value, false /*propagate*/};
const unsigned int len = props.length();
props.length(len + 1);
props[len] = prop;

}

int main(int argc, char* argv[])
{
DDS::DomainParticipantFactory_var dpf =

(continues on next page)

270 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

TheParticipantFactoryWithArgs(argc, argv);

// Start with the default Participant QoS
DDS::DomainParticipantQos part_qos;
dpf->get_default_participant_qos(part_qos);

// Add properties required by DDS Security
DDS::PropertySeq& props = part_qos.property.value;
append(props, DDSSEC_PROP_IDENTITY_CA, auth_ca_file);
append(props, DDSSEC_PROP_IDENTITY_CERT, id_cert_file);
append(props, DDSSEC_PROP_IDENTITY_PRIVKEY, id_key_file);
append(props, DDSSEC_PROP_PERM_CA, perm_ca_file);
append(props, DDSSEC_PROP_PERM_GOV_DOC, governance_file);
append(props, DDSSEC_PROP_PERM_DOC, permissions_file);

// Create the participant
participant = dpf->create_participant(4, // DomainID

part_qos,
0, // No listener
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

Identity Certificates and Certificate Authorities

All certificate inputs to OpenDDS, including self-signed CA certificates, are expected to be an X.509 v3 certificate in
PEM format for either a 2048-bit RSA key or a 256-bit Elliptic Curve key (using the prime256v1 curve).

Identity, Permissions, and Subject Names

The “subject_name” element for a signed permissions XML document must match the “Subject:” field provided by the
accompanying Identity Certificate which is transmitted during participant discovery, authentication, and authorization.
This ensures that the permissions granted by the Permissions CA do, in fact, correspond to the identity provided.

Examples in the OpenDDS Source Code Repository

Examples to demonstrate how the DDS Security features are used with OpenDDS can be found in the OpenDDS GitHub
repository.

The following table describes the various examples and where to find them in the source tree.

Example Source Location
C++ application that configures security QoS policies via
command-line parameters

tests/DCPS/Messenger/publisher.cpp

Identity CA Certificate (along with private key) tests/security/certs/identity/
identity_ca_cert.pem

Permissions CA Certificate (along with private key) tests/security/certs/permissions/
permissions_ca_cert.pem

Participant Identity Certificate (along with private key) tests/security/certs/identity/
test_participant_01_cert.pem

Governance XML Document (alongside signed document) tests/DCPS/Messenger/governance.xml
Permissions XML Document (alongside signed document) tests/DCPS/Messenger/permissions_1.xml

2.19. DDS Security 271

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/DCPS/Messenger/publisher.cpp
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/identity/identity_ca_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/identity/identity_ca_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/permissions/permissions_ca_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/permissions/permissions_ca_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/identity/test_participant_01_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/identity/test_participant_01_cert.pem
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/DCPS/Messenger/governance.xml
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/DCPS/Messenger/permissions_1.xml


OpenDDS, Release 3.28.1

Using OpenSSL Utilities for OpenDDS

To generate certificates using the openssl command, a configuration file openssl.cnf is required (see below for
example commands). Before proceeding, it may be helpful to review OpenSSL’s man pages to get help with the file
format. In particular, configuration file format and ca command’s documentation and configuration file options.

An example OpenSSL CA-Config file used in OpenDDS testing can be found here: tests/security/certs/
identity/identity_ca_openssl.cnf

Creating Self-Signed Certificate Authorities

Generate a self-signed 2048-bit RSA CA:

openssl genrsa -out ca_key.pem 2048
openssl req -config openssl.cnf -new -key ca_key.pem -out ca.csr
openssl x509 -req -days 3650 -in ca.csr -signkey ca_key.pem -out ca_cert.pem

Generate self-signed 256-bit Elliptic Curve CA:

openssl ecparam -name prime256v1 -genkey -out ca_key.pem
openssl req -config openssl.cnf -new -key ca_key.pem -out ca.csr
openssl x509 -req -days 3650 -in ca.csr -signkey ca_key.pem -out ca_cert.pem

Creating Signed Certificates with an Existing CA

Generate a signed 2048-bit RSA certificate:

openssl genrsa -out cert_1_key.pem 2048
openssl req -new -key cert_1_key.pem -out cert_1.csr
openssl ca -config openssl.cnf -days 3650 -in cert_1.csr -out cert_1.pem

Generate a signed 256-bit Elliptic Curve certificate:

openssl ecparam -name prime256v1 -genkey -out cert_2_key.pem
openssl req -new -key cert_2_key.pem -out cert_2.csr
openssl ca -config openssl.cnf -days 3650 -in cert_2.csr -out cert_2.pem

Signing Documents with SMIME

Sign a document using existing CA & CA private key:

openssl smime -sign -in doc.xml -text -out doc_signed.p7s -signer ca_cert.pem -inkey ca_
→˓private_key.pem

272 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/identity/identity_ca_openssl.cnf
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/certs/identity/identity_ca_openssl.cnf


OpenDDS, Release 3.28.1

2.19.6 Common XML Elements

These are elements that are common to all the XML documents.

Domain Id Set

A list of domain ids and/or domain id ranges of domains impacted by the current domain rule. This is the type of
domains in the governance document and in the permissions document.

The set is made up of <id> tags or <id_range> tags. An <id> tag simply contains the domain id that are part of the
set. An <id_range> tag can be used to add multiple ids at once. It must contain a <min> tag to say where the range
starts and may also have a <max> tag to say where the range ends. If the <max> tag is omitted then the set includes all
valid domain ids starting at <min>.

If the domain rule or permissions grant should to apply to all domains, use the following:

<domains>
<id_range><min>0</min></id_range>

</domains>

If there’s a need to be selective about what domains are chosen, here’s an annotated example:

<domains>
<id>2</id>
<id_range><min>4</min><max>6</max></id_range> <!-- 4, 5, 6 -->
<id_range><min>10</min></id_range> <!-- 10 and onward -->

</domains>

2.19.7 Domain Governance Document

The signed governance document is used by the DDS Security built-in access control plugin in order to determine both
per-domain and per-topic security configuration options for specific domains. For full details regarding the content of
the governance document, see DDS Security v1.1 9.4.1.2 Domain Governance Document.

Global Governance Model

It’s worth noting that the DDS Security Model expects the governance document to be globally shared by all participants
making use of the relevant domains described within the governance document. Even if this is not the case, the local
participant will verify incoming authentication and access control requests as if the remote participant shared the same
governance document and accept or reject the requests accordingly.

Key Governance Elements

The following types and values are used in configuring both per-domain and per-topic security configuration options.
We summarize them here to simplify discussion of the configuration options where they’re used, found below.

2.19. DDS Security 273

https://www.omg.org/spec/DDS-SECURITY/1.1/PDF#page=217&view=FitH,289.0


OpenDDS, Release 3.28.1

Boolean

A boolean value indicating whether a configuration option is enabled or not. Recognized values are: TRUE/true/1 and
FALSE/false/0

Protection Kind

The method used to protect domain data (message signatures or message encryption) along with the ability to include
origin authentication for either protection kind.

Recognized values are:

• NONE

• SIGN

• ENCRYPT

• SIGN_WITH_ORIGIN_AUTHENTICATION

• ENCRYPT_WITH_ORIGIN_AUTHENTICATION

Attention: Currently, OpenDDS doesn’t implement origin authentication. So while the
_WITH_ORIGIN_AUTHENTICATION options are recognized, the underlying configuration is unsupported.

Basic Protection Kind

The method used to protect domain data (message signatures or message encryption). Recognized values are NONE,
SIGN, and ENCRYPT

Domain Rule Configuration Options

The following XML elements are used to configure domain participant behaviors.

domains

A Domain Id Set of domains impacted by the current domain rule.

allow_unauthenticated_participants

A Boolean value which determines whether to allow unauthenticated participants for the current domain rule

274 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

enable_join_access_control

A Boolean value which determines whether to enforce domain access controls for authenticated participants

discovery_protection_kind

The discovery protection element specifies the Protection Kind used for the built-in DataWriter(s) and DataReader(s)
used for secure endpoint discovery messages

liveliness_protection_kind

The liveliness protection element specifies the Protection Kind used for the built-in DataWriter and DataReader used
for secure liveliness messages

rtps_protection_kind

Indicate the Protection Kind for the whole RTPS message. Very little RTPS data exists outside the “metadata pro-
tection” envelope (see topic rule configuration options), and so for most use cases topic-level “data protection” or
“metadata protection” can be combined with discovery protection and/or liveliness protection in order to secure do-
main data adequately. One item that is not secured by “metadata protection” is the timestamp, since RTPS uses a
separate InfoTimestamp submessage for this. The timestamp can be secured by using rtps_protection_kind

Topic Rule Configuration Options

The following XML elements are used to configure topic endpoint behaviors:

topic_expression

A fnmatch expression of the topic names to match. A default rule to catch all previously unmatched topics can be made
with: <topic_expression>*</topic_expression>

enable_discovery_protection

A Boolean to enable the use of secure discovery protections for matching user topic announcements.

enable_read_access_control

A Boolean to enable the use of access control protections for matching user topic DataReaders.

2.19. DDS Security 275



OpenDDS, Release 3.28.1

enable_write_access_control

A Boolean to enable the use of access control protections for matching user topic DataWriters.

metadata_protection_kind

Specifies the Protection Kind used for the RTPS SubMessages sent by any DataWriter and DataReader whose associated
Topic name matches the rule’s topic expression.

data_protection_kind

Specifies the Basic Protection Kind used for the RTPS SerializedPayload SubMessage element sent by any DataWriter
whose associated Topic name matches the rule’s topic expression.

Governance XML Example

<?xml version="1.0" encoding="utf-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation=
→˓"http://www.omg.org/spec/DDS- Security/20170801/omg_shared_ca_domain_governance.xsd">
<domain_access_rules>
<domain_rule>
<domains>
<id>0</id>
<id_range>
<min>10</min>
<max>20</max>

</id_range>
</domains>
<allow_unauthenticated_participants>FALSE</allow_unauthenticated_participants>
<enable_join_access_control>TRUE</enable_join_access_control>
<rtps_protection_kind>SIGN</rtps_protection_kind>
<discovery_protection_kind>ENCRYPT</discovery_protection_kind>
<liveliness_protection_kind>SIGN</liveliness_protection_kind>
<topic_access_rules>
<topic_rule>
<topic_expression>Square*</topic_expression>
<enable_discovery_protection>TRUE</enable_discovery_protection>
<enable_read_access_control>TRUE</enable_read_access_control>
<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
<topic_rule>
<topic_expression>Circle</topic_expression>
<enable_discovery_protection>TRUE</enable_discovery_protection>
<enable_read_access_control>FALSE</enable_read_access_control>
<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
(continues on next page)

276 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

<topic_rule>
<topic_expression>Triangle</topic_expression>
<enable_discovery_protection>FALSE</enable_discovery_protection>
<enable_read_access_control>FALSE</enable_read_access_control>
<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>NONE</metadata_protection_kind>
<data_protection_kind>NONE</data_protection_kind>

</topic_rule>
<topic_rule>
<topic_expression>*</topic_expression>
<enable_discovery_protection>TRUE</enable_discovery_protection>
<enable_read_access_control>TRUE</enable_read_access_control>
<enable_write_access_control>TRUE</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
</topic_access_rules>

</domain_rule>
</domain_access_rules>

</dds>

2.19.8 Participant Permissions Document

The signed permissions document is used by the DDS Security built-in access control plugin in order to determine
participant permissions to join domains and to create endpoints for reading, writing, and relaying domain data. For
full details regarding the content of the permissions document, see DDS Security v1.1 9.4.1.3 DomainParticipant
permissions document.

Key Permissions Elements

Each permissions file consists of one or more permissions grants. Each grant bestows access control privileges to a
single subject name for a limited validity period.

subject_name

This is a X.509 subject name field. In order for permissions checks to successfully validate for both local and remote
participants, the supplied identity certificate subject name must match the subject name of one of the grants included
in the permissions file.

This will look something like:

<subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO Office, O=ACME Inc.,␣
→˓L=Sunnyvale, ST=CA, C=US</subject_name>

Changed in version 3.25.0: The order of attributes in subject names is now significant.

2.19. DDS Security 277

https://www.omg.org/spec/DDS-SECURITY/1.1/PDF#page=230&view=FitH,170.0
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF#page=230&view=FitH,170.0


OpenDDS, Release 3.28.1

validity

Each grant’s validity section contains a start date and time (<not_before>) and an end date and time (<not_after>)
to indicate the period of time during which the grant is valid.

The format of the date and time, which is like ISO-8601, must take one of the following forms:

1. YYYY-MM-DDThh:mm:ss

Example: 2020-10-26T22:45:30

2. YYYY-MM-DDThh:mm:ssZ

Example:2020-10-26T22:45:30Z

3. YYYY-MM-DDThh:mm:ss+hh:mm

Example:2020-10-26T23:45:30+01:00

4. YYYY-MM-DDThh:mm:ss-hh:mm

Example:2020-10-26T16:45:30-06:00

All fields shown must include leading zeros to fill out their full width, as shown in the examples. YYYY-MM-DD is the
date and hh:mm:ss is the time in 24-hour format. The date and time must be able to be represented by the time_t (C
standard library) type of the system. The seconds field can also include a variable length fractional part, like 00.0 or
01.234, but it will be ignored because time_t represents a whole number of seconds. Examples #1 and #2 are both
interpreted using UTC. To put the date and time in a local time, a time zone offset can to be added that says how far the
local timezone is ahead of (using + as in example #3) or behind (using - as in example #4) UTC at that date and time.

allow_rule and deny_rule

Grants will contain one or more allow / deny rules to indicate which privileges are being applied. When verifying that
a particular operation is allowed by the supplied grant, rules are checked in the order they appear in the file. If the
domain, partition, and (when implemented) data tags for an applicable topic rule match the operation being verified,
the rule is applied (either allow or deny). Otherwise, the next rule is considered. Special Note: If a grant contains any
allow rule that matches a given domain (even one with no publish / subscribe / relay rules), the grant may be used to
join a domain with join access controls enabled.

domains

Every allow or deny rule must contain a set of domain ids to which it applies. The syntax is the same as the domain id
set found in the governance document. See Domain Id Set for details.

publish, subscribe, and relay Rules (PSR rules)

Every allow or deny rule may optionally contain a list of publish, subscribe, or relay rules bestowing privileges to
publish, subscribe, or relay data (respectively). Each rule applies to a collection of topics in a set of partitions with
a particular set of data tags. As such, each rule must then meet these three conditions (topics, partitions, and (when
implemented) data tags) in order to apply to a given operation. These conditions are governed by their relevant subsec-
tion, but the exact meaning and default values will vary depending on the both the PSR type (publish, subscribe, relay)
as well as whether this is an allow rule or a deny rule. Each condition is summarized below. See the DDS Security
specification for full details. OpenDDS does not currently support relay-only behavior and consequently ignores allow
and deny relay rules for both local and remote entities. Additionally, OpenDDS does not currently support data tags,
and so the data tag condition applied is always the “default” behavior described below.

278 Chapter 2. Developer’s Guide

https://en.wikipedia.org/wiki/ISO_8601


OpenDDS, Release 3.28.1

topics

The list of topics and/or topic expressions for which a rule applies. Topic names and expressions are matched using
Fnmatch Expressions. If the triggering operation matches any of the topics listed, the topic condition is met. The topic
section must always be present for a PSR rule, so there there is no default behavior.

partitions

The partitions list contains the set of partition names for which the parent PSR rule applies. Similarly to topics, par-
tition names and expressions are matched using Fnmatch Expressions. For “allow” PSR rules, the DDS entity of the
associated triggering operation must be using a strict subset of the partitions listed for the rule to apply. When no
partition list is given for an “allow” PSR rule, the “empty string” partition is used as the default value. For “deny” PSR
rules, the rule will apply if the associated DDS entity is using any of the partitions listed. When no partition list is
given for a “deny” PSR rule, the wildcard expression “*” is used as the default value.

data_tags

Attention: Data tags are an optional part of the DDS Security specification and are not currently implemented by
OpenDDS. If they were implemented, the condition criteria for data tags would be similar to partitions.

For “allow” PSR rules, the DDS entity of the associated triggering operation must be using a strict subset of the data
tags listed for the rule to apply. When no data tag list is given for an “allow” PSR rule, the empty set of data tags is
used as the default value. For “deny” PSR rules, the rule will apply if the associated DDS entity is using any of the
data tags listed. When no data tag list is given for a “deny” PSR rule, the set of “all possible tags” is used as the default
value.

validity

Attention: This is an OpenDDS extension.

This structure defines the validity of a particular publish or subscribe action. Thus, it is possible to declare that an
action is valid for some subset of the grant’s validity. The format for validity is the same as validity.

default_rule

The default rule is the rule applied if none of the grant’s allow rules or deny rules match the incoming operation to be
verified. Recognized values are ALLOW and DENY.

2.19. DDS Security 279



OpenDDS, Release 3.28.1

Permissions XML Example

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation=
→˓"http://www.omg.org/spec/DDS-Security/20170801/omg_shared_ca_permissions.xsd">
<permissions>
<grant name="ShapesPermission">
<subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO Office, O=ACME␣

→˓Inc., L=Sunnyvale, ST=CA, C=US</subject_name>
<validity>
<not_before>2015-10-26T00:00:00</not_before>
<not_after>2020-10-26T22:45:30</not_after>

</validity>
<allow_rule>
<domains>
<id>0</id>

</domains>
</allow_rule>
<deny_rule>
<domains>
<id>0</id>

</domains>
<publish>
<topics>
<topic>Circle1</topic>

</topics>
</publish>
<publish>
<topics>
<topic>Square</topic>

</topics>
<partitions>
<partition>A_partition</partition>

</partitions>
</publish>
<subscribe>
<topics>
<topic>Square1</topic>

</topics>
</subscribe>
<subscribe>
<topics>
<topic>Tr*</topic>

</topics>
<partitions>
<partition>P1*</partition>

</partitions>
</subscribe>

</deny_rule>
<default>DENY</default>

</grant>
</permissions>

</dds>

280 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

2.19.9 DDS Security Implementation Status

The following DDS Security features are not implemented in OpenDDS.

1. Optional parts of the DDS Security v1.1 specification

• Ability to write a custom plugin in C or in Java (C++ is supported)

• Logging Plugin support

• Built-in Logging Plugin

• Data Tagging

2. Use of RTPS KeyHash for encrypted messages

• OpenDDS doesn’t use KeyHash, so it meets the spec requirements of not leaking secured data through
KeyHash

3. Immutability of Publisher’s Partition QoS, see OMG Issue DDSSEC12-49 (Member Link)

4. Use of multiple plugin configurations (with different Domain Participants)

5. CRL (RFC 5280) and OCSP (RFC 2560) support

6. Certain plugin operations not used by built-in plugins may not be invoked by middleware

7. Origin Authentication

8. PKCS#11 for certificates, keys, passwords

9. Relay as a permissions “action” (Publish and Subscribe are supported)

10. Legacy matching behavior of permissions based on Partition QoS

11. 128-bit AES keys (256-bit is supported)

12. Configuration of Built-In Crypto’s key reuse (within the DataWriter) and blocks-per-session

13. Signing (without encrypting) at the payload level, see OMG Issue DDSSEC12-59 (Member Link)

The following features are OpenDDS extensions:

1. Validity of publish/subscribe actions validity.

2.20 Internet-Enabled RTPS

2.20.1 Overview

Like any specification, standard, or system, RTPS was designed with certain assumptions. Two of these assumptions
severely limit the ability to use RTPS in modern network environments. First, RTPS, or more specifically, SPDP uses
multicast for discovery. Multicast is not supported on the public Internet which precludes the use of RTPS for Internet
of Things (IoT) applications and Industrial Internet of Things (IIoT) applications. Second, SPDP and SEDP advertise
locators (IP and port pairs) for endpoints (DDS readers and writer). If the participant is behind a firewall that performs
network address translation, then the locators advertised by the participant are useless to participants on the public side
of the firewall.

This section describes different tools and techniques for getting around these limitations. First, we introduce the Rtp-
sRelay as a service for forwarding RTPS messages according to application-defined groups. The RtpsRelay can be
used to connect participants that are deployed in environments that don’t support multicast and whose packets are sub-
ject to NAT. Second, we introduce Interactive Connection Establishment (ICE) for RTPS. Adding ICE to RTPS is an

2.20. Internet-Enabled RTPS 281

https://issues.omg.org/issues/DDSSEC12-49
https://issues.omg.org/browse/DDSSEC12-49
https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc2560.html
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF#page=235&view=FitH,512.0
https://issues.omg.org/issues/DDSSEC12-59
https://issues.omg.org/browse/DDSSEC12-59


OpenDDS, Release 3.28.1

optimization that allows participants that are behind firewalls that perform NAT to exchange messages directly. ICE
requires a back channel for distributing discovery information and is typically used with the RtpsRelay.

2.20.2 The RtpsRelay

The RtpsRelay is designed to allow participants to exchange RTPS datagrams when separated by a firewall that per-
forms network address translation (NAT) and/or a network that does not support multicast like the public Internet. The
RtpsRelay supports both IPv4 and IPv6. A participant that uses an RtpsRelay Instance is a client of that instance. Each
RtpsRelay instance contains two participants: the Application Participant and the Relay Participant. The Application
Participant runs in the domain of the application. The RtpsRelay reads the built-in topics to discover Participants,
DataReaders, and DataWriters. It then shares this information with other RtpsRelay instances using the Relay Par-
ticipant. Each RtpsRelay instance maintains a map of associated readers and writers. When a client sends an RTPS
datagram to its RtpsRelay instance, the RtpsRelay instance uses the association table to forward the datagram to other
clients and other RtpsRelay instances so that they can deliver it to their clients. Clients send RTPS datagrams via
unicast which is generally supported and compatible with NAT. The RtpsRelay can be used in lieu of or in addition to
conventional RTPS discovery.

+--------------+ +--------------+
| "RtpsRelay" |<------->| "RtpsRelay" |
+--------------+ "3" +--------------+

^ ^
| "2" "4" |
V V

+--------------+ +--------------+
| "Firewall" | | "Firewall" |
+--------------+ +--------------+

^ ^
| "1" "5" |
V V

+--------------+ +--------------+
|"Pariticpant" | |"Pariticpant" |
+--------------+ +--------------+

The preceding diagram illustrates how the RtpsRelay can be used to connect participants that are behind firewalls that
may be performing NAT. First, a Participant sends an RTPS datagram to its associated RtpsRelay (1). This datagram is
intercepted by the firewall, the source address and port are replaced by the external IP address and port of the firewall,
and then the datagram is sent to the RtpsRelay (2). The relationship between the source address and external IP address
and port selected by the firewall is called a NAT binding. The RtpsRelay instance forwards the datagram to other
RtpsRelay instances (3). The RtpsRelays then forward the datagram to all of the destination participants (4). Firewalls
on the path to the participants intercept the packet and replace the destination address (which is the external IP and port
of the firewall) with the address of the Participant according to a previously created NAT binding (5).

The RTPS implementation in OpenDDS uses a port for SPDP, a port for SEDP, and a port for conventional RTPS
messages. The relay mirrors this idea and exposes three ports to handle each type of traffic.

To keep NAT bindings alive, clients send STUN binding requests and indications periodically to the RtspRelay ports.
Participants using ICE may use these ports as a STUN server for determining a server reflexive address. The timing
parameters for the periodic messages are controlled via the ICE configuration variables for server reflexive addresses.

282 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Using the RtpsRelay

Support for the RtpsRelay is activated via configuration. See [rtps_discovery] and [transport] (rtps_udp)
for details. As an example:

[common]
DCPSGlobalTransportConfig=$file

[domain/4]
DiscoveryConfig=rtps

[rtps_discovery/rtps]
SpdpRtpsRelayAddress=1.2.3.4:4444
SedpRtpsRelayAddress=1.2.3.4:4445
UseRtpsRelay=1

[transport/the_rtps_transport]
transport_type=rtps_udp
DataRtpsRelayAddress=1.2.3.4:4446
UseRtpsRelay=1

Each participant should use a single RtpsRelay instance due to the way NAT bindings work. Most firewalls will only
forward packets received from the destination address that was originally used to create the NAT binding. That is, if
participant A is interacting with relay A and participant B is interacting with relay B, then a message from A to B
must go from A to relay A, to relay B, and finally to B. Relay A cannot send directly to B since that packet will not be
accepted by the firewall.

Usage

The RtpsRelay itself is an OpenDDS application. The source code is located in tools/rtpsrelay. Security must be
enabled to build the RtpsRelay. See Building OpenDDS with Security Enabled. Each RtpsRelay process has a set of
ports for exchanging RTPS messages with the participants called the “vertical” ports and a set of ports for exchanging
RTPS messages with other relays called the “horizontal” ports.

The RtpsRelay contains an embedded webserver called the meta discovery server. The webserver has the following
endpoints:

• /config

Responds with configured content and content type. See -MetaDiscovery options below. Potential client partic-
ipants can download the necessary configuration from this endpoint.

• /healthcheck

Responds with HTTP 200 (OK) or 503 (Service Unavailable) if thread monitoring is enabled and the
RtpsRelay is not admitting new client participants. Load balancers can use this endpoint to route new client
participants to an available RtpsRelay instance.

The command-line options for the RtpsRelay:

-Id <string>

This option is mandatory and is a unique id associated with all topics published by the relay.

-HorizontalAddres <address>

Determines the base network address used for receiving RTPS message from other relays. By default, the relay
listens on the first IP network and uses port 11444 for SPDP messages, 11445 for SEDP messages, and 11446
for data messages.

2.20. Internet-Enabled RTPS 283

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tools/rtpsrelay


OpenDDS, Release 3.28.1

-VerticalAddress <address>

Determines the base network address used for receiving RTPS messages from the participants. By default, the
relay listens on 0.0.0.0:4444 for SPDP messages, 0.0.0.0:4445 for SEDP messages, and 0.0.0.0.4446 for data
messages.

-RelayDomain <domain>

Sets the DDS domain used by the Relay Participant. The default is 0.

-ApplicationDomain <domain>

Sets the DDS domain used by the Application Participant. The default is 1.

-UserData <string>

Set the contents of the Application Participant’s UserData QoS policy to the provided string.

-BufferSize <integer>

Send of send and receive buffers in bytes

-Lifespan <seconds>

RtpsRelay will only forward a datagram to a client if it has received a datagram from the client in this amount of
time. Otherwise, participant is marked as not alive. The default is 60 seconds.

-InactivePeriod <seconds>

RtpsRelay will mark participant as not active if does not receive a datagram from the client in this amount of
time. The default is 60 seconds.

-AllowEmptyPartition 0|1

Allow client participants with no partitions. Defaults to 1 (true).

-IdentityCA <path>

Provide identity CA file for DDS Security.

-PermissionsCA <path>

Provide permissions CA file for DDS Security.

-IdentityCertificate <path>

Provide identity certificate file for DDS Security.

-IdentityKey <path>

Provide identity key file for DDS Security.

-Governance <path>

Provide governance file for DDS Security.

-Permissions <path>

Provide permissions file for DDS Security.

-RestartDetection 0|1

Setting to 1 causes the relay to track clients by the first 6 bytes of their RTPS GUID and source IP address and
clean up older sessions with the same key. The default is 0 (false).

-LogWarnings 0|1

Enable/disable logging of warning events.

-LogDiscovery 0|1

Enable/disable logging of discovery events.

-LogActivity 0|1

Enable/disable logging of activity events.

284 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

-LogRelayStatistics <seconds>

-LogHandlerStatistics <seconds>

-LogParticipantStatistics <seconds>

Write statistics for the various event types to the log at the given interval, defaults to 0 (disabled).

-PublishRelayStatistics <seconds>

-PublishHandlerStatistics <seconds>

-PublishParticipantStatistics <seconds>

Configure the relay to publish usage statistics on DDS topics at the given interval, defaults to 0 (disabled).

-LogThreadStatus 0|1

If thread monitoring is enabled , log the status of the threads in the RtpsRelay, defaults to 0 (disabled).

-ThreadStatusSafetyFactor <integer>

Restart if thread monitoring is enabled and a thread has not checked in for this many reporting intervals,
default 3.

-UtilizationLimit <decimal>

If thread monitoring is enabled , the RtpsRelay will not accept new client participants if the CPU utiliza-
tion of any thread is above this limit, default .95.

-PublishRelayStatus <seconds>

Setting this to a positive integer causes the relay to publish its status at that interval.

-PublishRelayStatusLiveliness <seconds>

Setting this to a positive integer causes the relay to set the Liveliness QoS on the relay status topic.

-MetaDiscoveryAddress <host>:<port>

Listening address for the meta discovery server, default is 0.0.0.0:8080.

-MetaDiscoveryContentType <content-type>

The HTTP content type to report for the meta discovery config endpoint, default is application/json.

-MetaDiscoveryContentPath <content>

-MetaDiscoveryContent <content>

The content returned by the meta discovery config endpoint, default {}. If a path is specified, the content of the
file will be used.

-MaxIpsPerClient <integer>

The maximum number of IP addresses that the RtpsRelay will maintain for a client participant, defaults to 0
(infinite).

-RejectedAddressDuration <seconds>

Amount of time to reject messages from client participants that show suspicious behavior, e.g., those that send
messages from the RtpsRelay back to the RtpsRelay. The default is 0 (disabled).

2.20. Internet-Enabled RTPS 285



OpenDDS, Release 3.28.1

Deployment Considerations

Running an RtpsRelay relay cluster with RTPS in the cloud leads to a bootstrapping problem since multicast is not
supported in the cloud. One option is to not use RTPS for discovery. Another option is to run a single well-known relay
that allows the other relays to discover each other. A third option is to use a program translates multicast to unicast.

RTPS uses UDP which typically cannot be load balanced effectively due to the way NAT bindings work. Consequently,
each RtpsRelay server must have a public IP address. Load balancing can be achieved by having the participants choose
a relay according to a load balancing policy. To illustrate, each relay could also run an HTTP server which does nothing
but serve the public IP address of the relay. These simple web servers would be exposed via a centralized load balancer.
A participant, then, could access the HTTP load balancer to select a relay.

2.20.3 Interactive Connectivity Establishment (ICE) for RTPS

Interactive Connectivity Establishment (ICE) is protocol for establishing connectivity between a pair of hosts that are
separated by at least one firewall that performs network address translation. ICE can be thought of as an optimization
for situations that require an RtpsRelay. The success of ICE depends on the firewall(s) that separate the hosts.

The ICE protocol has three steps. First, a host determines its public IP address by sending a STUN binding request
to a public STUN server. The STUN server sends a binding success response that contains the source address of the
request. If the host has a public IP address, then the address returned by STUN will match the IP address of the host.
Otherwise, the address will be the public address of the outermost firewall. Second, the hosts generate and exchange
candidates (which includes the public IP address determined in the first step) using a side channel. A candidate is an
IP and port that responds to STUN messages and sends datagrams. Third, the hosts send STUN binding requests to the
candidates in an attempt to generate the necessary NAT bindings and establish connectivity.

For OpenDDS, ICE can be used to potentially establish connectivity between SPDP endpoints, SEDP endpoints, and
ordinary RTPS endpoints. SPDP is used as the side channel for SEDP and SEDP is used as the side channel for the
ordinary RTPS endpoints. To this, we added two parameters to the RTPS protocol for sending general ICE informa-
tion and ICE candidates and added the ability to execute the ICE protocol and process STUN messages to the RTPS
transports.

ICE is defined in RFC 8445. ICE utilizes the STUN protocol that is defined in RFC 5389. The ICE implementation
in OpenDDS does not use TURN servers.

ICE is enabled through configuration. The minimum configuration involves setting the [rtps_discovery]
UseIce and [transport] UseIce (rtps_udp) flags and providing addresses for the STUN servers. See
[rtps_discovery] and [transport] (rtps_udp) for details.

[common]
DCPSGlobalTransportConfig=$file
DCPSDefaultDiscovery=DEFAULT_RTPS

[transport/the_rtps_transport]
transport_type=rtps_udp
DataRtpsRelayAddress=5.6.7.8:4446
UseIce=1
DataStunServerAddress=1.2.3.4:3478

[domain/42]
DiscoveryConfig=DiscoveryConfig1

[rtps_discovery/DiscoveryConfig1]
SpdpRtpsRelayAddress=5.6.7.8:4444
SedpRtpsRelayAddress=5.6.7.8:4445

(continues on next page)

286 Chapter 2. Developer’s Guide

https://datatracker.ietf.org/doc/html/rfc8445.html
https://datatracker.ietf.org/doc/html/rfc5389.html


OpenDDS, Release 3.28.1

(continued from previous page)

UseIce=1
SedpStunServerAddress=1.2.3.4:3478

2.20.4 Security Considerations

The purpose of this section is to inform users about potential security issues when using OpenDDS. Users of OpenDDS
are encouraged to perform threat modeling, security reviews, assessments, testing, etc. to ensure that their applications
meet their security objectives.

Use DDS Security

Most applications have common objectives with respect to data security:

• Authentication - The identity of every process that participates in the DDS domain can be established.

• Authorization - Only authorized writers of a topic may generate samples for a topic and only authorized readers
may consume samples for a topic.

• Integrity - The content of a sample cannot be altered without detection.

• Privacy - The content of a sample cannot be read by an unauthorized third party.

If an application is subject to any of these security objectives, then it should use the DDS Security features described
in DDS Security. Using a non-secure discovery mechanism or a non-secure transport leaves the application exposed to
data security breaches.

Understand the Weaknesses of (Secure) RTPS Discovery

Secure RTPS Discovery has a behavior that can be exploited to launch a denial of service attack (see https://www.
cisa.gov/news-events/ics-advisories/icsa-21-315-02). Basically, an attacker can send a fake SPDP message to a secure
participant which will cause it to begin authentication with a non-existent participant. The authentication messages
are repeated resulting in amplification. An attacker could manipulate a group of secure participants to launch a denial
of service attack against a specific host or group of hosts. RTPS (without security) has the same vulnerability except
that messages come from the other built-in endpoints. For this reason, consider the mitigation features below before
making an OpenDDS participant publicly accessible.

The weakness in RTPS Discovery can be mitigated but currently does not have a solution. OpenDDS includes the
following features for mitigation:

• Compare the source IP of the SPDP message to the locators. For most applications, the locators advertised by
SPDP should match the source IP of the SPDP message.

– See [rtps_discovery] CheckSourceIp

• Use the participant lease time from secure discovery and bound it otherwise. By default, OpenDDS will attempt
authentication for the participant lease duration specified in the SPDP message. However, this data can’t be
trusted so a smaller maximum lease time can be specified to force authentication or discovery to terminate before
the lease time.

– See [rtps_discovery] MaxAuthTime

• Limit the number of outstanding secure discoveries. The number of discovered but not-yet-authenticated partic-
ipants is capped when using secure discovery.

– See [rtps_discovery] MaxParticipantsInAuthentication

2.20. Internet-Enabled RTPS 287

https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02
https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02


OpenDDS, Release 3.28.1

Run Participants in a Secure Network

One approach to a secure application without DDS Security is to secure it at the network layer instead of the application
layer. A physically secure network satisfies this by construction. Another approach is to use a virtual private network
(VPN) or a secure overlay. These approaches have a simple security model when compared to DDS Security and are
not interoperable.

2.21 XTypes

2.21.1 Overview

The DDS specification defines a way to build distributed applications using a data-centric publish and subscribe model.
In this model, publishing and subscribing applications communicate via Topics and each Topic has a data type. An
assumption built into this model is that all applications agree on data type definitions for each Topic that they use. This
assumption is not practical as systems must be able to evolve while remaining compatible and interoperable.

The DDS XTypes (Extensible and Dynamic Topic Types) specification loosens the requirement on applications to have
a common notion of data types. Using XTypes, the application developer adds IDL annotations that indicate where the
types may vary between publisher and subscriber and how those variations are handled by the middleware.

OpenDDS implements the XTypes specification at the Basic Conformance level, with a partial implementation of the
Dynamic Language Binding. Some features described by the specification are not yet implemented in OpenDDS - those
are noted in Unimplemented Features. This includes IDL annotations that are not yet implemented (Annotations). See
Differences from the specification for situations where the implementation of XTypes in OpenDDS departs from or
infers something about the specification. Specification issues have been raised for these situations.

2.21.2 Features

Extensibility

There are 3 kinds of extensibility for types:

Appendable
Appendable denotes a constructed type which may have additional members added onto or removed from the
end, but not both at the same time. Appendable is the default extensibility. A type can be explicitly marked as
appendable with the @appendable annotation.

Mutable
Mutable denotes a constructed type that allows for members to be added, removed, and reordered so long as
the keys and the required members of the sender and receiver remain. Mutable extensibility is accomplished by
assigning a stable identifier to each member. A type can be marked as mutable with the @mutable annotation.

Final
Final denotes a constructed type that can not add, remove, or reorder members. This can be considered a non-
extensible constructed type, with behavior similar to that of a type created before XTypes. A type can be marked
as final with the @final annotation.

The default extensibility can be changed with opendds_idl --default-extensibility.

Structs, unions, and enums are the only types which can use any of the extensibilities.

The default extensibility for enums is “appendable” and is not governed by --default-extensibility. TypeObjects
for received enums that do not set any flags are treated as a wildcard.

288 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Assignability

Assignability describes the ability of values of one type to be coerced to values of a possibility different type.

Assignability between the type of a writer and reader is checked as part of discovery. If the types are assignable but
not identical, then the “try construct” mechanism will be used to coerce values of the writer’s type to values of the
reader’s type.

In order for two constructed types to be assignable they must

• Have the same extensibility.

• Have the same set of keys.

Each member of a constructed type has an identifier. This identifier may be assigned automatically or explicitly.

Union assignability depends on two dimensions. First, unions are only assignable if their discriminators are assignable.
Second, for any branch label or default that exists in both unions, the members selected by that branch label must be
assignable.

Interoperability with non-XTypes Implementations

Communication with a non-XTypes DDS (either an older OpenDDS or another DDS implementation which has RTPS
but not XTypes 1.2+) requires compatible IDL types and the use of RTPS Discovery. Compatible IDL types means
that the types are structurally equivalent and serialize to the same bytes using XCDR version 1.

Additionally, the XTypes-enabled participant needs to be set up as follows:

• Types cannot use mutable extensibility

• Data Writers must have their Data Representation QoS policy set to DDS::XCDR_DATA_REPRESENTATION

• Data Readers must include DDS::XCDR_DATA_REPRESENTATION in the list of data representations in their Data
Representation QoS (true by default)

Data Representation shows how to change the data representation. XCDR1 Support details XCDR1 support.

Dynamic Language Binding

Before the XTypes specification, all DDS applications worked by mapping the topic’s data type directly into the pro-
gramming language and having the data handling APIs such as read, write, and take, all defined in terms of that type. As
an example, topic type A (an IDL structure) caused code generation of IDL interfaces ADataWriter and ADataReader
while topic type B generated IDL interfaces BDataWriter and BDataReader. If an application attempted to pass an
object of type A to the BDataWriter, a compile-time error would occur (at least for statically typed languages includ-
ing C++ and Java). Advantages to this design include efficiency and static type safety, however, the code generation
required by this approach is not desirable for every DDS application.

The XTypes Dynamic Language Binding defines a generic data container DynamicData and the interfaces Dynam-
icDataWriter and DynamicDataReader. Applications can create instances of DynamicDataWriter and Dynamic-
DataReader that work with various topics in the domain without needing to incorporate the generated code for those
topics’ data types. The system is still type safe but the type checks occur at runtime instead of at compile time. The
Dynamic Language Binding is described in detail in Dynamic Language Binding.

2.21. XTypes 289



OpenDDS, Release 3.28.1

2.21.3 Examples and Explanation

Suppose you are in charge of deploying a set of weather stations that publish temperature, pressure, and humidity. The
following examples show how various features of XTypes may be applied to address changes in the schema published
by the weather station. Specifically, without XTypes, one would either need to create a new type with its own DataWrit-
ers/DataReaders or update all applications simultaneously. With proper planning and XTypes, one can simply modify
the existing type (within limits) and writers and readers using earlier versions of the topic type will remain compatible
with each other and be compatible with writers and readers using new versions of the topic type.

Mutable Extensibility

The type published by the weather stations can be made extensible with the @mutable annotation:

// Version 1
@topic
@mutable
struct StationData {
short temperature;
double pressure;
double humidity;

};

Suppose that some time in the future, a subset of the weather stations are upgraded to monitor wind speed and direction:

enum WindDir {N, NE, NW, S, SE, SW, W, E};
// Version 2
@topic
@mutable
struct StationData {
short temperature;
double pressure;
double humidity;
short wind_speed;
WindDir wind_direction;

};

When a Version 2 writer interacts with a Version 1 reader, the additional fields will be ignored by the reader. When a
Version 1 writer interacts with a Version 2 reader, the additional fields will be initialized to a “logical zero” value for
its type (empty string, FALSE boolean) - see Table 9 of the XTypes specification for details.

Assignability

The first and second versions of the StationData type are assignable meaning that it is possible to construct a version 2
value from a version 1 value and vice-versa. The assignability of non-constructed types (e.g., integers, enums, strings)
is based on the types being identical or identical up to parameterization, i.e., bounds of strings and sequences may
differ. The assignability of constructed types like structs and unions is based on finding corresponding members with
assignable types. Corresponding members are those that have the same id.

A type marked as @mutable allows for members to be added, removed, or reordered so long as member ids are preserved
through all of the mutations.

290 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Member IDs

Member ids are assigned using various annotations. A policy for a type can be set with either @autoid(SEQUENTIAL)
or @autoid(HASH):

// Version 3
@topic
@mutable
@autoid(SEQUENTIAL)
struct StationData {
short temperature;
double pressure;
double humidity;

};

// Version 4
@topic
@mutable
@autoid(HASH)
struct StationData {
short temperature;
double pressure;
double humidity;

};

SEQUENTIAL causes ids to be assigned based on the position in the type. HASH causes ids to be computed by hashing
the name of the member. If no @autoid annotation is specified, the policy is SEQUENTIAL.

Suppose that Version 3 was used in the initial deployment of the weather stations and the decision was made to switch
to @autoid(HASH) when adding the new fields for wind speed and direction. In this case, the ids of the pre-existing
members can be set with @id:

enum WindDir {N, NE, NW, S, SE, SW, W, E};

// Version 5
@topic
@mutable
@autoid(HASH)
struct StationData {

@id(0) short temperature;
@id(1) double pressure;
@id(2) double humidity;
short wind_speed;
WindDir wind_direction;

};

See the Member ID assignment for more details.

2.21. XTypes 291



OpenDDS, Release 3.28.1

Appendable Extensibility

Mutable extensibility requires a certain amount of overhead both in terms of processing and network traffic. A more
efficient but less flexible form of extensibility is appendable. Appendable is limited in that members can only be added
to or removed from the end of the type. With appendable, the initial version of the weather station IDL would be:

// Version 6
@topic
@appendable
struct StationData {
short temperature;
double pressure;
double humidity;

};

And the subsequent addition of the wind speed and direction members would be:

enum WindDir {N, NE, NW, S, SE, SW, W, E};

// Version 7
@topic
@appendable
struct StationData {
short temperature;
double pressure;
double humidity;
short wind_speed;
WindDir wind_direction;

};

As with mutable, when a Version 7 Writer interacts with a Version 6 Reader, the additional fields will be ignored by
the reader. When a Version 6 Writer interacts with a Version 7 Reader, the additional fields will be initialized to default
values based on Table 9 of the XTypes specification.

Appendable is the default extensibility.

Final Extensibility

The third kind of extensibility is final. Annotating a type with @final means that it will not be compatible with
(assignable to/from) a type that is structurally different. The @final annotation can be used to define types for pre-
XTypes compatibility or in situations where the overhead of mutable or appendable is unacceptable.

Try Construct

From a reader’s perspective, there are three possible scenarios when attempting to initialize a member. First, the
member type is identical to the member type of the reader. This is the trivial case the value from the writer is copied to
the value for the reader. Second, the writer does not have the member. In this case, the value for the reader is initialized
to a default value based on Table 9 of the XTypes specification (this is the “logical zero” value for the type). Third, the
type offered by the writer is assignable but not identical to the type required by the reader. In this case, the reader must
try to construct its value from the corresponding value provided by the writer.

Suppose that the weather stations also publish a topic containing station information:

292 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

typedef string<8> StationID;
typedef string<256> StationName;

// Version 1
@topic
@mutable
struct StationInfo {

@try_construct(TRIM) StationID station_id;
StationName station_name;

};

Eventually, the pool of station IDs is exhausted so the IDL must be refined as follows:

typedef string<16> StationID;
typedef string<256> StationName;

// Version 2
@topic
@mutable
struct StationInfo {

@try_construct(TRIM) StationID station_id;
StationName station_name;

};

If a Version 2 writer interacts with a Version 1 reader, the station ID will be truncated to 8 characters. While perhaps
not ideal, it will still allow the systems to interoperate.

There are two other forms of try-construct behavior. Fields marked as @try_construct(USE_DEFAULT) will receive
a default value if value construction fails. In the previous example, this means the reader would receive an empty string
for the station ID if it exceeds 8 characters. Fields marked as @try_construct(DISCARD) cause the entire sample to
be discarded. In the previous example, the Version 1 reader will never see a sample from a Version 2 writer where the
original station ID contains more than 8 characters. @try_construct(DISCARD) is the default behavior.

2.21.4 Data Representation

Data representation is the way a data sample can be encoded for transmission.

The possible data representations are:

XML
This isn’t currently supported.

The DataRepresentationId_t value is DDS::XML_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(XML).

XCDR1
This is the pre-XTypes standard CDR extended with XTypes features. Support is limited to non-XTypes features,
see XCDR1 Support for details.

The DataRepresentationId_t value is DDS::XCDR_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(XCDR1).

XCDR2
This is default for writers when using the RTPS-UDP transport and should be preferred in most cases. It is a
more robust and efficient version of XCDR1.

2.21. XTypes 293



OpenDDS, Release 3.28.1

The DataRepresentationId_t value is DDS::XCDR2_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(XCDR2).

Unaligned CDR
This is a OpenDDS-specific encoding that is the default for writers using only non-RTPS-UDP transports. It
can’t be used by a DataWriter using the RTPS-UDP transport.

The DataRepresentationId_t value is OpenDDS::DCPS::UNALIGNED_CDR_DATA_REPRESENTATION

The annotation is @OpenDDS::data_representation(UNALIGNED_CDR).

Use Data Representation QoS to define what representations writers and readers should use. Writers can
only encode samples using only one data representation, but readers can accept multiple data representations.
@OpenDDS::data_representation can be used to restrict what data representation can be used for a topic type in IDL.

Warning: Because writers default to XCDR2 instead of XCDR1, they aren’t likely to be compatible with readers
from OpenDDS versions before 3.16 and other DDS implementations by default. Either the remote readers will
have to set to use XCDR2 if they support it or OpenDDS writers will have to be set to use XCDR1.

The example below shows a possible configuration for an XCDR1 DataWriter.

DDS::DataWriterQos qos;
pub->get_default_datawriter_qos(qos);
qos.representation.value.length(1);
qos.representation.value[0] = DDS::XCDR_DATA_REPRESENTATION;
DDS::DataWriter_var dw = pub->create_datawriter(topic, qos, 0, 0);

Note that the IDL constant used for XCDR1 is XCDR_DATA_REPRESENTATION (without the digit).

2.21.5 Type Consistency Enforcement

When a reader/writer match is happening, type consistency enforcement checks that the two types are compatible
according to the type objects if they are available. This check will not happen if OpenDDS has been configured not to
generate or use type objects or if the remote DDS doesn’t support type objects. Some parts of the compatibility check
can be controlled on the reader side using Type Consistency Enforcement QoS. The full type object compatibility check
is too detailed to reproduce here. It can be found in DDS XTypes v1.3 7.2.4 Type Compatibility. In general though
two topic types and their nested types are compatible if:

• Extensibilities of shared types match

• Extensibility rules haven’t been broken, for example:

– Changing a @final struct

– Adding a member in the middle of an @appendable struct

• Length bounds of strings and sequences are the same or greater

• Lengths of arrays are exactly the same

• The keys of the types match exactly

• Shared member IDs match when required, like when they are final or are being used as keys

If the type objects are compatible then the match goes ahead. If one or both type objects are not available, then
OpenDDS falls back to checking the names each entity’s TypeSupport was given. This is the name passed to the
register_type method of a TypeSupport object or if that string is empty then the name of the topic type in IDL.

294 Chapter 2. Developer’s Guide

https://www.omg.org/spec/DDS-XTypes/1.3/PDF#page=74&view=FitH,555.0


OpenDDS, Release 3.28.1

An interesting side effect of these rules is when type objects are always available, then the topic type names passed to
register_type are only used within that process. This means they can be changed and remote readers and writers
will still match, assuming the new name is used consistently within the process and the types are still compatible.

2.21.6 IDL Annotations

Indicating Which Types Can Be Topic Types

@topic

Applies To: struct or union type declarations

The topic annotation marks a topic type for samples to be transmitted from a publisher or received by a subscriber. A
topic type may contain other topic and non-topic types. See Defining Data Types with IDL for more details.

@nested

Applies To: struct or union type declarations

The @nested annotation marks a type that will always be contained within another. This can be used to prevent a type
from being used as in a topic. One reason to do so is to reduce the amount of code generated for that type.

@default_nested

Applies To: modules

The @default_nested(TRUE) or @default_nested(FALSE) sets the default nesting behavior for a module. Types
within a module marked with @default_nested(FALSE) can still set their own behavior with @nested.

Specifying allowed Data Representations

If there are @OpenDDS::data_representation annotations are on the topic type, then the representations are limited
to ones the specified in the annotations, otherwise all representations are allowed. Trying to create a reader or writer
with the disallowed representations will result in an error. See Data Representation for more information.

@OpenDDS::data_representation(XML)

Applies To: topic types

Limitations: XML is not currently supported

2.21. XTypes 295



OpenDDS, Release 3.28.1

@OpenDDS::data_representation(XCDR1)

Applies To: topic types

Limitations: XCDR1 doesn’t support XTypes features See Data Representation for details

@OpenDDS::data_representation(XCDR2)

Applies To: topic types

XCDR2 is currently the recommended data representation for most cases.

@OpenDDS::data_representation(UNALIGNED_CDR)

Applies To: topic types

Limitations: OpenDDS specific, can’t be used with RTPS-UDP, and doesn’t support XTypes features See Data Repre-
sentation for details

Standard @data_representation

tao_idl doesn’t support bitset, which the standard @data_representation requires. Instead use
@OpenDDS::data_representation which is similar, but doesn’t support bitmask value chaining like
@data_representation(XCDR|XCDR2). The equivalent would require two separate annotations:

@OpenDDS::data_representation(XCDR1)
@OpenDDS::data_representation(XCDR2)

Determining Extensibility

The extensibility annotations can explicitly define the extensibility of a type. If no extensibility annotation
is used, then the type will have the default extensibility. This will be appendable unless the opendds_idl
--default-extensibility is used to override the default.

@mutable

Alias: @extensibility(MUTABLE)

Applies To: type declarations

This annotation indicates a type may have non-key or non-must-understand members removed. It may also have addi-
tional members added.

296 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

@appendable

Alias: @extensibility(APPENDABLE)

Applies To: type declarations

This annotation indicates a type may have additional members added or members at the end of the type removed.

Limitations: Appendable is not currently supported when XCDR1 is used as the data representation.

@final

Alias: @extensibility(FINAL)

Applies To: type declarations

This annotation marks a type that cannot be changed and still be compatible. Final is most similar to pre-XTypes.

Customizing XTypes per-member

Try Construct annotations dictate how members of one object should be converted from members of a different but
assignable object. If no try construct annotation is added, it will default to discard.

@try_construct(USE_DEFAULT)

Applies to: structure and union members, sequence and array elements

The use_default try construct annotation will set the member whose deserialization failed to a default value which is
determined by the XTypes specification. Sequences will be of length 0, with the same type as the original sequence.
Primitives will be set equal to 0. Strings will be replaced with the empty string. Arrays will be of the same length but
have each element set to the default value. Enums will be set to the first enumerator defined.

@try_construct(TRIM)

Applies to: structure and union members, sequence and array elements

The trim try construct annotation will, if possible, shorten a received value to one fitting the receiver’s bound. As such,
trim only makes logical sense on bounded strings and bounded sequences.

@try_construct(DISCARD)

Applies to: structure and union members, sequence and array elements

The discard try construct annotation will “throw away” the sample if an element fails to deserialize.

2.21. XTypes 297



OpenDDS, Release 3.28.1

Member ID assignment

If no explicit id annotation is used, then member IDs will automatically be assigned sequentially.

@id(value)

Applies to: structure and union members

value is an unsigned 32-bit integer which assigns that member’s ID.

@autoid(value)

Applies to: module declarations, structure declarations, union declarations

The autoid annotation can take two values, HASH or SEQUENTIAL. SEQUENTIAL states that the identifier shall be com-
puted by incrementing the preceding one. HASH states that the identifier should be calculated with a hashing algorithm
- the input to this hash is the member’s name. HASH is the default value of @autoid.

@hashid(value)

Applies to: structure and union members

The @hashid sets the identifier to the hash of the value parameter, if one is specified. If the value parameter is
omitted or is the empty string, the member’s name is used as if it was the value.

Determining the Key Fields of a Type

@key

Applies to: structure members, union discriminator

The @key annotation marks a member used to determine the Instances of a topic type. See Keys for more details on
the general concept of a Key. For XTypes specifically, two types can only be compatible if each contains the members
that are keys within the other.

Customizing the values of enumerators

@value(v)

Applies to: enumerators (only when Using the IDL-to-C++11 Mapping)

Without annotations, the enumerators of each enum type take on consecutive integer values starting at 0. The
@value(v) annotation customizes the integer value of an individual enumerator. The parameter v is an integer con-
stant (signed, 4 bytes wide). Any enumerators that are not annotated take on the integer value one higher than the value
of the previously-declared enumerator, with the first declared taking value 0.

enum MyAnnotionEnabledEnum {
ZERO,
@value(3) THREE,
FOUR,

(continues on next page)

298 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

@value(2) TWO
};

2.21.7 Dynamic Language Binding

For an overview of the Dynamic Language Binding, see Dynamic Language Binding. This section describes the features
of the Dynamic Language Binding that OpenDDS supports.

There are two main usage patterns supported:

• Applications can receive DynamicData from a Recorder object (Recorder and Replayer)

• Applications can use XTypes DynamicDataWriter and/or DynamicDataReader (DynamicDataWriters and Dy-
namicDataReaders)

To use DynamicDataWriter and/or DynamicDataReader for a given topic, the data type definition for that topic must
be available to the local DomainParticipant. There are a few ways this can be achieved, see Obtaining DynamicType
and Registering TypeSupport for details.

Representing Types with TypeObject and DynamicType

In XTypes, the types of the peers may not be identical, as in the case of appendable or mutable extensibility. In order
for a peer to be aware of its remote peer’s type, there must be a way for the remote peer to communicate its type.
TypeObject is an alternative to IDL for representing types, and one of the purposes of TypeObject is to communicate
the peers’ types.

There are two classes of TypeObject: MinimalTypeObject and CompleteTypeObject. A MinimalTypeObject object
contains minimal information about the type that is sufficient for a peer to perform type compatibility checking. How-
ever, MinimalTypeObject may not contain all information about the type as represented in the corresponding user IDL
file. In cases where the complete information about the type is required, CompleteTypeObject should be used. When
XTypes is enabled, peers communicate their TypeObject information during the discovery process automatically. In-
ternally, the local and received TypeObjects are stored in a TypeLookupService object, which is shared between the
entities in the same DomainParticipant.

In the Dynamic Language Binding, each type is represented using a DynamicType object, which has a TypeDescriptor
object that describes all the information needed to correctly process the type. Likewise, each member in a type is
represented using a DynamicTypeMember object, which has a MemberDescriptor object that describes any information
needed to correctly process the type member. DynamicType is converted from the corresponding CompleteTypeObject
internally by the system.

Enabling Use of CompleteTypeObjects

To enable use of CompleteTypeObjects needed for the dynamic binding, they must be generated and OpenDDS must
be configured to use them. To generate them, use opendds_idl -Gxtypes-complete. For MPC, this can be done
by adding this to the opendds_idl arguments for idl files in the project, like this:

TypeSupport_Files {
dcps_ts_flags += -Gxtypes-complete
Messenger.idl

}

To do the same for CMake:

2.21. XTypes 299



OpenDDS, Release 3.28.1

opendds_target_sources(target
Messenger.idl
OPENDDS_IDL_OPTIONS -Gxtypes-complete

)

Once set up to be generated, OpenDDS has to be configured to send and receive the CompleteTypeObjects.
This can be done by setting [rtps_discovery] UseXTypes or programmatically using the
OpenDDS::RTPS::RtpsDiscovery::use_xtypes() setter methods.

Interpreting Data Samples with DynamicData

Together with DynamicType, DynamicData allows users to interpret a received data sample and read individual fields
from it. Each DynamicData object is associated with a type, represented by a DynamicType object, and the data
corresponding to an instance of that type. Consider the following example:

@appendable
struct NestedStruct {
@id(1) short s_field;

};

@topic
@mutable
struct MyStruct {
@id(1) long l_field;
@id(2) unsigned short us_field;
@id(3) float f_field;
@id(4) NestedStruct nested_field;
@id(5) sequence<unsigned long> ul_seq_field;
@id(6) double d_field[10];
@id(7) long mdim_field[2][3];

};

The samples for MyStruct are written by a normal, statically-typed DataWriter. The writer application needs to have
the IDL-generated code including the “complete” form of TypeObjects. Use a command-line option to opendds_idl
to enable CompleteTypeObjects since the default is to generate MinimalTypeObjects (opendds_idl Command Line
Options).

One way to obtain a DynamicData object representing a data sample received by the participant is using the Recorder
and RecorderListener classes (Recorder and Replayer). Recorder’s get_dynamic_data can be used to construct a Dy-
namicData object for each received sample from the writer. Internally, the CompleteTypeObjects received from dis-
covering that writer are converted to DynamicTypes and they are then used to construct the DynamicData objects.
Once a DynamicData object for a MyStruct sample is constructed, its members can be read as described in the fol-
lowing sections. Another way to obtain a DynamicData object is from a DynamicDataReader (Creating and Using a
DynamicDataWriter or DynamicDataReader).

300 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

Reading Basic Types

DynamicData provides methods for reading members whose types are basic such as integers, floating point numbers,
characters, boolean. See the XTypes specification for a complete list of basic types for which DynamicData provides
an interface. To call a correct method for reading a member, we need to know the type of the member as well as its id.
For our example, we first want to get the number of members that the sample contains. In these examples, the data
object is an instance of DynamicData.

DDS::UInt32 count = data.get_item_count();

Then, each member’s id can be read with get_member_id_at_index. The input for this function is the index of the
member in the sample, which can take a value from 0 to count - 1.

XTypes::MemberId id = data.get_member_id_at_index(0);

The MemberDescriptor for the corresponding member then can be obtained as follows.

XTypes::MemberDescriptor md;
DDS::ReturnCode_t ret = data.get_descriptor(md, id);

The returned MemberDescriptor allows us to know the type of the member. Suppose id is 1, meaning that the member
at index 0 is l_field, we now can get its value.

DDS::Int32 int32_value;
ret = data.get_int32_value(int32_value, id);

After the call, int32_value contains the value of the member l_field from the sample. The method returns
DDS::RETCODE_OK if successful. In case the type has an optional member and it is not present in the DynamicData
instance, DDS::RETCODE_NO_DATA is returned.

Similarly, suppose we have already found out the types and ids of the members us_field and f_field, their values
can be read as follows.

DDS::UInt16 uint16_value;
ret = data.get_uint16_value(uint16_value, 2); // Get the value of us_field
DDS::Float32 float32_value;
ret = data.get_float32_value(float32_value, 3); // Get the value of f_field

Reading members from union is a little different as there is at most one active branch at any time. In general, Dynam-
icData in OpenDDS follows the IDL-to-C++ mappings for union. Consider the following union as an example.

@mutable
union MyUnion switch (short) {
case 1:
case 2:
@id(1) short s_field;

case 3:
@id(2) long l_field;

case 4:
@id(3) string str_field;

};

The discriminator can be read using the appropriate method for the discriminator type and id
XTypes::DISCRIMINATOR_ID (see dds/DCPS/XTypes/TypeObject.h).

2.21. XTypes 301

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/XTypes/TypeObject.h


OpenDDS, Release 3.28.1

DDS::Int32 disc_value;
ret = data.get_int16_value(disc_val, XTypes::DISCRIMINATOR_ID);

Using the value of the discriminator, user can decide which branch is activated and read its value in a similar way as
reading a struct member. Reading a branch that is not activated returns DDS::RETCODE_PRECONDITION_NOT_MET.

At any time, a DynamicData instance of a union represents a valid state of that union. A special case is an empty
DynamicData instance. In this case, the discriminator takes the default value of the discriminator type (the XTypes
specification specifies the default value for each type). If that discriminator value selects a branch, the selected branch
also takes the default value corresponding to its type. If it doesn’t select a branch, the union contains only the discrim-
inator.

Reading Collections of Basic Types

Besides a list of methods for getting values of members of basic types, DynamicData also defines methods for reading
sequence members. In particular, for each method that reads value from a basic type, there is a counterpart that reads a
sequence of the same basic type. For instance, get_int32_value reads the value from a member of type int32/long,
and get_int32_values reads the value from a member of type sequence<int32>. For the member ul_seq_field
in our example, its value can be read as follows.

DDS::UInt32Seq my_ul_seq;
ret = data.get_uint32_values(my_ul_seq, id); // id is 5

Because ul_seq_field is a sequence of unsigned 32-bit integers, the get_uint32_values method is used. Again,
the second argument is the id of the requested member, which is 5 for ul_seq_field. When successful, my_ul_seq
contains values of all elements of the member ul_seq_field in the sample.

To get the values of the array member d_field, we first need to create a separate DynamicData object for it, and then
read individual elements of the array using the new DynamicData object.

DDS::DynamicData_var array_data;
DDS::ReturnCode_t ret = data.get_complex_value(array_data, id); // id is 6

const DDS::UInt32 num_items = array_data->get_item_count();
for (DDS::UInt32 i = 0; i < num_items; ++i) {
const XTypes::MemberId my_id = array_data->get_member_id_at_index(i);
DDS::Float64 my_double;
ret = array_data->get_float64_value(my_double, my_id);

}

In the example code above, get_item_count returns the number of elements of the array. Inside the for loop, the
index of each element is converted to an id within the array using get_member_id_at_index. Then, this id is used to
read the element’s value into my_double. Note that the second parameter of the interfaces provided by DynamicData
must be the id of the requested member. In case of collection, elements are considered members of the collection.
However, the collection element doesn’t have a member id. And thus, we need to convert its index into an id before
calling a get_*_value (or get_*_values) method.

Accessing a multi-dimensional array is a little different as get_member_id_at_index accepts a single index as its
sole argument. OpenDDS provides function flat_index to convert an index to a multi-dimensional array to a flat
index that can then be passed to get_member_id_at_index.

DDS::DynamicData_var mdim_arr_data;
DDS::ReturnCode_t ret = data.get_complex_value(mdim_arr_data, id); // id is 7
DDS::DynamicType_var mdim_type = mdim_arr_data->type();

(continues on next page)

302 Chapter 2. Developer’s Guide



OpenDDS, Release 3.28.1

(continued from previous page)

DDS::TypeDescriptor_var mdim_td;
ret = mdim_type->get_descriptor(mdim_td);
const DDS::BoundSeq& bound = mdim_td->bound();

DDS::UInt32Seq index_vec;
index_vec.length(2);
for (DDS::UInt32 i = 0; i < bound[0]; ++i) {

index_vec[0] = i;
for (DDS::UInt32 j = 0; j < bound[1]; ++j) {

index_vec[1] = j;
DDS::UInt32 flat_idx;
ret = OpenDDS::XTypes::flat_index(flat_idx, index_vec, bound);
const XTypes::MemberId id = mdim_arr_data->get_member_id_at_index(flat_idx);
DDS::Int32 my_long;
ret = mdim_arr_data->get_int32_value(my_long, id);

}
}

flat_index takes as input an index vector to the multi-dimensional array and the dimensions of the array and returns
a flat index. The same function is used when serializing the dynamic data object to make sure the mapping from index
to id is consistent and conforms to the XTypes spec regarding the order of the elements.

Reading Members of More Complex Types

For a more complex member such as a nested structure or union, the discussed DynamicData methods are not suit-
able. And thus, users first need to get a new DynamicData object that represents the sole data of the member with
get_complex_value. This new DynamicData object can then be used to get the values of the inner members of the
nested member. For example, a DynamicData object for the nested_field member of the MyStruct sample can be
obtained as follows.

DDS::DynamicData_var nested_data;
DDS::ReturnCode_t ret = data.get_complex_value(nested_data, id); // id is 4

Recall that nested_field has type NestedStruct which has one member s_field with id 1. Now the value of s_field can
be read from nested_data using get_int16_value, since s_field has type short.

DDS::Int16 my_short;
ret = nested_data->get_int16_value(my_short, id); // id is 1

The get_complex_value method is also suitable for any other cases where the value of a member cannot be read directly
using the get_*_value or get_*_values methods. As an example, suppose we have a struct MyStruct2 defined as follows.

@appendable
struct MyStruct2 {
@id(1) sequence<NestedStruct> seq_field;

};

And suppose we already have a DynamicData object, called data, that represents a sample of MyStruct2. To read the
individual elements of seq_field, we first get a new DynamicData object for the seq_field member.

DDS::DynamicData_var seq_data;
DDS::ReturnCode_t ret = data.get_complex_value(seq_data, id); // id is 1

2.21. XTypes 303



OpenDDS, Release 3.28.1

Since the elements of seq_field are structures, for each of them we create another new DynamicData object to represent
it, which can be used to read its member.

const DDS::UInt32 num_elems = seq_data->get_item_count();
for (DDS::UInt32 i = 0; i < num_elems; ++i) {
const XTypes::MemberId my_id = seq_data->get_member_id_at_index(i);
DDS::DynamicData_var elem_data; // Represent each element.
ret = seq_data->get_complex_value(elem_data, my_id);
DDS::Int16 my_short;
ret = elem_data->get_int16_value(my_short, 1);

}

Populating Data Samples With DynamicData

DynamicData objects can be created by the application and populated with data so that they can be used as data samples
which are written to a DynamicDataWriter (Creating and Using a DynamicDataWriter or DynamicDataReader).

To create a DynamicData object, use the DynamicDataFactory API defined by the XTypes spec:

DDS::DynamicData_var dynamic =
DDS::DynamicDataFactory::get_instance()->create_data(type);

Like other data types defined by IDL interfaces (for example, the *TypeSupportImpl types), the “dynamic” object’s
lifetime is managed with a smart pointer - in this case DDS::DynamicData_var.

The “type” input parameter to create_data() is an object that implements the DDS::DynamicType interface. The
DynamicType representation of any type that’s supported as a topic data type is available from its corresponding Type-
Support object (Obtaining DynamicType and Registering TypeSupport) using the get_type() operation. Once the
application has access to that top-level type, the DynamicType interface can be used to obtain complete information
about the type including nested and referenced data types. See the file dds/DdsDynamicData.idl in OpenDDS for
the definition of the DynamicType and related interfaces.

Once the application has created the DynamicData object, it can be populated with data members of any type. The oper-
ations used for this include the DynamicData operations named “set_*” for the various data types. They are analogous
to the “get_*” operations that are described in Interpreting Data Samples with DynamicData. When populating the
DynamicData of complex data types, use get_complex_value() (Reading Members of More Complex Types) to navigate
from DynamicData representing containing types to DynamicData representing contained types.

Setting the value of a member of a DynamicData union using a set_* method implicitly 1) activates the branch
corresponding to the member and 2) sets the discriminator to a value corresponding to the active branch. For example,
the l_field member of MyUnion above can be set as follows:

DDS::Int32 l_field_value = 12;
data.set_int32_value(id, l_field_value); // id is 2

The discriminator can also be set directly in the following two cases. First, the new discriminator value selects the
same branch that is currently activated. Second, the new discriminator value selects no branch. In all other cases,
DDS::RETCODE_PRECONDITION_NOT_MET is returned. As an example for the first case, suppose the union currently
has the discriminator value of 1 and the member s_field is active. We can set the discriminator value to 2 as it selects
the same member.

DDS::Int16 new_disc_value = 2;
data.set_int16_value(XTypes::DISCRIMINATOR_ID, new_disc_value);

For the second case, setting the discriminator to any value that doesn’t select a member will succeed. After that, the
union contains only the discriminator.

304 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DdsDynamicData.idl


OpenDDS, Release 3.28.1

DDS::Int16 new_disc_value = 5; // does not select any branch
data.set_int16_value(XTypes::DISCRIMINATOR_ID, new_disc_value);

Unions start in an “empty” state as described in Interpreting Data Samples with DynamicData. Consequently, at the
point of serialization, empty and non-empty unions are not differentiated.

Expandable collection types such as sequences or strings can be extended one element at a time. To extend a se-
quence (or string), we first get the id of the new element at index equal to the current length of the sequence using
the get_member_id_at_index operation. The length of the sequence can be got using get_item_count. After we
obtain the id, we can write the new element using the set_* operation as usual.

DynamicDataWriters and DynamicDataReaders

DynamicDataWriters and DynamicDataReaders are designed to work like any other DataWriter and DataReader except
that their APIs are defined in terms of the DynamicData type instead of a type generated from IDL. Each DataWriter
and DataReader has an associated Topic and that Topic has a data type (represented by a TypeSupport object). Behavior
related to keys, QoS policies, discovery and built-in topics, DDS Security, and transport is not any different for a Dy-
namicDataWriter or DynamicDataReader. One exception is that in the current implementation, Content-Subscription
Profile is not supported for DynamicDataWriters and DynamicDataReaders.

Obtaining DynamicType and Registering TypeSupport

OpenDDS currently supports two usage patterns for obtaining a TypeSupport object that can be used with the Dynamic
Language Binding:

• Dynamically load a library that has the IDL-generated code

• Get the DynamicType of a peer DomainParticipant that has CompleteTypeObjects

The XTypes specification also describes how an application can construct a new type at runtime, but this is not yet
implemented in OpenDDS.

To use a shared library (*.dll on Windows, *.so on Linux, *.dylib on macOS, etc.) as a type support plug-in, an
application simply needs to load the library into its process. This can be done with the ACE cross-platform support
library that OpenDDS itself uses, or using a platform-specific function like LoadLibrary or dlopen. The application
code does not need to include any generated headers from this IDL. This makes the type support library a true plug-in,
meaning it can be loaded into an application that had no knowledge of it when that application was built.

Once the shared library is loaded, an internal singleton class in OpenDDS called Registered_Data_Types can be used
to obtain a reference to the TypeSupport object.

DDS::TypeSupport_var ts_static = Registered_Data_Types->lookup(0, "TypeName");

This TypeSupport object ts_static is not registered with the DomainParticipant and is not set up for the Dynamic
Language Binding. But, crucially, it does have the DynamicType object that we’ll need to set up a second TypeSupport
object which is registered with the DomainParticipant.

DDS::DynamicType_var type = ts_static->get_type();
DDS::DynamicTypeSupport_var ts_dynamic = new DynamicTypeSupport(type);
DDS::ReturnCode_t ret = ts_dynamic->register_type(participant, "");

Now the type support object ts_dynamic can be used in the usual DataWriter/DataReader setup sequence (creating a
Topic first, etc.) but the created DataWriters and DataReaders will be DynamicDataWriters and DynamicDataReaders
(Creating and Using a DynamicDataWriter or DynamicDataReader).

2.21. XTypes 305



OpenDDS, Release 3.28.1

The other approach to obtaining TypeSupport objects for use with the Dynamic Language Binding is to have DDS dis-
covery’s built-in endpoints get TypeObjects from remote domain participants. To do this, use the get_dynamic_type
method on the singleton Service_Participant object.

DDS::DynamicType_var type; // NOTE: passed by reference below
DDS::ReturnCode_t ret = TheServiceParticipant->get_dynamic_type(type, participant, key);

The two input parameters to get_dynamic_type are the participant (an object reference to the DomainParticipant
that will be used to register our TypeSupport and create Topics, DataWriters, and/or DataReders) and the key which is
the DDS::BuiltinTopicKey_t that identifies the remote entity which has the data type that we’ll use. This key can
be obtained from the Built-In Publications topic (which identifies remote DataWriters) or the Built-In Subscriptions
topic (which identifies remote DataReaders). See Built-in Topics for details on using the Built-In Topics.

The type obtained from get_dynamic_type can be used to create and register a TypeSupport object.

DDS::DynamicTypeSupport_var ts_dynamic = new DynamicTypeSupport(type);
DDS::ReturnCode_t ret = ts_dynamic->register_type(participant, "");

Creating and Using a DynamicDataWriter or DynamicDataReader

Following the steps in Obtaining DynamicType and Registering TypeSupport, a DynamicTypeSupport object is regis-
tered with the domain participant. The type name used to register with the participant may be the default type name
(used when an empty string is passed to the register_type operation), or some other type name. If the default type
name was used, the application can access that name by invoking the get_type_name operation on the TypeSupport
object.

The registered type name is then used as one of the input parameters to create_topic, just like when creating a topic
for the Plain (non-Dynamic) Language Binding. Once a Topic object exists, create a DataWriter or DataReader using
this Topic. They can be narrowed to the DynamicDataWriter or DynamicDataReader IDL interface:

DDS::DynamicDataWriter_var w = DDS::DynamicDataWriter::_narrow(writer);
DDS::DynamicDataReader_var r = DDS::DynamicDataReader::_narrow(reader);

The IDL interfaces are defined in dds/DdsDynamicTypeSupport.idl in OpenDDS. They provides the same opera-
tions as any other DataWriter or DataReader, but with DynamicData as their data type. See Populating Data Samples
With DynamicData for details on creating DynamicData objects for use with the DynamicDataWriter interface. See
Interpreting Data Samples with DynamicData for details on using DynamicData objects obtained from the Dynamic-
DataReader interface.

Limitations of the Dynamic Language Binding

The Dynamic Language Binding doesn’t currently support:

• Access from Java applications

• Content-Subscription Profile features (Content-Filtered Topics, Multi Topics, Query Conditions)

• XCDRv1 Data Representation

• Constructing types at runtime

306 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DdsDynamicTypeSupport.idl


OpenDDS, Release 3.28.1

2.21.8 Unimplemented Features

OpenDDS implements the XTypes specification at the Basic Conformance level, with a partial implementation of the
Dynamic Language Binding (supported features of which are described in Dynamic Language Binding). Specific
unimplemented features listed below. The two optional profiles, XTypes 1.1 Interoperability (XCDR1) and XML, are
not implemented.

XCDR1 Support

Pre-XTypes standard CDR is fully supported, but the XTypes-specific features are not fully supported and should be
avoided. Types can be marked as final or appendable, but all types should be treated as if they were final. Nothing
should be marked as mutable. Readers and writers of topic types that are mutable or contain nested types that are
mutable will fail to initialize.

Type System

• IDL map type

• IDL bitmask type

• Struct and union inheritance

Annotations

IDL4 defines many standardized annotations and XTypes uses some of them. The Annotations recognized by XTypes
are in Table 21 in DDS XTypes v1.3 7.3.1.2.2 Using Built-in Annotations. Of those listed in that table, the following
are not supported in OpenDDS. They are listed in groups defined by the rows of that table. Some annotations in that
table, and not listed here, can only be used with new capabilities of the Type System.

• Struct members

– @optional

– @must_understand

– @non_serialized

• Struct or union members

– @external

• Enums

– @bit_bound

– @default_literal

– @value

• @verbatim

• @data_representation

– See Standard @data_representation for details.

2.21. XTypes 307

https://www.omg.org/spec/DDS-XTypes/1.3/PDF#page=104&view=FitH,548.0


OpenDDS, Release 3.28.1

2.21.9 Differences from the specification

• Inconsistent topic status isn’t set for reader/reader or writer/writer in non-XTypes use cases

• Define the encoding and extensibility used by Type Lookup Service (Member Link)

• Enums must have the same “bit bound” to be assignable (Member Link)

• Default data representation is XCDR2 (Member Link)

• Type Lookup Service when using DDS Security (Member Link)

• Anonymous types in Strongly Connected Components (Member Link)

• Meaning of ignore_member_names in TypeConsistencyEnforcement (Member Link)

2.22 FAQ

2.22.1 General

What’s a PRF?

“PRF” refers to the PROBLEM-REPORT-FORM, i.e., PROBLEM-REPORT-FORM.

The odds of getting questions answered, bugs fixed, etc., goes up significantly when you report problems using the
PRF because it insures that developers and support personnel get the most commonly required information right away.
Failure to use the PRF means that those folks have to spend valuable time (yours and theirs) having a conversation to get
that information just to start debugging. Unless you’ve got a paid support contract, there’s even a chance that nobody
will answer!

So, always use the PRF!

Is there a mailing list or forum or usenet group for discussion of OpenDDS?

Yes. The GitHub Discussions for OpenDDS can be used to ask questions and get help. Please remember to use the
Problem Report Form when posting questions (and not just “problems”).

Which platforms does OpenDDS support?

Please refer to README.md#supported-platforms for a complete list of supported platforms.

Is OpenDDS interoperable with other DDS implementations?

Starting with version 3.1, OpenDDS contains an implementation of the RTPS (Real Time Publish-Subscribe) specifi-
cation required for interoperability. It is not enabled by default. See Configuring for RTPS Discovery for configuration
details.

308 Chapter 2. Developer’s Guide

https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29
https://issues.omg.org/issues/DDSXTY14-33
https://issues.omg.org/browse/DDSXTY14-33
https://issues.omg.org/issues/DDSXTY14-27
https://issues.omg.org/browse/DDSXTY14-27
https://issues.omg.org/issues/DDSSEC12-86
https://issues.omg.org/browse/DDSSEC12-86
https://issues.omg.org/issues/DDSXTY14-35
https://issues.omg.org/browse/DDSXTY14-35
https://issues.omg.org/issues/DDSXTY14-40
https://issues.omg.org/browse/DDSXTY14-40
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/PROBLEM-REPORT-FORM
https://github.com/OpenDDS/OpenDDS/discussions
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#supported-platforms


OpenDDS, Release 3.28.1

Does OpenDDS use CORBA?

OpenDDS uses CORBA when configured to use the DCPSInfoRepo for discovery, which is the default. See Configuring
for InfoRepo Discovery. CORBA is never used in the distribution of application data. When configured for RTPS peer-
to-peer discovery, the CORBA libraries (TAO) are present but not used for any inter-process communication at all.
When configured for Safety Profile, which uses RTPS, no TAO libraries are used at runtime.

Summarize the network connections established by OpenDDS in a two participant scenario.

This scenario has two participants (one only publishes and the other only subscribes) using the TCP transport with
no Built-In Topics. The DCPSInfoRepo is used for discovery. Here, we would expect to see three established TCP
connections at each participant:

• The participant contacts the InfoRepo over IIOP (CORBA). The endpoint used for this connection can be supplied
as -DCPSInfoRepo HOST:PORT or a similar setting in the .ini file. The HOST is the host where the InfoRepo
is running. The PORT for the InfoRepo can be controlled by passing an argument to the InfoRepo process:
-ORBListenEndpoints iiop://:PORT.

Another option that’s useful for port-forwarding solutions such as NAT traversal and SSH tunneling is
hostname_in_ior. This gets appended to the endpoint like so -ORBListenEndpoints iiop://:PORT/
hostname_in_ior=HOST_ALIAS where HOST_ALIAS is a hostname (or dotted-decimal IP) that can be used
by the client to contact the server. In the NAT traversal example, the HOST_ALIAS would be the external side
of the NAT and the PORT would be the port that’s forwarded to the host running the server.

You can also specify more than one endpoint (just repeating the -ORBListenEndpoints will work) so you can
provide endpoints that will work for both “inside” and “outside” clients.

• The InfoRepo will make an IIOP connection back to the participant. This is just the inverse of connection #1, but
there is no equivalent to the -DCPSInfoRepo corbaloc:... option. It’s not necessary because the InfoRepo
knows how to find the participant already (from data transmitted over connection #1). To control the endpoint
here, use the same -ORBListenEndpoints ... option but this time with the participant and not the InfoRepo.

• Once the publishing participant and the subscribing participant have been associated, they connect directly using
the tcp transport (by default) instance in each one. Here the endpoint is determined by the subscriber’s transport
config (the local_address value). Unfortunately there is no equivalent to the hostname_in_ior for DDS
transports.

2.22.2 Obtaining and building OpenDDS

How do I obtain, configure, and build OpenDDS?

Please refer to Building and Installing for complete requirements and build steps.

What could be causing std lib related build failures on Linux?

We have seen gcc 4.0.x-series compiler users see this problem the most often. The visibility feature in this compiler
still seems to be in a state of flux. If you see these errors, we recommend turning off the visibility feature by adding
no_hidden_visibility=1 to your platform_macros.GNU file and rebuilding all of ACE+TAO and OpenDDS.

2.22. FAQ 309



OpenDDS, Release 3.28.1

2.22.3 Configuring OpenDDS

Does OpenDDS support broadcast or multicast? If so, how do you set it up?

Reliable multicast has been available in OpenDDS since the 0.12 release (unreliable multicast since 0.11 release). A
broadcast based transport is currently not available. Please see Multicast Transport Configuration Properties for how
to configure the multicast transport. See the tests/DCPS/Messenger test for an example that can use the multicast
transport. Using run_test.pl multicast to run the test with the multicast transport. Also, see RTPS UDP Transport
Configuration Properties for details of the interoperable RTPS transport that supports multicast and unicast.

Why did a subscriber did not receive all samples sent by the publisher?

While there can be multiple reasons that the samples are lost or dropped, a common problem is that the publisher
starts sending samples before the subscriber is ready to receive. To synchronize, the publisher can use a WaitSet before
writing. This ensures the subscriber is ready to receive samples. Here is the example code:

DDS::StatusCondition_var cond = writer->get_statuscondition();
cond->set_enabled_statuses(DDS::PUBLICATION_MATCHED_STATUS);

DDS::WaitSet_var ws = new DDS::WaitSet;
ws->attach_condition(cond);

while (true) {
DDS::PublicationMatchedStatus matches;
if (writer->get_publication_matched_status(matches) != DDS::RETCODE_OK) {
// failure

} else if (matches.current_count >= 1) {
break;

}

DDS::ConditionSeq conditions;
DDS::Duration_t timeout =
{ DDS::DURATION_INFINITE_SEC, DDS::DURATION_INFINITE_NSEC };

if (ws->wait(conditions, timeout) != DDS::RETCODE_OK) {
// failure

}
}

ws->detach_condition(cond);

Why can’t my publisher establish a connection with a remote subscriber?

While there can be multiple reasons for inter-host communication failure, this entry deals with connection establishment
failures due to improper endpoint configuration.

The configuration option local_address represents the endpoint address. This host/port tuple is used by the publisher
to initiate connection establishment. In order to allow inter-host communication, make sure the endpoint address is
publicly visible.

A common mistake is to re-use the configuration provided in the exercises without modifications. Since the examples
are intended to be run on an intra-host environment, they generally use the ‘localhost’ interface. This configuration
will fail when the test is run in an inter-host setting.

310 Chapter 2. Developer’s Guide

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/DCPS/Messenger


OpenDDS, Release 3.28.1

2.22.4 Built-In Topics (BITs)

What is the status of BIT support in OpenDDS?

Support for Built-In-Topics is complete since the 0.12 release. This means that BITs will now work as specified. BIT
support is now turned on by default.

How do I turn off BIT support at build-time?

It is possible to build OpenDDS without BIT support which will reduce overall footprint. For this, you will need to
generate new project files:

mwc.pl -type <yourtype> -features built_in_topics=0 DDS.mwc

If yourtype happens to be gnuace, add built_in_topics=0 to the platform_macros.GNU file or the MAKEFLAGS
environment variable. Alternatively, use the configure script with --no-built-in-topics.

How do I turn off BIT support at run-time?

Turning off BIT support involves it being turned off in the DCPS Information Repository and any associated partici-
pants.

The DCPSInfoRepo option -NOBITS disables BIT support for the InfoRepo.

The option -DCPSBit 0 will disable BIT support for all participants in the process.

2.22.5 Using IDL

How do I use sequences of built-in types in IDL?

If you’d like to use a sequence of one of the following IDL built-in types:

• boolean, octet

• char, wchar, string, wstring

• float, double, long double

• short, long, long long

• unsigned short, unsigned long, unsigned long long

TAO already has a typedef for these sequences. The typedef name is the name of the built-in type in CamelCase with
a “Seq” suffix. Unsigned types use a “U” prefix as in “ULongSeq”.

To use the existing typedef, add an #include for the pidl file from the tao directory:

#include <tao/LongSeq.pidl>

The typedefs are in the “CORBA” IDL module, so the typedef for LongSeq could be used as:

struct X {
CORBA::LongSeq seq;

};

2.22. FAQ 311



OpenDDS, Release 3.28.1

2.22.6 Using the OpenDDS Modeling SDK

How do I obtain the OpenDDS Modeling SDK?

Please refer to the Modeling SDK for complete installation instructions.

Make sure that Eclipse’s list of Available Software Sites contains an enabled site for the Eclipse release itself. Version
3.5 uses URL: http://download.eclipse.org/releases/galileo. If not, you need to add the correct update site for your
version of Eclipse.

Why can’t I see the element I added to my figure?

If auto-sizing isn’t enabled for the figure and depending on the figure’s size, an element added to one of the figure’s
compartments may not be immediately visible. By increasing the size of the figure, the element should appear. See
the OpenDDS Modeling SDK Guide > Tasks > Working with Diagrams > Creating Figures in the Eclipse help for
information on how to make the figure automatically re-size to accommodate additional content.

How to I open a library (for example a DataLib) on the main diagram?

Double clicking on the library should open the library in a subdiagram. However, sometimes no action will be taken
after double clicking. An alternative way to open a library is to select the library and then press the Enter key. This
topic, along with other topics related to libraries, is in the Eclipse help content under OpenDDS Modeling SDK Guide
> Tasks > Modeling > Working with OpenDDS Models.

2.22.7 Using the DDS DCPS API

How should I override a specific QoS policy and leave others defaulted?

1. Create an empty QoS variable of the proper type (for example DDS::DataWriterQos dw_qos).

2. Call the parent’s get_default_*_qos()method (for example Publisher::get_default_datawriter_qos(dw_qos).

3. Modify the QoS and pass it to the proper create_* method.

Note that the default QoS returned by get_default_*_qos() can be changed with set_default_*_qos().

The TheServiceParticipant also has methods to return the code default QoS for different entities, e.g.,
TheServiceParticipant->initial_DataWriterQos().

OpenDDS contains various *QosPolicyBuilder classes that can be used to configure QoS policies using a builder
pattern. The QoS returned by a default constructed *QosPolicyBuilder corresponds to the code default. Here’s an
example using a builder that sets transient local durability for a DataWriter:

#include <dds/DCPS/Qos_Helper.h>

...

DDS::DataWriter_var writer =
publisher->create_datawriter(topic,

DataWriterQosBuilder().durability_transient_local(),
0,
OpenDDS::DCPS::DEFAULT_STATUS_MASK);

312 Chapter 2. Developer’s Guide

http://download.eclipse.org/releases/galileo


OpenDDS, Release 3.28.1

What are the *_QOS_DEFAULT macros?

These macros (for example DATAWRITER_QOS_DEFAULT) are placeholders used only to provide a default value to
the create_* methods. These macros themselves do not expand to QoS structure instances that can be used
for any purpose other than passing to the create_* methods. This includes DATAWRITER_QOS_USE_TOPIC_QOS,
DATAREADER_QOS_DEFAULT, etc. In Java, they are classes in the DDS package that have a public static get() method
and not macros.

Why do I get samples with invalid data in them?

Make sure the call to read/take returns a status of RETCODE_OK and the SampleInfo’s valid_data is set to true.
Both of these conditions are required for the sample to be valid. If valid_data is not true, then the sample could be
indicating an unregister and/or dispose.

What could account for increasing memory usage in subscribing processes?

If the subscribing process contains Data Readers which have received many instances from the corresponding Data
Writers, it will need some resources to track each instance. This can be bounded by the Resource Limits QoS policy
and by the subscribing application taking samples from the Data Reader. The Reader Data Lifecycle QoS policy may
also be helpful.

2.23 Annex

2.23.1 Fnmatch Expressions

A wildcard-capable string used to match one or more names from a set. This is used in Partition QoS and in DDS
Security documents. Recognized values will conform to POSIX fnmatch() function as specified in POSIX 1003.2-
1992, Section B.6. This is a subset of UNIX shell file matching and is similar to, but separate from standard regular
expressions.

Simplified, this consists of the following:

?
Will match any single character. For example ab? matches abc and abb.

*
Will match any zero or more characters. For example * will match anything and a* matches a, abc, and aaaaa.

[]
Will match a single character specified in the brackets. For example a[bc] matches ab and ac. Can also use
ranges, for example a[b-d] matches ab, ac, and ad.

\
Will escape the following character. For example \? just matches ? and \\ matches \.

2.23. Annex 313



OpenDDS, Release 3.28.1

314 Chapter 2. Developer’s Guide



CHAPTER

THREE

INTERNAL DOCUMENTATION

This documentation is for those who want to contribute to OpenDDS and those who are just curious!

3.1 OpenDDS Development Guidelines

This document organizes our current thoughts around development guidelines in a place that’s readable and editable
by the overall user and maintainer community. It’s expected to evolve as different maintainers get a chance to review
and contribute to it.

Although ideally all code in the repository would already follow these guidelines, in reality the code has evolved
over many years by a diverse group of developers. At one point an automated re-formatter was run on the codebase,
migrating from the GNU C style to the current, more conventional style, but automated tools can only cover a subset
of the guidelines.

3.1.1 Repository

The repository is hosted on Github at OpenDDS/OpenDDS and is open for pull requests.

3.1.2 Testing

If a pull request fixes a bug that’s not covered in an existing test it should be added to the tests. This should be in
an existing test if possible. If a new integration test is required, see tests/DCPS/HelloWorld for a template. Pull
requests will be tested automatically using GitHub Actions.

See also:

Running Tests for how tests are run in general.

Unit Tests for guidance on the unit tests.

GitHub Actions for how building and testing is done with GitHub Actions.

315

https://www.gnu.org/prep/standards/html_node/Writing-C.html
https://github.com/OpenDDS/OpenDDS
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/DCPS/HelloWorld
https://github.com/OpenDDS/OpenDDS/actions


OpenDDS, Release 3.28.1

3.1.3 Dependencies

• MPC is the build system, used to configure the build and generate platform specific build files (Makefiles, VS
solution files, etc.).

• ACE is a library used for cross-platform compatibility, especially networking and event loops. It is used both
directly and through TAO.

• TAO is a C++ CORBA implementation built on ACE.

– It’s used to communicate with DCPSInfoRepo, which is one option for Discovery.

– TAO’s data types and support for the OMG IDL-to-C++ mapping are also used in the End User DDS API.

– The TAO IDL compiler is used internally and by the end user to allow OpenDDS to use user-defined IDL
types as topic data.

• Perl is an interpreted language used in the configure script, the tests, and any other scripting in OpenDDS code-
base.

• Google Test is required for OpenDDS tests. By default, CMake will be used to build a specific version of Google
Test that we have as a submodule. An appropriate prebuilt or system Google Test can also be used.

See also:

Dependencies for all dependencies and details on how these are used in OpenDDS.

3.1.4 Text File Formatting

All text files in the source code repository follow a few basic rules. These apply to C++ source code, Perl scripts, MPC
files, and any other plaintext file.

• A text file is a sequence of lines, each ending in the “end-of-line” character (AKA Unix line endings).

• Based on this rule, all files end with the end-of-line character.

• The character before end-of-line is a non-whitespace character (no trailing whitespace).

• Tabs are not used.

– One exception, MPC files may contain literal text that’s inserted into Makefiles which could require tabs.

– In place of a tab, use a set number of spaces, depending on what type of file it is:

* C++ and everywhere else unless otherwise noted should always be 2 spaces.

* Perl is usually 2 spaces, but some files are defiant and use 4 spaces. See Perl Coding Style for details.

* Python should always be 4 spaces. See Python Coding Style for details.

• Keep line length reasonable. I don’t think it makes sense to strictly enforce an 80-column limit, but overly long
lines are harder to read. Try to keep lines to roughly 80 characters.

The lint script will help check for most of these in a PR.

There is also a .editorconfig file that allows contributors to follow most of these rules automatically. EditorConfig
support is built-in to some editors (including Visual Studio) with plugins available for others.

316 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.editorconfig
https://editorconfig.org/
https://editorconfig.org/#pre-installed
https://editorconfig.org/#download


OpenDDS, Release 3.28.1

3.1.5 Lint Script

The lint script is a Perl script that is run on every PR. It checks for mistakes in both coding and style. It can also be
run locally to check for issues before committing. If it is ran without arguments it does the default set of checks and
also runs ACE’s fuzz.pl if available. To see a list of the default checks with descriptions, run the script with --list.
Passing --try-fix will try to fix some of those issues. The script also has ways to skip some or all checks for single
lines or whole files. Pass --help for more information.

3.1.6 Documentation

Guidelines for building and editing documentation like the Developer’s Guide and this document are covered in Doc-
umentation Guidelines.

If a pull request makes a change that should be included in the release notes, the entry should be specified using the
method described in News.

3.1.7 C++ Standard

The base C++ standard used in OpenDDS is C++03. There are some optional features that are only built when
a newer C++ standard level is used. See uses of the MPC feature no_cxx11 and the base project MPC/config/
opendds_cxx11.mpb.

Avoid using implementation-defined extensions (including #pragma). Exceptions are:

• #pragma once which only impacts preprocessing and is understood across all supported compilers, or harm-
lessly ignored if not understood

• #pragma pack can only be used on POD structs to influence alignment/padding

Use the C++ standard library as much as possible. The standard library should be preferred over ACE, which in turn
should be preferred over system-specific libraries.

The C++ standard library includes the C standard library by reference, making those identifiers available in namespace
std. Using C’s standard library identifiers in namespace std is preferred over the global namespace – #include
<cstring> instead of #include <string.h>. Not all supported platforms have standard library support for wide
characters (wchar_t) but this is rarely needed. Preprocessor macro DDS_HAS_WCHAR can be used to detect those
platforms.

3.1.8 C++ Coding Style

• C++ code in OpenDDS must compile under the compilers listed in the README.md file.

• Commit code in the proper style from the start, so follow-on commits to adjust style don’t clutter history.

• C++ source code is a plaintext file, so the guidelines in Text File Formatting apply.

• A modified Stroustrup style is used (see tools/scripts/style).

– Warning: not everything in tools/scripts/style represents the current guidelines.

• Sometimes the punctuation characters are given different names, this document will use:

– Parentheses ( )

– Braces { }

– Brackets [ ]

3.1. OpenDDS Development Guidelines 317

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/scripts/lint.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/opendds_cxx11.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/MPC/config/opendds_cxx11.mpb
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#compilers
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tools/scripts/style
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tools/scripts/style


OpenDDS, Release 3.28.1

Example

template<typename T>
class MyClass : public Base1, public Base2 {
public:
bool method(const OtherClass& parameter, int idx = 0) const;

};

template<typename T>
bool MyClass<T>::method(const OtherClass& parameter, int) const
{
if (parameter.foo() > 42) {
return member_data_;

} else {
for (int i = 0; i < some_member_; ++i) {
other_method(i);

}
return false;

}
}

Punctuation

The punctuation placement rules can be summarized as:

• Open brace appears as the first non-whitespace character on the line to start function definitions.

• Otherwise the open brace shares the line with the preceding text.

• Parentheses used for control-flow keywords (if, while, for, switch) are separated from the keyword by a
single space.

• Otherwise parentheses and brackets are not preceded by spaces.

Whitespace

• Each “tab stop” is two spaces.

• Namespace scopes that span most or all of a file do not cause indentation of their contents.

• Otherwise lines ending in { indicate that subsequent lines should be indented one more level until }.

• Continuation lines (when a statement spans more than one line) can either be indented one more level, or indented
to nest “under” an ( or similar punctuation.

• Add space around binary operators and after commas: a + b, c

• Do not add space around parentheses for function calls, a properly formatted function call looks like func(arg1,
arg2, arg3);

• Do not add space around brackets for indexing, instead it should look like: mymap[key]

• For code that includes multiple braces appearing together in the same expression (such as initializer lists), there
are two approved styles:

– spaces between braces and their enclosed (non-empty) sub-expression: const GUID_t GUID_UNKNOWN
= { { 0 }, { { 0 }, 0 } }; or { a + b, {} }

318 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

– no such spaces: const GUID_t GUID_UNKNOWN = {{0}, {{0}, 0}}; or {a + b, {}}

• Do not add extra spaces to make syntax elements (that span lines/statements) line up; this only causes unnecessary
changes in adjacent lines as the code evolves.

• In general, do not add extra spaces unless doing so is covered by the rules above.

Language Usage

• Add braces following control-flow keywords even when they are optional.

• this-> is not used unless required for disambiguation or to access members of a template-dependent base class.

• Declare local variables at the latest point possible.

• const is a powerful tool that enables the compiler to help the programmer find bugs. Use const everywhere
possible, including local variables.

• Modifiers like const appear left of the types they modify, like: const char* cstring = .... char const*
is equivalent but not conventional.

• For function arguments that are not modified by the callee, pass by value for small objects (8 bytes?) and pass by
const-reference for everything else. Function argument that is passed by value should not have const qualifier
in the function declaration; use of const in the definition is optional.

• Arguments unused by the implementation have no names (in the definition that is, the declarations still have
names), or a /*commented-out*/ name.

• Use explicit constructors unless implicit conversions are intended and desirable.

• Use the constructor initializer list and make sure its order matches the declaration order.

• Prefer pre-increment/decrement (++x) to post-increment/decrement (x++) for both objects and non-objects.

• All currently supported compilers use the template inclusion mechanism. Thus function/method template defi-
nitions may not be placed in normal *.cpp files, instead they can go in _T.cpp (which are #included and not
separately compiled), or directly in the *.h. In this case, *_T.cpp takes the place of *.inl (except it is always
inlined). See ACE for a description of *.inl files.

Pointers and References

Pointers and references go along with the type, not the identifier. For example:

int* intPtr = &someInt;

Watch out for multiple declarations in one statement. int* c, b; does not declare two pointers! It’s best just to break
these into separate statements:

int* c;
int* b;

In code targeting C++03, 0 should be used as the null pointer. For C++11 and later, nullptr should be used instead.
NULL should never be used.

3.1. OpenDDS Development Guidelines 319



OpenDDS, Release 3.28.1

Naming

(For library code that the user may link to)

• Preprocessor macros visible to user code must begin with OPENDDS_

• C++ identifiers are either in top-level namespace DDS (OMG spec defined) or OpenDDS (otherwise)

• Within the OpenDDS namespace there are some nested namespaces:

– DCPS: anything relating to the implementation of the DCPS portion of the DDS spec

– RTPS: types directly tied to the RTPS spec

– Federator: DCPSInfoRepo federation

– FileSystemStorage: reusable component for persistent storage

• Naming conventions

– ClassesAreCamelCaseWithInitialCapital

– methodsAreCamelCaseWithInitialLower OR methods_are_lower_case_with_underscores

– member_data_use_underscores_and_end_with_an_underscore_

– ThisIsANamespaceScopedOrStaticClassMemberConstant

Note: For CMake <https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html> are nominally supported.
This may cause unexpected build issues in CI builds when a name in one file happens to clash with another source file
in the same source file batch.

Comments

• Add comments only when they will provide MORE information to the reader.

• Describing the code verbatim in comments doesn’t add any additional information.

• If you start out implementation with comments describing what the code will do (or pseudocode), review all
comments after implementation is done to make sure they are not redundant.

• Do not add a comment before the constructor that says // Constructor. We know it’s a constructor. The same
note applies to any redundant comment.

Documenting Code for Doxygen

This is a simple guide that shows how to use Doxygen in OpenDDS.

See also:

The Doxygen manual for a complete guide to using Doxygen.

Doxygen supports multiple styles of documenting comments but this style should be used in non-trivial situations:

/**
* This sentence is the brief description.
*
* Everything else is the details.
*/

(continues on next page)

320 Chapter 3. Internal Documentation

https://www.doxygen.nl/manual/


OpenDDS, Release 3.28.1

(continued from previous page)

class DoesStuff {
// ...
};

For simple things, a single line documenting comment can be made like:

/// Number of bugs in the code
unsigned bug_count = -1; // Woops

The extra * on the multiline comment and / on the single line comment are important. They inform Doxygen that
comment is the documentation for the following declaration.

If referring to something that happens to be a namespace or other global object (like DDS, OpenDDS, or RTPS), you
should precede it with a %. If not it will turn into a link to that object.

Preprocessor

• If possible, use other language features things like inlining and constants instead of the preprocessor.

• Prefer #ifdef and #ifndef to #if defined and #if !defined when testing if a single macro is defined.

• Leave parentheses off preprocessor operators. For example, use #if defined X && defined Y instead of
#if defined(X) && defined(Y).

• As stated before, preprocessor macros visible to user code must begin with OPENDDS_.

• See section C++ Standard above for notes on #pragma.

• Ignoring the header guard if there is one, preprocessor statements should be indented using two spaces starting
at the pound symbol, like so:

#if defined X && defined Y
# if X > Y
# define Z 1
# else
# define Z 0
# endif
#else
# define Z -1
#endif

Includes

Order

As a safeguard against headers being dependant on a particular order, includes should be ordered based on a hierarchy
going from local headers to system headers, with spaces between groups of includes. Generated headers from the same
directory should be placed last within these groups. This order can be generalized as the following:

1. Pre-compiled header if it is required for a .cpp file by Visual Studio.

2. The corresponding header to the source file (Foo.h if we were in Foo.cpp).

3. Headers from the local project.

4. Headers from external OpenDDS-based libraries.

3.1. OpenDDS Development Guidelines 321



OpenDDS, Release 3.28.1

5. Headers from dds/DCPS.

6. dds/*C.h Headers

7. Headers from external TAO-based libraries.

8. Headers from TAO.

9. Headers from external ACE-based libraries.

10. Headers from ACE.

11. Headers from external non-ACE-based libraries.

12. Headers from system and C++ standard libraries.

There can be exceptions to this list. For example if a header from ACE or the system library was needed to decide if
another header should be included.

Path

Headers should only use local includes (#include "foo/Foo.h") if the header is relative to the file. Otherwise system
includes (#include <foo/Foo.h>) should be used to make it clear that the header is on the system include path.

In addition to this, includes for a file that will always be relative to the including file should have a relative include path.
For example, a dds/DCPS/bar.cpp should include dds/DCPS/bar.h using #include "bar.h", not #include
<dds/DCPS/bar.h> and especially not #include "dds/DCPS/bar.h".

Example

For a Doodad.cpp file in dds/DCPS, the includes could look like:

#include <DCPS/DdsDcps_pch.h>

#include "Doodad.h"

#include <ace/config-lite.h>
#ifndef ACE_CPP11
# include "ConditionVariable.h"
#endif
#include "ReactorTask.h"
#include "transport/framework/DataLink.h"

#include <dds/DdsDcpsCoreC.h>

#include <tao/Version.h>

#include <ace/Version.h>

#include <openssl/opensslv.h>

#include <unistd.h>
#include <stdlib.h>

322 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/dds/DCPS
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/dds/DCPS


OpenDDS, Release 3.28.1

Initialization

Note that OpenDDS applications require ACE to be initialized to work correctly. For many OpenDDS applications,
ACE::init() and ACE::fini() will be called automatically, either by interaction with the ACE or TAO libraries,
or due to ACE’s redefinition of executable entry points (e.g. main) which wrap normal execution with calls to those
functions. However, be advised that on some platforms, the helper macros to catch entry points may change names
to suit compiler options. For example, for Visual C++ builds on Windows with wide-character support enabled, the
helper macro changes from main to wmain. Applications either need to handle these differences in order to correctly
ensure initialization or they need to use an entrypoint helper macro such as ACE_TMAIN which isn’t vulnerable to this
issue.

Time

Measurements of time can be broken down into two basic classes: A specific point in time (Ex: 00:00 January 1, 1970)
and a length or duration of time without context (Ex: 134 Seconds). In addition, a computer can change its clock while
a program is running, which could mess up any time lapses being measured. To solve this problem, operating systems
provide what’s called a monotonic clock that runs independently of the normal system clock.

ACE can provide monotonic clock time and has a class for handling time measurements, ACE_Time_Value, but it
doesn’t differentiate between specific points in time and durations of time. It can differentiate between the system clock
and the monotonic clock, but it does so poorly. OpenDDS provides three classes that wrap ACE_Time_Value to fill
these roles: TimeDuration, MonotonicTimePoint, and SystemTimePoint. All three can be included using dds/
DCPS/TimeTypes.h. Using ACE_Time_Value is discouraged unless directly dealing with ACE code which requires
it and using ACE_OS::gettimeofday() or ACE_Time_Value().now() in C++ code in dds/DCPS treated as an error
by the lint script.

MonotonicTimePoint should be used when tracking time elapsed internally and when dealing with
ACE_Time_Values being given by the ACE_Reactor in OpenDDS. ACE_Conditions, like all ACE code, will
default to using system time. Therefore the Condition class wraps it and makes it so it always uses monotonic time
like it should. Like ACE_OS::gettimeofday(), referencing ACE_Condition in dds/DCPS will be treated as an
error by the lint script.

More information on using monotonic time with ACE can be found here.

SystemTimePoint should be used when dealing with the DDS API and timestamps on incoming and outgoing mes-
sages.

Logging

ACE Logging

Logging is done via ACE’s logging macro functions, ACE_DEBUG and ACE_ERROR, defined in ace/Log_Msg.h. The
logging macros arguments to both are:

• A ACE_Log_Priority value

– This is an enum defined in ace/Log_Priority.h to say what the priority or severity of the message is.

• The format string

– This is similar to the format string for the standard printf, where it substitutes sequences starting with %,
but the format of theses sequences is different. For example char* values are substituted using %C instead
of %s. See the documenting comment for ACE_Log_Msg::log in ace/Log_Msg.h for what the format of
the string is.

• The variable number of arguments

3.1. OpenDDS Development Guidelines 323

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/TimeTypes.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/TimeTypes.h
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/dds/DCPS
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/dds/DCPS
https://htmlpreview.github.io/?https://github.com/DOCGroup/ACE_TAO/blob/master/ACE/docs/ACE-monotonic-timer.html


OpenDDS, Release 3.28.1

– Like printf the variable arguments can’t be whole objects, like a std::string value. In the case of
std::string, the format and arguments would look like: "%C", a_string.c_str().

Note that all the ACE_DEBUG and ACE_ERROR arguments must be surrounded by two sets of parentheses.

ACE_DEBUG((LM_DEBUG, "Hello, %C!\n", "world"));

ACE logs to stderr by default on conventional platforms, but can log to other places.

Usage in OpenDDS

Logging Conditions and Priority

In OpenDDS ACE_DEBUG and ACE_ERROR are used directly most of the time, but sometimes they are used indirectly,
like with the transport framework’s VDBG and VDBG_LVL. They also should be conditional on one of the logging control
systems in OpenDDS.

See also:

See Logging for the user perspective.

The logging conditions are as follows:

Message Kind Macro Priority Condition
Unrecoverable error ACE_ERROR LM_ERROR log_level >= LogLevel::Error
Unreportable recover-
able error

ACE_ERROR LM_WARNINGlog_level >= LogLevel::Warning

Reportable recoverable
error

ACE_ERROR LM_NOTICE log_level >= LogLevel::Notice

Informational message ACE_DEBUG LM_INFO log_level >= LogLevel::Info
Debug message ACE_DEBUG LM_DEBUG Based on DCPS_debug_level or one of the other debug sys-

tems listed below1

An unrecoverable error indicates that OpenDDS is in a state where it cannot function as intended. This may be the
result of a defect, misconfiguration, or interference.

A recoverable error indicates that OpenDDS could not perform a desired action but remains in a state where it can
function as intended.

A reportable error indicates that OpenDDS can report the error via the API through something like an exception or
return value.

An informational message gives high level information mostly at startup, like the version of OpenDDS being used.

A debug message gives lower level information, such as if a message is being sent. These are directly controlled by
one of a few debug logging control systems.

• DCPS_debug_level should be used for all debug logging that doesn’t fall under the other systems. It is an
unsigned integer value which ranges from 0 to 10. See dds/DCPS/debug.h for details.

• Transport_debug_level should be used in the transport layer. It is an unsigned integer value which ranges
from 0 to 6. See dds/DCPS/transport/framework/TransportDebug.h for details.

• security_debug should be used for logging in related to DDS Security. It is an object with bool members that
make up categories of logging messages that allow fine control. See dds/DCPS/debug.h for details.

1 Debug messages don’t rely on both LogLevel::Debug and a debug control system. The reason is that it results in a simpler check and the log
level already loosely controls all the debug control systems. See the LogLevel::set function in dds/DCPS/debug.cpp for exactly what it does.

324 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/debug.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/transport/framework/TransportDebug.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/debug.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/DCPS/debug.cpp


OpenDDS, Release 3.28.1

For number-based conditions like DCPS_debug_level and Transport_debug_level, the number used should be the
log level the message starts to become active at. For example for DCPS_debug_level >= 6 should be used instead
of DCPS_debug_level > 5.

Message Content

• Log messages should take the form:

(%P|%t) [ERROR:|WARNING:|NOTICE:|INFO:] FUNCTION_NAME: MESSAGE\n

– Use ERROR:, WARNING:, NOTICE:, and INFO: if using the corresponding log priorities.

– CLASS_NAME::METHOD_NAME should be used instead of just the function name if it’s part of a class. It’s
at the developer’s discretion to come up with a meaningful name for members of overload sets, templates,
and other more complex cases.

– security_debug and transport_debug log messages should indicate the category name, for example:

if (security_debug.access_error) {
ACE_ERROR((LM_ERROR, "(%P|%t) ERROR: {access_error} example_function: Hello,␣

→˓World!\n"));
}

• Format strings should not be wrapped in ACE_TEXT. We shouldn’t go out of our way to replace it in existing
logging points, but it should be avoided it in new ones.

– ACE_TEXT’s purpose is to wrap strings and characters in L on builds where uses_wchar=1, so they become
the wide versions.

– While not doing it might result in a performance hit for character encoding conversion at runtime, the builds
where this happens are rare, so it’s outweighed by the added visual noise to the code and the possibility of
bugs introduced by improper use of ACE_TEXT.

• Avoid new usage of ACE_ERROR_RETURN in order to not hide the return statement within a macro.

Examples

if (log_level >= LogLevel::Error) {
ACE_ERROR((LM_ERROR, "(%P|%t) ERROR: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Warning) {
ACE_ERROR((LM_WARNING, "(%P|%t) WARNING: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Notice) {
ACE_ERROR((LM_NOTICE, "(%P|%t) NOTICE: example_function: Hello, World!\n"));

}

if (log_level >= LogLevel::Info) {
ACE_DEBUG((LM_INFO, "(%P|%t) INFO: example_function: Hello, World!\n"));

}

if (DCPS_debug_level >= 1) {
(continues on next page)

3.1. OpenDDS Development Guidelines 325



OpenDDS, Release 3.28.1

(continued from previous page)

ACE_DEBUG((LM_DEBUG, "(%P|%t) example_function: Hello, World!\n"));
}

3.1.9 Perl Coding Style

The Perl style guide should be generally followed, as long as it doesn’t conflict with Text File Formatting. Some
additional notes and exceptions:

• New files should use 2 space indents, while existing 4 space indent files should stay that way for the most part.

• The style of if/elsif/else should be this:

if (x) {
}
elsif (y) {
}
else {
}

This is most likely what the Perl style guide refers to when it says “Uncuddled elses”.

• Prefer calling functions with parentheses around the arguments where possible.

• The Perl style guide says to add spaces to line things up across multiple lines, but do not do this. The reason is
the same as in C++ and that is that it reduces the flexibility of the code.

• Put the following at the start of a Perl file as soon as possible:

use strict;
use warnings;

They should go before the imports, so that they can help reveal as many problems as possible.

3.1.10 Python Coding Style

In the world of Python usage of some form of PEP 8 is basically universal. It should be generally followed, including
indents being 4 spaces, as long as it doesn’t conflict with Text File Formatting.

3.1.11 CMake Coding Style

The vcpkg CMake style guide should be generally followed, as long as it doesn’t conflict with Text File Formatting.
Some additional notes and exceptions:

• vcpkg-specific things can be ignored.

• Whitespace:

– Indents are 2 spaces.

– There should not be spaces before parentheses in flow control and function declarations and calls. For
example use if(value), not if (value).

• Naming:

– Global variables and properties should be the only names in all caps.

326 Chapter 3. Internal Documentation

https://perldoc.perl.org/perlstyle
https://peps.python.org/pep-0008/
https://learn.microsoft.com/en-us/vcpkg/contributing/cmake-guidelines


OpenDDS, Release 3.28.1

– Prefix public global variables with OPENDDS_.

– Prefix private global variables with _OPENDDS_.

– Prefix public functions and macros with opendds_.

– Prefix private functions and macros with _opendds_.

• Prefer defining or clearing a variable before use instead of assuming that it will always be undefined.

• Don’t create new macros if a function will also work. Functions can use set(name value PARENT_SCOPRE)
to set a value in the caller’s scope. Helper macros inside of functions are okay.

3.2 Documentation Guidelines

This Sphinx-based documentation is hosted on Read the Docs and can be located here. It can also be built locally. To
do this follow the steps in the following section.

3.2.1 Building

Run docs/build.py, passing the kinds of documentation desired. Multiple kinds can be passed, and they are docu-
mented in the following sections.

Requirements

The script requires Python 3.10 or later and an internet connection if the script needs to download dependencies or
check the validity of external links. It will also try to download extra information for things like omgspec, but it
shouldn’t be a fatal error if there’s not an internet connection.

You might receive a message like this when running for the first time:

build.py: Creating venv...
The virtual environment was not created successfully because ensurepip is not
available. On Debian/Ubuntu systems, you need to install the python3-venv
package using the following command.

apt install python3.9-venv

If you do, then follow the directions it gives, remove the docs/.venv directory, and try again.

HTML

HTML documentation can be built and viewed using docs/build.py html -o. If it was built successfully, then the
front page will be at docs/_build/html/index.html.

A single page variant is also available using docs/build.py singlehtml -o If it was built successfully, then the
page will be at docs/_build/singlehtml/index.html.

3.2. Documentation Guidelines 327

https://www.sphinx-doc.org/en/master/
https://readthedocs.org
https://opendds.readthedocs.io/en/latest/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/build.py
https://www.python.org/downloads/


OpenDDS, Release 3.28.1

Dash

Documentation can be built for Dash, Zeal, and other Dash-compatible applications using doc2dash. The command for
this is docs/build.py dash. This will create a docs/_build/OpenDDS.docset directory that must be manually
moved to where other docsets are stored.

PDF

Note: The PDF output is currently much less optimized than the HTML-based outputs.

Note: The Sphinx PDF builder has additional dependencies on LaTeX that are documented here.

PDF documentation can be built and viewed using docs/build.py pdf -o. If it was built successfully, then the PDF
file will be at docs/_build/latex/opendds.pdf.

Strict Checks

docs/build.py strict will promote Sphinx warnings to errors and check to see if links resolve to a valid web page.

Note: The documentation includes dynamic links to files in the GitHub repo created by ghfile. These links will be
invalid until the git commit they were built under is pushed to a Github fork of OpenDDS. This also means running
will cause those links to marked as broken. A workaround for this is to pass -c master or another commit, branch,
or tag that is desired.

Building Manually

It is recommended to use build.py to build the documentation as it will handle dependencies automatically. If nec-
essary though, Sphinx can be ran directly.

To build the documentation the dependencies need to be installed first. Run this from the docs directory to do this:

pip3 install -r requirements.txt

Then sphinx-build can be ran. For example to build the HTML documentation:

sphinx-build -M html . _build

3.2.2 RST/Sphinx Usage

• See Sphinx reStructuredText Primer for basic RST usage.

• Inline code such as class names like DataReader and other symbolic text such as commands like ls should use
double backticks: ``TEXT``. This distinguishes it as code, makes it easier to distinguish characters, and reduces
the chance of needing to escape characters if they happen to be special for RST.

• One sentence per line should be perfered. This makes it easier to see what changed in a git diff or GitHub
PR and easier to move sentences around in editors like Vim. It also avoids inconsistencies involving what the

328 Chapter 3. Internal Documentation

https://kapeli.com/dash
https://zealdocs.org/
https://github.com/hynek/doc2dash
https://www.sphinx-doc.org/en/master/usage/builders/index.html#sphinx.builders.latex.LaTeXBuilder
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#rst-primer
https://rhodesmill.org/brandon/2012/one-sentence-per-line/


OpenDDS, Release 3.28.1

maximum line length is. This might make it more annoying to read the documentation raw, but that’s not the
intended way to do so anyway.

Special Links

There are a few shortcuts for linking to GitHub and OMG that are custom to OpenDDS. These come in the form of
RST roles and are implemented in docs/sphinx_extensions/links.py.

:ghfile:

:ghfile:`README.md`

:ghfile:`the \`\`README.md\`\` File <README.md>`

:ghfile:`the support section of the \`\`README.md\`\` File <README.md#support>`

:ghfile:`check out the available support <README.md#support>`

:ghfile:`java/docs/overview.html`

Turns into:

README.md#support

README.md

the README.md File

the support section of the README.md File

check out the available support

java/docs/overview.html (View as HTML)

The path passed must exist, be relative to the root of the repository, and will have to be committed, if it’s not
already. If there is a URL fragment in the path, like README.md#support, then it will appear in the link URL.

It will try to point to the most specific version of the file:

• If -c or --gh-links-commit was passed to build.py, then it will use the commit, branch, or tag that
was passed along with it.

• Else if the OpenDDS is a release it will calculate the release tag and use that.

• Else if the OpenDDS is in a git repository it will use the commit hash.

• Else it will use master.

If the file ends in .html, there will be an additional link to the file that uses https://htmlpreview.github.io/ so the
file can be viewed directly in a web browser.

:ghissue:

:ghissue:`213`

:ghissue:`this is the issue <213>`

:ghissue:`this is **the issue** <213>`

Turns into:

3.2. Documentation Guidelines 329

https://docutils.sourceforge.io/docs/ref/rst/roles.html
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/sphinx_extensions/links.py
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#support
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#support
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md#support
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/docs/overview.html
https://htmlpreview.github.io/?https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/docs/overview.html
https://htmlpreview.github.io/


OpenDDS, Release 3.28.1

Issue #213

this is the issue

this is the issue

:ghpr:

:ghpr:`1`

:ghpr:`this is the PR <1>`

:ghpr:`this is **the PR** <1>`

Turns into:

PR #1

this is the PR

this is the PR

:ghrelease:

ghrelease links to a release on Github using the git tag. Note that this behaves differently than the other
roles here. Without the syntax `Link text <TARGET>` syntax, it uses the contents as link text and link to the
release tag for the current version, assuming there is one. This syntax should only be used in a .. ifconfig::
is_release directive. Also it never parses the contents as inline markup.

:ghrelease:`This is the release`

:ghrelease:`This is the release <DDS-3.24>`

Turns into:

This is the release

This is the release

:acetaorel:

acetaorel accepts the ACE/TAO major version nickname from acetao.ini and makes a link to that release
this version of OpenDDS uses.

See :acetaorel:`ace6tao2`

Also see :acetaorel:`this <ace7tao3>`

Turns into:

See ACE 6.5.20/TAO 2.5.20

Also see this

:omgissue:

:omgissue:`DDSXTY14-29`

:omgissue:`this is the issue <DDSXTY14-29>`

:omgissue:`this is **the issue** <DDSXTY14-29>`

330 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/issues/213
https://github.com/OpenDDS/OpenDDS/issues/213
https://github.com/OpenDDS/OpenDDS/issues/213
https://github.com/OpenDDS/OpenDDS/pull/1
https://github.com/OpenDDS/OpenDDS/pull/1
https://github.com/OpenDDS/OpenDDS/pull/1
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.28.1
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.24
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/acetao.ini
https://github.com/DOCGroup/ACE_TAO/releases/tag/ACE%2BTAO-6_5_20
https://github.com/DOCGroup/ACE_TAO/releases/tag/ACE%2BTAO-7_1_3


OpenDDS, Release 3.28.1

Turns into:

OMG Issue DDSXTY14-29 (Member Link)

this is the issue (Member Link)

this is the issue (Member Link)

:omgspec:

The OMG specs are published as PDFs and it would be nice to be able to link to subsections within the specs
using something like DDS.pdf#2.2.2. It’s possible for the OMG to enable that when the PDF is created, but they
don’t. This role works around that by downloading the PDFs and extracting sections from the table of contents
to generate links that that can be used by browsers. If a spec PDF can’t be downloaded, the link will be just to
the spec PDF.

:omgspec:`dds`

:omgspec:`dds:2.2.2`

:omgspec:`dds:2.2.2 PIM Description`

:omgspec:`dds:Annex B`

:omgspec:`Somewhere in the XTypes spec <xtypes>`

:omgspec:`Exactly here in the XTypes spec <xtypes:2.2.2>`

:omgspec:`TypeObject IDL <xtypes:Annex B>`

Turns into:

DDS v1.4

DDS v1.4 2.2.2 PIM Description

DDS v1.4 2.2.2 PIM Description

DDS v1.4 Annex B - Syntax for Queries and Filters

Somewhere in the XTypes spec

Exactly here in the XTypes spec

TypeObject IDL

The format of the target is SPEC[:SECTION].

Valid specs are:

• DDS 1.4 (dds)

• RTPS 2.3 (rtps)

• DDS Security 1.1 (sec)

• DDS XTypes 1.3 (xtypes)

• IDL 4.2 (idl)

• IDL to C++03 1.3 (cpp03)

• IDL to C++11 1.5 (cpp11)

• IDL to Java 1.3 (java)

3.2. Documentation Guidelines 331

https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29
https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29
https://issues.omg.org/issues/DDSXTY14-29
https://issues.omg.org/browse/DDSXTY14-29
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS/1.4/PDF#G5.1028628
https://www.omg.org/spec/DDS/1.4/PDF#G5.1028628
https://www.omg.org/spec/DDS/1.4/PDF#G7.1007674
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/DDS-XTypes/1.3/PDF#page=20&view=FitH,472.0
https://www.omg.org/spec/DDS-XTypes/1.3/PDF#page=277&view=FitH,72.0
https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.3
https://www.omg.org/spec/DDS-SECURITY/1.1
https://www.omg.org/spec/DDS-XTypes/1.3
https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/CPP/1.3
https://www.omg.org/spec/CPP11/1.5
https://www.omg.org/spec/I2JAV/1.3


OpenDDS, Release 3.28.1

These are defined in docs/conf.py.

Valid sections can be named one of two ways:

• Section that start with section numbers, such as 2.2.2. This is based on the start of the full name of the
section in the table of contents.

• All others can be linked using the section title, either part or whole, such as Annex B or Annex B -
Syntax for Queries and Filters. This can be used to link to sections that don’t have section num-
bers, but can be ambiguous, so should be most or all of the title. It can also be used to link to numbered
sections in case the numbers change, such as 2.2.2 PIM Description.

See here for all the possible sections.

Custom Domains

Sphinx domains are a way to document collections of hierarchical definitions such as APIs. Sphinx has a number of
built-in domains such as Python and C++, but it helps to have custom ones. Custom domains in OpenDDS should use
classes derived from the ones in docs/sphinx_extensions/custom_domain.py.

All of the custom domain directives can and should have RST content nested in them. They all support the :no-index:,
:no-index-entry:, and :no-contents-entry: directive options. See Basic Markup for more information.

CMake Domain

For Using OpenDDS in a CMake Project there’s a custom CMake Sphinx domain in docs/sphinx_extensions/
cmake_domain.py. There is an official CMake domain used by CMake for their own documentation, but it would be
impractical for us to use because it requires a separate RST file for every property and variable.

.. cmake:func:: <name>

Use to document public CMake functions.

.. cmake:func:: opendds_cmake_function

::

opendds_cmake_function(<target> [ARG <value>])

This is a function.

.. cmake:func:arg:: target

This is a positional argument

.. cmake:func:arg:: ARG <value>

This is a keyword argument

Turns into:

opendds_cmake_function

opendds_cmake_function(<target> [ARG <value>])

This is a function.

332 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/conf.py
https://www.sphinx-doc.org/en/master/usage/domains/index.html
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/sphinx_extensions/custom_domain.py
https://www.sphinx-doc.org/en/master/usage/domains/index.html#basic-domain-markup
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/sphinx_extensions/cmake_domain.py
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/sphinx_extensions/cmake_domain.py


OpenDDS, Release 3.28.1

target

This is a positional argument

ARG <value>

This is a keyword argument

.. cmake:func:arg:: <name> [<subargument>...]

Use to document arguments and options for public CMake functions. Should be nested in cmake:func of the
function the argument belongs to.

:cmake:func:

Use to reference a cmake:func by name or reference a cmake:func:arg by function name followed by argu-
ment name in parentheses. For example:

:cmake:func:`opendds_cmake_function`

:cmake:func:`opendds_cmake_function(target)`

:cmake:func:`opendds_cmake_function(ARG)`

Turns into:

opendds_cmake_function

opendds_cmake_function(target)

opendds_cmake_function(ARG)

.. cmake:var:: <name>

Use to document public variables.

.. cmake:var:: OPENDDS_CMAKE_VARIABLE

This is a variable

Turns into:

OPENDDS_CMAKE_VARIABLE

This is a variable

:cmake:var:

Use to reference a cmake:var by name.

:cmake:var:`OPENDDS_CMAKE_VARIABLE`

Turns into:

OPENDDS_CMAKE_VARIABLE

.. cmake:prop:: <name>

Use to document properties on CMake targets, or possibly other kinds of properties, that we’re looking for or
creating for the user.

.. cmake:prop:: OPENDDS_CMAKE_PROPERTY

This is a property

Turns into:

3.2. Documentation Guidelines 333



OpenDDS, Release 3.28.1

OPENDDS_CMAKE_PROPERTY

This is a property

:cmake:prop:

Use to reference a cmake:prop by name.

:cmake:prop:`OPENDDS_CMAKE_PROPERTY`

Turns into:

OPENDDS_CMAKE_PROPERTY

.. cmake:tgt:: <name>

Use to document a library or executable CMake target meant to users that can be imported or exported.

.. cmake:tgt:: OpenDDS::MessengerPigeonTransport

Transport for IP over messenger pigeon (:rfc:`1149`)

Turns into:

OpenDDS::MessengerPigeonTransport

Transport for IP over messenger pigeon (RFC 1149)

:cmake:tgt:

Use to reference a cmake:tgt by name.

:cmake:tgt:`OpenDDS::MessengerPigeonTransport`

Turns into:

OpenDDS::MessengerPigeonTransport

Config Domain

For Run-time Configuration there’s a custom configuration Sphinx domain in docs/sphinx_extensions/
config_domain.py.

.. cfg:sec:: <name>[@<discriminator>][/<argument>]

Use to document a configuration section that can contain cfg:prop and most other RST content.
<discriminator> is an optional extension of the name to document cases where the available properties de-
pend on something. Using discriminators requires separate cfg:sec entires. <arguments> is just for display
and has no restrictions on the contents.

:cfg:sec:

Use to reference a cfg:sec by name and optional discriminator. If the section has a discriminator, it must be
separated by a @ symbol. Do not include arguments if it has arguments in the directive. The possible formats are
<sect_name> and <sect_name>@<disc_name>.

.. cfg:prop:: <name>=<values>

Use to document a configuration property that can contain cfg:val and most other RST content. Must be in a
cfg:sec. <values> describe what sort of text is accepted. It is just for display and has no restrictions on the
contents, but should follow the following conventions to describe the accepted values:

• | indicates an OR

• [] indicates an optional part of the value

334 Chapter 3. Internal Documentation

https://datatracker.ietf.org/doc/html/rfc1149.html
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/sphinx_extensions/config_domain.py
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/sphinx_extensions/config_domain.py


OpenDDS, Release 3.28.1

• ... indicates the previous part can be repeated

• Words surrounded angle brackets (ex: <prop_name>) indicate placeholders.

• Everything else should be considered literal.

For example: log_level=none|error|warn|debug, memory_limit=<uint64>,
addresses=<ip>[:<port>],....

:required:

Indicates the property is required for the section

:default:

The default value of the property if omitted

:cfg:prop:

Use to reference a cfg:prop by name. Do not include values if it has values in the directive. The possible
formats are:

• <prop_name>

Inside of a cfg:sec, it refers to a property in that section. Outside of a cfg:sec, the property is assumed
to be common.

• [<sect_name>]<prop_name>

• [<sect_name>@<disc_name>]<prop_name>

.. cfg:val:: [<]<name>[>]

Use to document a part of what a configuration property accepts. Must be in a cfg:prop. The optional an-
gle brackets (<>) are just for display and are meant to help distinguish between the value being a literal and a
placeholder.

:cfg:val:

Use to reference a cfg:val by name. Do not include brackets if it has brackets in the directive. The possible
formats are:

• <val_name>

This must be inside a cfg:prop.

• <prop_name>=<val_name>

Inside of a cfg:sec, it refers to a value of a property in that section. Outside of a cfg:sec, the property
is assumed to be common.

• [<sect_name>]<prop_name>=<val_name>

• [<sect_name>@<disc_name>]<prop_name>=<val_name>

Example

This is a example made up for the following INI file:

[server/Alpha]
os=windows

[server/Beta]
os=linux
distro=Debian

3.2. Documentation Guidelines 335



OpenDDS, Release 3.28.1

Outside their sections, references to properties and values must be complete:␣
→˓:cfg:val:`[server]os=linux`, :cfg:prop:`[server@linux]distro`

Otherwise the ``common`` section will be assumed.

.. cfg:sec:: server/<name>

A property or value's section can be omitted from references within their sections:␣
→˓:cfg:prop:`os`, :cfg:val:`os=windows`

.. cfg:prop:: os=windows|linux
:required:

A value's property can be omitted from references within their properties:␣
→˓:cfg:val:`linux`

.. cfg:val:: windows

Implied titles will be shortened within their scopes: :cfg:prop:`[server]os`,␣
→˓:cfg:val:`[server]os=windows`

.. cfg:val:: linux

Sections with discriminators require them in the reference targets:␣
→˓:cfg:sec:`server@linux`, :cfg:prop:`[server@linux]distro`

.. cfg:sec:: server@linux/<name>

.. cfg:prop:: distro=<name>
:default: ``Ubuntu``

Turns into:

Outside their sections, references to properties and values must be complete: [server] os=linux,
[server] distro (linux)

Otherwise the common section will be assumed.

[server/<name>]

A property or value’s section can be omitted from references within their sections: os, os=windows

os=windows|linux

Config store key: SERVER_<name>_OS
Required

A value’s property can be omitted from references within their properties: linux

windows

Implied titles will be shortened within their scopes: os, windows

336 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

linux

Sections with discriminators require them in the reference targets: [server] (linux),
[server] distro (linux)

[server/<name>] (linux)

distro=<name>

Config store key: SERVER_<name>_DISTRO
Default: Ubuntu

3.2.3 News

The news for a release (aka release notes) is created from separate reStructuredText files called fragments. This makes
it possible to change the news without everyone editing one file. Managing the news fragments is handled as part of the
Sphinx documentation to make it easy to link to other relevant documents and files in the source code. It also makes it
possible to easily preview the news before a release.

News Fragments

To add content to the news for a release, a fragment file with the content must be created in docs/news.d. It can be
named anything as long as it’s reasonably unique, doesn’t start with an underscore, and has an .rst file extension. The
branch name of the PR for this change might be a good name, for example: fix_rtps_segfault.rst.

The following is a simple news fragment example:

Listing 1: docs/news.d/_example.rst

# This is a news fragment example. Copy this file in this directory and change
# it to have content added to the release notes for the next release.
# See https://opendds.readthedocs.io/en/master/internal/docs.html#news for details

# This will have to be replaced with the PR number after the PR is created:
.. news-prs: 0

.. news-start-section: Additions
- This is an addition we made.

- This is detailed information about the addition.
This is some more.

.. news-end-section

Fragments contain RST content for the news along with some RST directive-like metadata. Lines starting with # are
ignored as comments. Content for the news must be formatted as a list. It will usually be one list item, but can be
multiple items if they are separate changes from a user perspective.

Note: If using nested lists, reStructuredText requires these to have empty lines before and after as shown in the example
above.

3.2. Documentation Guidelines 337

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/news.d
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/docs/news.d/_example.rst
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#lists-and-quote-like-blocks


OpenDDS, Release 3.28.1

Content must be contained somewhere within a section, indicated by news-start-section and news-end-section.
Having text outside sections that isn’t a comment or a special news directive is an error.

Content should provide a reasonable amount of context to users so they can figure out if and how a change will impact
or benefit them. Some of this can be achieved through subsections. Content should link to the rest of the Sphinx
documentation and to source files using :ghfile: if relevant.

PRs will usually have just have one fragment file, but can have more then one. For example, say there is a PR that is
making changes associated with an existing fragment file, but also has changes that are separate from the PRs in that
fragment. This might indicate a new PR should be made for those changes, but if that’s impractical, a new separate
fragment file for those changes can be made.

Directives

news-prs

news-prs should declare all the PRs that make up the changes to OpenDDS described in the fragment. It’s an error
to omit news-prs from a fragment or to have more than one news-prs directive. Do not add # at the start of the PR
numbers. Please add follow-on PRs separated by spaces as they are created.

.. news-prs: 1002 1003 1008

If the changes don’t have a PR associated with them, such as a policy change, then put none instead:

.. news-prs: none

news-start-section and news-end-section

news-start-section and news-end-section directives contain the news content and define how they’re grouped.
All sections with the same name across all the fragments are merged together in the final result. The top-level sections
must be one of the following:

Additions
New user-relevant features

Platform Support and Dependencies
Additional support or changes to support for OS, C++ standards, compilers, and dependencies.

Deprecations
User-relevant features that are being planned on being removed, but removing now would break a significant
number of user’s use cases. This marks them for removal in the next major version.

Removals
User-relevant features removed that were either deprecated, “experimental”, or “internal” that users might be
relying on anyways.

Security
Fixes for issues that might compromise the security of a system using OpenDDS. This doesn’t need to be related
to DDS Security.

Fixes
User-relevant fixes not related to security or documentation.

Documentation
Significant changes to documentation, either in the primary Sphinx documentation or in secondary documenta-
tion. This can be documenting an existing feature or major changes to existing documentation. Documentation

338 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

for a new feature should be linked in the news item for it, not here. Minor corrections like spelling and changes
to internal documentation probably don’t need to be mentioned in the news.

Notes
Changes that might be relevant to users, but might not fit in any of the other sections. This could be a change in
policy or change outside the OpenDDS source code that doesn’t have a PR associated with it.

Sections can be nested as subsections. There is no requirement for subsections or restrictions on their names, but it’s
suggested to group otherwise separate changes if they are all impact the same part of OpenDDS. For example:

.. news-start-section: Fixes
- Non-RTPS Fix
.. news-start-section: RTPS
- RTPS Fix
.. news-start-section: RTPS Relay
- RTPS Relay Fix
- Another RTPS Relay Fix
.. news-end-section
- Another RTPS Fix
.. news-end-section
- Another Non-RTPS Fix
.. news-end-section

Will result in:

• Non-RTPS Fix (PR #1000)

• RTPS

– RTPS Fix (PR #1000)

– RTPS Relay

* RTPS Relay Fix (PR #1000)

* Another RTPS Relay Fix (PR #1000)

– Another RTPS Fix (PR #1000)

• Another Non-RTPS Fix (PR #1000)

This will allow other fragments to add to “RTPS” or “RTPS Relay”.

news-rank

Rank is an integer used to help sort content and sections. Setting the rank higher using news-rank can headline a
change within a section. This is optional and if omitted or if rank is the same, then items are ranked by the oldest PR
number.

Once used, news-rank applies to both subsections and content directly in the section between the
news-start-section and the news-end-section. Content in subsections will need a separate news-rank
to change the order, as sorting of subsections is separate. When sections have different ranks across fragments (or even
in the same fragment), then the largest of ranks is used.

For an example of all that, let us say we had the following fragments:

3.2. Documentation Guidelines 339

https://github.com/OpenDDS/OpenDDS/pull/1000
https://github.com/OpenDDS/OpenDDS/pull/1000
https://github.com/OpenDDS/OpenDDS/pull/1000
https://github.com/OpenDDS/OpenDDS/pull/1000
https://github.com/OpenDDS/OpenDDS/pull/1000
https://github.com/OpenDDS/OpenDDS/pull/1000


OpenDDS, Release 3.28.1

Listing 2: These are the older changes

.. news-prs: 1111

.. news-start-section: Additions
# Rank 0 because it's a new section
- Improved logging in some cases.
# Lets give XTypes as a section some priority
.. news-rank: 20
.. news-start-section: XTypes
# Rank 0 because it's a new section
- Added ability to randomize ``DynamicData``
.. news-rank: 10
- Added lossless casting from any type to any other type in ``DynamicData``.
.. news-end-section
# This gets the same rank 20 as the XTypes section
- Made logging worse in some cases.
.. news-end-section

Listing 3: These are the newer changes

.. news-prs: 2222

.. news-start-section: Additions
# Rank 0, the rank 0 older item in the other fragment will get priority
- Unoptimized all code that's not related to pigeons
# Let's say we want to give this highest priority
.. news-rank: 50
- Added a new transport for IP over messenger pigeon (:rfc:`1149`)
# This will be overruled by the rank 20 XTypes in the other fragment
.. news-rank: 10
.. news-start-section: XTypes
.. news-rank: 100
- New pigeon-based ``DynamicData``
.. news-end-section
.. news-end-section

These will result in:

• Added a new transport for IP over messenger pigeon (RFC 1149) (PR #2222) [Rank 50]

• Made logging worse in some cases. (PR #1111) [Rank 20]

• XTypes [Rank 20]

– New pigeon-based DynamicData (PR #2222) [Rank 100]

– Added lossless casting from any type to any other type in DynamicData. (PR #1111) [Rank 10]

– Added ability to randomize DynamicData (PR #1111) [Rank 0]

• Improved logging in some cases. (PR #1111) [Rank 0]

• Unoptimized all code that’s not related to pigeons (PR #2222) [Rank 0]

The ranks are included in previews of the news as an aid to deciding what the rank of new news content should be.
The preview can be viewed in Release Notes or alternatively by running docs/news.py preview. The ranks are not
included in the final news for a release.

One final thing to note is that top-level sections, like “Additions”, have a fixed rank that can’t be changed so they always
appear in the same order.

340 Chapter 3. Internal Documentation

https://datatracker.ietf.org/doc/html/rfc1149.html
https://github.com/OpenDDS/OpenDDS/pull/2222
https://github.com/OpenDDS/OpenDDS/pull/1111
https://github.com/OpenDDS/OpenDDS/pull/2222
https://github.com/OpenDDS/OpenDDS/pull/1111
https://github.com/OpenDDS/OpenDDS/pull/1111
https://github.com/OpenDDS/OpenDDS/pull/1111
https://github.com/OpenDDS/OpenDDS/pull/2222


OpenDDS, Release 3.28.1

Generating the News

Before a release, a preview of the whole news for the next release will always be available in Release Notes. It’s also
possible to see the source of that preview by running docs/news.py preview or docs/news.py preview-all.
During a release the fragments are permanently committed to docs/news.d/_releases and NEWS.md and the frag-
ment files in docs/news.d are removed.

See also:

Release Process

3.3 Unit Tests

3.3.1 The Goals of Unit Testing

The primary goal of a unit test is to provide informal evidence that a piece of code performs correctly. An alternative
to unit testing is writing formal proofs. However, formal proofs are difficult, expensive, and unmaintainable given the
changing nature of software. Unit tests, while necessarily incomplete, are a practical alternative.

Unit tests document how to use various algorithms and data structures and serve as an informal set of requirements. As
such, a unit test should be developed with the idea that it will serve as a reference for future developers. Clarity in unit
tests serve to accomplish their primary goal of establishing correctness. That is, a unit test that is difficult to understand
casts doubt that the code being tested is correct. Consequently, unit tests should be clear and concise.

The confidence one has in a piece of code is often related to the number of code paths explored in it. This is often
approximated by “code coverage.” That is, one can run the unit test with a coverage tool to see which code paths were
exercised by the unit test. Code with higher coverage tends to have fewer bugs because the tester has often considered
various corner-cases. Consequently, unit tests should aim for high code coverage.

Unit tests should be executed frequently to provide developers with instant feedback. This applies to the feature under
development and the system as a whole. That is, developers should frequently execute all of the unit tests to make
sure they haven’t broken functionality elsewhere in the system. The more frequently the tests are run, the smaller the
increment of development and the easier it is to identify a breaking change. Thus, unit tests should execute quickly.

Code that is difficult to test will most likely be difficult to use. Code that is difficult to use correctly will lead to bugs
in code that uses it. Consequently, unit tests are vital to the design of useful software as developing a unit test provides
feedback on the design of the code under test. Often, when developing a unit test, one will find parts of the design that
can be improved.

Unit tests should promote and not inhibit development. A robust set of unit tests allows a developer to aggressively
refactor since the correctness of the system can be checked after the refactoring. However, unit tests do produce drag on
development since they must be maintained as the code evolves. Thus, it is important that the unit test code be properly
maintained so that they are an asset and not a liability.

Some of the goals mentioned above are in conflict. Adding code to increase coverage may make the tests less main-
tainable, slower, and more difficult to understand. The following metrics can be generated to measure the utility of the
unit tests:

• Code coverage

• Test compilation time

• Test execution time

• Test code size vs. code size

• Defect rate vs. code coverage (Are bugs appearing in code that is not tested as well?)

3.3. Unit Tests 341

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/news.d/_releases
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/NEWS.md
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/news.d


OpenDDS, Release 3.28.1

3.3.2 Unit Test Organization

The most basic unit when testing is the test case. A test case typically has four phases.

1. Setup - The system is initialized to a known state.

2. Exercise - The code under test is invoked.

3. Check - The resulting state of the system and outputs are checked.

4. Teardown - Any resources allocated in the test are deallocated.

Test cases are grouped into a test suite.

Test suites are organized into a test plan.

We adopt file boundaries for organizing the unit tests for OpenDDS. That is, the unit tests for a file group dds/
DCPS/SomeFile.(h|cpp) will be located in tests/unit-tests/dds/DCPS/SomeFile.cpp. The file tests/
unit-tests/dds/DCPS/SomeFile.cpp is a test suite containing all of the test cases for dds/DCPS/SomeFile.
(h|cpp). The test plan for OpenDDS will execute all of the test suites under tests/unit-tests. When the complete
test plan takes too much time to execute, it will be sub-divided along module boundaries.

In regards to coverage, the coverage of dds/DCPS/SomeFile.(h|cpp) is measured by executing the tests in its test
suite tests/unit-tests/dds/DCPS/SomeFile.cpp. The purpose of this is to avoid indirect testing where a piece
of code may get full coverage without ever being intentionally tested.

3.3.3 Unit Test Scope

A unit test should be completely deterministic with respect to the code paths that it exercises. This means the test
code must have control over all relevant inputs, i.e., inputs that influence the code paths. To illustrate, the current time
is relevant when testing algorithms that perform date related functions, e.g., code that is conditioned on a certificate
being expired, while it is not relevant if it is only used when printing log messages. Sources of non-determinism include
time, random numbers, schedulers, and the network. A dependency on the time is typically mitigated by mocking the
service that return the time. Random numbers can be handled the same way. A unit test should never sleep. Avoiding
schedulers means a unit test should not have multiple processes and should not have multiple threads unless they cannot
impact the code paths being tested. The network can be avoided by defining a suitable abstraction and mocking.

Code that relies on event dispatching may use a mock dispatcher to control the sequence of events. One design that
makes it possible to unit test in this way is to organize a module as a set of atomic event handlers around a plain old
data structure core. The core should be easy to test. Event handlers are called for timers, I/O readiness, and method
calls into the module. Event handlers update the core and can perform I/O and call into other modules. Inter-module
calls are problematic in that they create the possibility for deadlock and other hazards. In the simplest designs, each
module has a single lock that is acquired at the beginning of each event handler. The non-deterministic part of the
module can be tested by isolating its dependencies on the operating system and other modules; typically by providing
mock objects.

To illustrate the other side of determinism, consider other kinds of tests. Integration tests often use operating system
services, e.g., threads and networking, to test partial or whole system functionality. A stress test executes the same
code over and over hoping that non-determism results in a different outcome. Performance tests may or may not admit
non-determinism and focuses on aggregate behavior as opposed to code-level correctness. Unit tests should focus on
code-level correctness.

342 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/unit-tests


OpenDDS, Release 3.28.1

3.3.4 Isolating Dependencies

More often than not, the code under test will have dependencies on other objects. For each dependency, the test can
either pass in a real object or a stand-in. Test stand-ins have a variety of names including mocks, spies, dummies, etc.
depending on their function. Some take the position that everything should be mocked. The author takes the position
that real objects should be preferred for the following reasons:

• Less code to maintain

• The design of the real objects improves to accommodate testing

• Tests break in a more meaningful way when dependencies change, i.e., over time, a test stand-in may no longer
behave in a realistic way

However, there are cases when a test stand-in is justified:

• It is difficult to configure the real object

• The real object lacks the necessary API for testing and adding it cannot be justified

The use of a mock assumes that an interface exists for the stand-in.

3.3.5 Writing a New Unit Test

1. Add the test to the appropriate file under tests/unit-tests.

2. Name the test after the code it is meant to cover. For example, the tests/unit-tests/dds/
DCPS/security/AccessControlBuiltInImpl.cpp unit test covers the dds/DCPS/security/
AccessControlBuiltInImpl.(h|cpp) files.

3. Update the tests/unit-tests/UnitTests.mpc file if necessary.

3.3.6 Using GTest

The main unit test driver is based on GTest. GTest provides you with many helpful tools to simplify the writing of unit
tests. To use GTest in a test, add #include <gtest/gtest.h> to the unit test source file. A basic unit test has the
following form

TEST(TestModule, TestSubmodule)
{
}

All tests in a unit test source file must have the same TestModule which is name of the unit under test with underscores,
e.g., dds_DCPS_security_AccessControlBuiltInImpl. This naming convention is required for intentional unit
test coverage. The TestSubmodule can be any identifier, however, it should typical describe the class, function, or
scenario being tested.

Each test contains evaluators. The most common evaluators are EXPECT_EQ, EXPECT_TRUE, EXPECT_FALSE.

EXPECT_EQ(X, 2)
EXPECT_EQ(Y, 3)

This will mark the test as a failure if either X does not equal 2, or Y does not equal 3.

EXPECT_TRUE and EXPECT_FALSE are equivalence checks to a boolean value. In the following examples we pass X to
a function is_even that returns true if the passed value is an even number and returns false otherwise.

3.3. Unit Tests 343

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/unit-tests
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/unit-tests/UnitTests.mpc


OpenDDS, Release 3.28.1

EXPECT_TRUE(is_even(X));

This will mark the test as a failure if is_even(X) returns false.

EXPECT_FALSE(is_even(X));

This will mark the test as a failure if is_even(X) returns true.

There are more EXPECT_* and ASSERT_*, but these are the most common ones. The difference between EXPECT
and ASSERT is that an ASSERT will cease the test upon failure, whereas EXPECTS continue to run. For example if
you have multiple EXPECT_EQ, they will all always run.

For more information, visit the google test documentation: https://github.com/google/googletest/blob/main/docs/
primer.md.

3.3.7 Code Coverage

To enable code coverage, one needs to disable the dds_non_coverage feature, e.g., ./configure ...
--features=dds_non_coverage=0.

The script $DDS_ROOT/tools/scripts/unit_test_coverage.sh will execute unit tests and generate an inten-
tional unit test coverage report. It can be called with no arguments to generate a report for all of the units or it can be
called with a list of units to test. For example, $DDS_ROOT/tools/scripts/unit_test_coverage.sh dds/DCPS/
Serializer.

3.3.8 Final Word

Ignore anything in this document that prevents you from writing unit tests.

3.4 GitHub Actions

3.4.1 Overview

GitHub Actions is the continuous integration solution currently being used to evaluate the readiness of pull requests.
It builds OpenDDS and runs the test suite across a wide variety of operation systems and build configurations.

3.4.2 Legend for GitHub Actions Build Names

Operating System

• u20/u22 - Ubuntu 20.04/22.04

• w19/w22 - Windows Server 2019/Windows Server 2022

• m11/m12 - macOS 11/12

See also:

GitHub Runner Images

344 Chapter 3. Internal Documentation

https://github.com/google/googletest/blob/main/docs/primer.md
https://github.com/google/googletest/blob/main/docs/primer.md
https://github.com/actions/runner-images


OpenDDS, Release 3.28.1

Build Configuration

• x86 - Windows 32 bit. If not specified, x64 is implied.

• re - Release build. If not specified, Debug is implied.

• clangX/gccY - compiler used to build OpenDDS. If not specified, the default system compiler is used. Windows
Server 2019 uses Visual Studio 2019 Windows Server 2022 uses Visual Studio 2022

Build Type

• stat - Static build

• bsafe/esafe - Base Safety/Extended Safety build

• sec - Security build

• asan/tsan - Address/Thread Sanitizer build

Build Options

• o1 - enables --optimize

• d0 - enables --no-debug

• i0 - enables --no-inline

• p1 - enables --ipv6

• w1 - enables wide characters

• v1 - enables versioned namespace

• cpp03 - --std=c++03

• j/j<N> - Java version default/N

• ace7 - uses ace7tao3 rather than ace6tao2

• xer0 - disables xerces

• qt - enables --qt

• ws - enables --wireshark

• js0 - enables --no-rapidjson

• a1 - enables TAO’s Anys using --features=dds_suppress_anys=0

Feature Mask

This is a mask in an attempt to keep names shorter.

• FM-08

– --no-built-in-topics

– --no-content-subscription

– --no-ownership-profile

– --no-object-model-profile

– --no-persistence-profile

3.4. GitHub Actions 345



OpenDDS, Release 3.28.1

• FM-1f

– --no-built-in-topics

• FM-2c

– --no-content-subscription

– --no-object-model-profile

– --no-persistence-profile

• FM-2f

– --no-content-subscription

• FM-37

– --no-content-filtered-topics

3.4.3 build_and_test.yml Workflow

Our main workflow which dictates our GitHub Actions run is .github/workflows/build_and_test.yml. It defines
jobs, which are the tasks that are run by the CI.

Triggering the Build And Test Workflow

There are a couple ways in which a run of build and test workflow can be started.

Any pull request targeting master will automatically run the OpenDDS workflows. This form of workflow run will
simulate a merge between the branch and master.

Push events on branches prefixed gh_wf_ will trigger workflow runs on the fork in which the branch resides. These
fork runs of GitHub Actions can be viewed in the “Actions” tab. Runs of the workflow on forks will not simulate a
merge between the branch and master.

Job Types

There are a number of job types that are contained in the file build_and_test.yml. Where possible, a configuration will
contain 3 jobs. The first job that is run is ACE_TAO_. This will create an artifact which is used later by the OpenDDS
build. The second job is build_, which uses the previous ACE_TAO_ job to configure and build OpenDDS. This job
will then export an artifact to be used in the third step. The third step is the test_ job, which runs the appropriate tests
for the associated OpenDDS configuration.

Certain builds do not follow this 3 step model. Static and Release builds have a large footprint and therefore cannot fit
the entire test suite onto a GitHub Actions runner. As a result, they only build and run a subset of the tests in their final
jobs, but then have multiple final jobs to increase test coverage. These jobs are prefixed by:

• compiler_ (and for some build configurations, compiler2_) which runs the tests/DCPS/Compiler tests.

• unit_ which runs the unit tests located in tests/unit-tests.

• messenger_ which runs the tests in tests/DCPS/Messenger and tests/DCPS/C++11/Messenger.

To shorten the runtime of the continuous integration, some other builds will not run the test suite.

All builds with safety profile disabled and ownership profile enabled, will run the tests/cmake tests. Test runs which
only contain CMake tests are prefixed by cmake_.

346 Chapter 3. Internal Documentation

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/build_and_test.yml
https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/DCPS/Compiler
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/unit-tests
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/DCPS/Messenger
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/DCPS/C++11/Messenger
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/tests/cmake


OpenDDS, Release 3.28.1

.lst Files

.lst files contain a list of tests with configuration options that will turn tests on or off. The test_ jobs pass in tests/
dcps_tests.lst. MacOS, Windows 22, Static, and Release builds instead use tests/core_ci_tests.lst. The
Thread Sanatizer build uses tests/tsan_tests.lst. This separation of .lst files is due to how excluding all but a
few tests in the dcps_tests.lst would require adding a new config option to every test we didn’t want to run. There
is a separate security test list, tests/security/security_tests.lst, which governs the security tests which are
run when --security is passed to auto_run_tests.pl. The last list file used by build_and_test.yml is tools/
modeling/tests/modeling_tests.lst, which is included by passing --modeling to auto_run_tests.pl.

To disable a test in GitHub Actions, !GH_ACTIONS must be added next to the test in the .lst file. There are similar test
blockers which only block for specific GitHub Actions configurations from running marked tests:

• !GH_ACTIONS_OPENDDS_SAFETY_PROFILE blocks Safety Profile builds

• !GH_ACTIONS_M10 blocks the MacOS10 runners

This option currently does nothing because GitHub sees MacOS runners as unresponsive when they attempt to run
some of the more intensive tests in dcps_tests.lst.

• !GH_ACTIONS_ASAN blocks the Address Sanitizer builds

• !GH_ACTIONS_W22 blocks the Windows Server 2022 runner

These blocks are necessary because certain tests cannot properly run on GitHub Actions due to how the runners are
configured. -Config GH_ACTIONS is assumed by auto_run_tests.pl when running on GitHub Actions, but the
other test configurations must be passed using -Config.

See also:

Running Tests
For how auto_run_tests.pl and the lst files work in general.

Workflow Checks

The .github/workflows/lint.yml workflow runs .github/workflows/lint_build_and_test.pl, which
checks that the .github/workflows/build_and_test.ymlworkflow has gcc-problem-matcher and msvc-problem-
matcher in the correct places.

Running this script requires the YAML CPAN module. As a safety measure, it has some picky rules about how steps
are named and ordered. In simplified terms, these rules include:

• If used, the problem matcher must be appropriate for the platform the job is running on.

• The problem matcher must not be declared before steps that are named “setup gtest” or named like “build
ACE/TAO”. This should reduce any warnings from Google Test or ACE/TAO.

• A problem matcher should be declared before steps that start with “build” or contain “make”. These steps should
also contain cmake --build, make, or msbuild in their run string.

3.4. GitHub Actions 347

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/dcps_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/dcps_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/core_ci_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/tsan_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/security_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/tests/modeling_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/tests/modeling_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/lint.yml
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/lint_build_and_test.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/build_and_test.yml
https://github.com/ammaraskar/gcc-problem-matcher
https://github.com/ammaraskar/msvc-problem-matcher
https://github.com/ammaraskar/msvc-problem-matcher
https://metacpan.org/pod/YAML


OpenDDS, Release 3.28.1

Blocked Tests

Certain tests are blocked from GitHub actions because their failures are either unfixable, or are not represented on the
scoreboard. If this is the case, we have to assume that the failure is due to some sort of limitation caused by the GitHub
Actions runners.

Only Failing on CI

• tests/DCPS/SharedTransport/run_test.pl multicast

– Multicast times out waiting for remote peer. Fails on test_u20_p1_j8_FM-1f and test_u20_p1_sec.

• tests/DCPS/Thrasher/run_test.pl high/aggressive/medium XXXX XXXX

– The more intense thrasher tests cause consistent failures due to the increased load from ASAN. GitHub
Actions fails these tests very consistently compared to the scoreboard which is more intermittent. Fails on
test_u20_p1_asan_sec.

Failing Both CI and scoreboard

These tests fail on the CI as well as the scoreboard, but will remain blocked on the CI until fixed. Each test has a list of
the builds it was failing on before being blocked.

• tests/DCPS/BuiltInTopicTest/run_test.pl

– test_u18_esafe_js0

• tests/DCPS/CompatibilityTest/run_test.pl rtps_disc

– test_m10_o1d0_sec

• tests/DCPS/Federation/run_test.pl

– test_u18_w1_sec

– test_u18_j_cft0_FM-37

– test_u18_w1_j_FM-2f

– test_u20_ace7_j_qt_ws_sec

– test_u20_p1_asan_sec

– test_u20_p1_asan_sec

• tests/DCPS/MultiDPTest/run_test.pl

– test_u18_bsafe_js0_FM-1f

– test_u18_esafe_js0

• tests/DCPS/NotifyTest/run_test.pl

– test_u18_esafe_js0

• tests/DCPS/Reconnect/run_test.pl restart_pub

– test_w22_x86_i0_sec

• tests/DCPS/Reconnect/run_test.pl restart_sub

– test_w22_x86_i0_sec

• tests/DCPS/TimeBasedFilter/run_test.pl -reliable

348 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

– test_u18_bsafe_js0_FM-1f

– test_u18_esafe_js0

Test Results

The tests are run using autobuild which creates a number of output files that are turned into a GitHub
artifact. This artifact is processed by the “check results” step which uses the script tools/scripts/
autobuild_brief_html_to_text.pl to catch failures and print them in an organized manner. Due to this being a
part of the “test” jobs, the results of each run will appear as soon as the job is finished.

Artifacts

Artifacts from the continuous integration run can be downloaded by clicking details on one of the Build & Test runs.
Once all jobs are completed, a dropdown will appear on the bar next to “Re-run jobs”, called “Artifacts” which lists
each artifact that can be downloaded.

Alternatively, clicking the “Summary” button at the top of the list of jobs will list all the available artifacts at the bottom
of the page.

Using Artifacts to Replicate Builds

You can download the ACE_TAO_ and build_ artifacts then use them for a local build, so long as your operating system
is the same as the one on the runner.

1. git clone the ACE_TAO branch which is targeted by the build. This is usually going to be ace6tao2.

2. git clone --recursive the OpenDDS branch on which the CI was run.

3. Merge OpenDDS master into your cloned branch.

4. run tar xvfJ from inside the cloned ACE_TAO, targeting the ACE_TAO_*.tar.xz file.

5. run tar xvfJ from inside the cloned OpenDDS, targeting the build_*.tar.xz file.

6. Adjust the setenv.sh located inside OpenDDS to match the new locations for your ACE_TAO, and OpenDDS.
The word “runner” should not appear within the setenv.sh once you are finished.

You should now have a working duplicate of the build that was run on GitHub Actions. This can be used for debugging
as a way to quickly set up a problematic build.

Using Artifacts to View More Test Information

Tests failures which are recorded on GitHub only contain a brief capture of output surrounding a failure. This is useful
for some tests, but it can often be helpful to view more of a test run. This can be done by downloading the artifact for
a test step you are viewing. This test step artifact contains a number of files including output.log_Full.html. This
is the full log of all output from all test runs done for the corresponding job. It should be opened in either a text editor
or Firefox, as Chrome will have issues due to the length of the file.

3.4. GitHub Actions 349

https://github.com/DOCGroup/autobuild
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/scripts/autobuild_brief_html_to_text.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/scripts/autobuild_brief_html_to_text.pl


OpenDDS, Release 3.28.1

Caching

The OpenDDS workflows create .tar.xz archives of certain build artifacts which can then be up uploaded and shared
between jobs (and the user) as part of GitHub Actions’ “artifact” API. A cache key comparison made using the relevant
git commit SHA will determine whether to rebuild the artifact, or to use the cached artifact.

3.5 Running Tests

3.5.1 Main Test Suite

Building

Tests are not built by default, --tests must be passed to the configure script. This will build all the tests. There are
a few ways to only have specific tests built:

• If using Make, specify the targets instead of leaving it default to the all target.

• Run MPC on the test directory and build separately. Make sure to also build the test’s dependencies.

• Create a custom workspace with the tests and pass it to the configure script using the --workspace option.
Also make sure to include the test’s dependencies.

Running

Note: Make sure ACE_ROOT and DDS_ROOT are set, which can be done by running source setenv.sh on Linux and
macOS or call setenv.cmd on Windows.

OpenDDS’ main suite of tests is ran by the tests/auto_run_tests.pl Perl script that reads lists of tests from files
and selectively runs based on how the script has been configured.

For Unixes (Linux, macOS, BSDs, etc)

Run this in DDS_ROOT:

bin/auto_run_tests.pl

For Windows

Run this in DDS_ROOT:

bin\auto_run_tests.pl

If OpenDDS was built in Release mode add -ExeSubDir Release. If it was built as static libraries add -ExeSubDir
Static_Debug or -ExeSubDir Static_Release.

350 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/auto_run_tests.pl


OpenDDS, Release 3.28.1

Manual Configuration

Manual configuration is done by passing -Config, -Exclude, and test list files arguments to the script.

To manually configure what tests to run:

• See the --list-all-configs or --show-all-configs options to see the existing configurations used by all
test list files.

• See the --list-configs or --show-configs options to see the existing configurations used by specific test
list files.

• See the test list files for the tests themselves:

– tests/dcps_tests.lst

* This is included by default. Use --no-dcps to exclude this list.

* If --no-auto-config was passed, then --dcps will have to be passed to include this.

– tests/security/security_tests.lst

* Use --security to include this list.

– java/tests/dcps_java_tests.lst

* Use --java to include this list.

– tools/modeling/tests/modeling_tests.lst

* Use --modeling to include this list.

• In a test list file each of the-space delimited words after the colon determines when the test is ran.

• Passing -Config RTPS will run tests that have RTPS and leave out tests with !RTPS.

• Passing -Exclude RTPS will exclude all tests that have RTPS in the entry. This option matches using RegEx, so
a test with SUPER_DUPER_RTPS will also be excluded. It also ignores inverse entries, so it will not exclude a test
with !SUPER_DUPER_RTPS.

• There are -Config options that are added automatically if --no-auto-config wasn’t passed:

– -Config RTPS

– -Config GH_ACTIONS if running on GitHub Actions

– These are based on the OS auto_run_tests.pl is running under:

* -Config Win32

* -Config macOS

* -Config Linux

• Assuming they were built, CMake tests are ran if --cmake is passed. This uses CTest, which is a system that is
separate from the one previously described.

• See --help for all the available options.

Note: For those editing and creating test list files: The ConfigList code in ACE can’t properly handle mutiple test
list entries with the same command. It will run all those entries if the last one will run, even if based on the configs
only one entry should run. auto_run_tests.pl will warn about this if it’s using a test list file that has this problem.

3.5. Running Tests 351

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/dcps_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tests/security/security_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/tests/dcps_java_tests.lst
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/tests/modeling_tests.lst


OpenDDS, Release 3.28.1

3.6 Bench Performance & Scalability Test Framework

3.6.1 Motivation

The Bench framework (version 2) grew out of a desire to be able to test the performance and scalability of OpenDDS
in large and heterogeneous deployments, along with the ability to quickly develop and deploy new test scenarios across
a potentially-unspecified number of machines.

3.6.2 Overview

The resulting design of the Bench framework depends on three primary test applications: worker processes, one or
more node controllers, and a test controller.

Fig. 1: Bench Overview

Worker

The worker application, true to its name, performs most of the work associated with any given test scenario. It creates
and exercises the DDS entities specified in its configuration file and gathers performance statistics related to discov-
ery, data integrity, and performance. The worker’s configuration file contains regions that may be used to represent
OpenDDS’s configuration sections as well as individual DDS entities and the QoS policies to be for their creation.
In addition, the worker configuration contains test timing values and descriptions of test actions to be taken (e.g.
publishing and forwarding data read from subscriptions). Upon test completion, the worker can write out a report file
containing the performance statistics gathered during its run.

352 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

Node Controller

Each machine in the test environment will run (at least) one node_controller application which acts as a daemon
and, upon request from a test_controller, will spawn one or more worker processes. Each request will contain
the configuration to use for the spawned workers and, upon successful exit, the workers’ report files will be read and
sent back to the test_controller which requested it. Failed workers processes (aborts, crashes) will be noted and
have their output logs sent back to the requesting test_controller. In addition to collecting worker reports, the
node controller also gathers general system resource statistics during test execution (CPU and memory utilization) to
be returned to the test controller at the end of the test.

Test Controller

Each execution of the test framework will use a test_controller to read in a scenario configuration file (an anno-
tated collection of worker configuration file names) before listening for available node_controller’s and parceling
out the scenario’s worker configurations to the individual node_controller’s. The test_controller may also
optionally adjust certain worker configuration values for the sake of the test (assigning a unique DDS partition to avoid
collisions, coordinating worker test times, etc.). After sending the allocated scenario to each of the available node
controllers, the test controller waits to receive reports from each of the node controllers. After receiving all the reports,
the test_controller coalesces the performance statistics from each of the workers and presents the final results to
the user (both on screen & in a results file).

3.6.3 Building Bench

Required Features

The primary requirements for building OpenDDS such that Bench also gets built:

• C++11 Support, either with a compiler that defaults to C++11 (or later) support or by manually specifying a
compatible standard (e.g. --std=c++11)

• RapidJSON present and enabled (--rapidjson)

• Tests are being built (--tests)

Required Targets

If these elements are present, you can either build the entire test suite (slow) or use these 3 targets (faster), which also
cover all the required libraries:

• Bench_Worker

• Bench_node_controller

• Bench_test_controller

3.6. Bench Performance & Scalability Test Framework 353



OpenDDS, Release 3.28.1

3.6.4 Running Bench

Environment Variables

To run Bench executables with dynamically linked or shared libraries, you’ll want to make sure the Bench libraries are
in your library path.

Linux/Unix

Add ${DDS_ROOT}/performance-tests/bench/lib to your LD_LIBRARY_PATH

Windows

Add %DDS_ROOT%\performance-tests\bench\lib to your PATH

Assuming DDS_ROOT is already set on your system (from the configure script or from sourcing setenv.sh), there are
convenience scripts to do this for you in the performance-tests/bench directory (set_bench_env[.sh/.cmd])

Running a Bench CI Test

In the event that you’re debugging a failing Bench CI test, you can use performance-tests/bench/run_test.pl
to execute the full scenario without first setting the environment as listed above. This is because the perl script sets
the appropriate environment variables automatically before launching its processes (a single node_controller in
the background, as well as the test controller with the requested scenario). The perl script can be inspected in order
to determine which scenarios have been made available in this way. The script can be modified to easily run other
available scenarios (see performance-tests/bench/example/config/scenario) against a single node controller
with relative ease.

Running Scenarios Manually

Assuming you already have scenario and worker configuration files defined, the general approach to running a scenario
is to start one or more node_controllers (across one or more hosts) and then execute the test_controller with the
desired scenario configuration.

3.6.5 Configuration Files

As a general rule, Bench uses JSON configuration files that directly map onto the C++ Platform Specific Model (PSM)
of the IDL found in performance-tests/bench/idl and the IDL used in the Data Distribution Service (DDS) for
Real-Time Systems. This allows the test applications to easily convert between configuration files and the C++ structures
used for the configuration of DDS entities.

354 Chapter 3. Internal Documentation

https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/performance-tests/bench
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/performance-tests/bench/run_test.pl
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/performance-tests/bench/example/config/scenario
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/performance-tests/bench/idl


OpenDDS, Release 3.28.1

Scenario Configuration Files

Scenario configuration files are used by the test controller to determine the number and type (configuration) of worker
processes required for a particular test scenario. In addition, the scenario file may specify certain sets of workers to be
run on the same node by placing them together in a node “prototype” (see below).

IDL Definition

struct WorkerPrototype {
// Filename of the JSON Serialized Bench::WorkerConfig
string config;
// Number of workers to spawn using this prototype (Must be >=1)
unsigned long count;

};

typedef sequence<WorkerPrototype> WorkerPrototypes;

struct NodePrototype {
// Assign to a node controller with a name that matches this wildcard
string name_wildcard;
WorkerPrototypes workers;
// Number of Nodes to spawn using this prototype (Must be >=1)
unsigned long count;
// This NodePrototype must have a Node to itself
boolean exclusive;

};

typedef sequence<NodePrototype> NodePrototypes;

// This is the root type of the scenario configuration file
struct ScenarioPrototype {
string name;
string desc;
// Workers that must be deployed in sets
NodePrototypes nodes;
// Workers that can be assigned to any node
WorkerPrototypes any_node;
/*
* Number of seconds to wait for the scenario to end.
* 0 means never timeout.
*/
unsigned long timeout;

};

3.6. Bench Performance & Scalability Test Framework 355



OpenDDS, Release 3.28.1

Annotated Example

{
"name": "An Example",
"desc": "This shows the structure of the scenario configuration",
"nodes": [
{
"name_wildcard": "example_nc_*",
"workers": [
{
"config": "daemon.json",
"count": 1

},
{
"config": "spawn.json",
"count": 1

}
],
"count": 2,
"exclusive": false

}
],
"any_node": [

{
"config": "master.json",
"count": 1

}
],
"timeout": 120

}

This scenario configuration will launch 5 worker processes. It will launch 2 pairs of “daemon” / “spawn” processes, with
each member of each pair being kept together on the same node (i.e. same node_controller). The pairs themselves
may be split across nodes, but each “daemon” will be with at least one “spawn” and vice-versa. They may also wind
up all together on the same node, depending on the number of available nodes. And finally, one “master” process will
be started wherever there is room available.

The “name_wildcard” field is used to filter the node_controller instances that can be used to host the nodes in
the current node config - only the node_controller instances with names matching the wildcard can be used. If
the “name_wildcard” is omitted or its value is empty, any node_controller can be used. If node “prototypes” are
marked exclusive, the test controller will attempt to allocate them exclusively to their own node controllers. If not
enough node controllers exist to honor all the exclusive nodes, the test controller will fail with an error message.

Worker Configuration Files

QoS Masking

In a typical DDS application, default QoS objects are often supplied by the entity factory so that the application devel-
oper can make required changes locally and not impact larger system configuration choices. As such, the QoS objects
found within the JSON configuration file should be treated as a “delta” from the default configuration object of a parent
factory class. So while the JSON “qos” element names will directly match the relevant IDL element names, there will
also be an additional “qos_mask” element that lives alongside the “qos” element in order to specify which elements
apply. For each QoS attribute “attribute” within the “qos” object, there will also be a boolean “has_attribute” within

356 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

the “qos_mask” which informs the builder library that this attribute should indeed be applied against the default QoS
object supplied by the parent factory class before the entity is created.

IDL Definition

struct TimeStamp {
long sec;
unsigned long nsec;

};

typedef sequence<string> StringSeq;
typedef sequence<double> DoubleSeq;

enum PropertyValueKind { PVK_TIME, PVK_STRING, PVK_STRING_SEQ, PVK_STRING_SEQ_SEQ, PVK_
→˓DOUBLE, PVK_DOUBLE_SEQ, PVK_ULL };
union PropertyValue switch (PropertyValueKind) {
case PVK_TIME:
TimeStamp time_prop;

case PVK_STRING:
string string_prop;

case PVK_STRING_SEQ:
StringSeq string_seq_prop;

case PVK_STRING_SEQ_SEQ:
StringSeqSeq string_seq_seq_prop;

case PVK_DOUBLE:
double double_prop;

case PVK_DOUBLE_SEQ:
DoubleSeq double_seq_prop;

case PVK_ULL:
unsigned long long ull_prop;

};

struct Property {
string name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

struct ConfigProperty {
string name;
string value;

};
typedef sequence<ConfigProperty> ConfigPropertySeq;

// ConfigSection

struct ConfigSection {
string name;
ConfigPropertySeq properties;

};
typedef sequence<ConfigSection> ConfigSectionSeq;

// Writer

(continues on next page)

3.6. Bench Performance & Scalability Test Framework 357



OpenDDS, Release 3.28.1

(continued from previous page)

struct DataWriterConfig {
string name;
string topic_name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::DataWriterQos qos;
DataWriterQosMask qos_mask;

};
typedef sequence<DataWriterConfig> DataWriterConfigSeq;

// Reader

struct DataReaderConfig {
string name;
string topic_name;
string listener_type_name;
unsigned long listener_status_mask;
PropertySeq listener_properties;
string transport_config_name;
DDS::DataReaderQos qos;
DataReaderQosMask qos_mask;
StringSeq tags;

};
typedef sequence<DataReaderConfig> DataReaderConfigSeq;

// Publisher

struct PublisherConfig {
string name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::PublisherQos qos;
PublisherQosMask qos_mask;
DataWriterConfigSeq datawriters;

};
typedef sequence<PublisherConfig> PublisherConfigSeq;

// Subscription

struct SubscriberConfig {
string name;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
DDS::SubscriberQos qos;
SubscriberQosMask qos_mask;
DataReaderConfigSeq datareaders;

};
typedef sequence<SubscriberConfig> SubscriberConfigSeq;

(continues on next page)

358 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

(continued from previous page)

// Topic

struct ContentFilteredTopic {
string cft_name;
string cft_expression;
DDS::StringSeq cft_parameters;

};

typedef sequence<ContentFilteredTopic> ContentFilteredTopicSeq;

struct TopicConfig {
string name;
string type_name;
DDS::TopicQos qos;
TopicQosMask qos_mask;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
ContentFilteredTopicSeq content_filtered_topics;

};
typedef sequence<TopicConfig> TopicConfigSeq;

// Participant

struct ParticipantConfig {
string name;
unsigned short domain;
DDS::DomainParticipantQos qos;
DomainParticipantQosMask qos_mask;
string listener_type_name;
unsigned long listener_status_mask;
string transport_config_name;
StringSeq type_names;
TopicConfigSeq topics;
PublisherConfigSeq publishers;
SubscriberConfigSeq subscribers;

};
typedef sequence<ParticipantConfig> ParticipantConfigSeq;

// TransportInstance

struct TransportInstanceConfig {
string name;
string type;
unsigned short domain;

};
typedef sequence<TransportInstanceConfig> TransportInstanceConfigSeq;

// Discovery

struct DiscoveryConfig {
string name;

(continues on next page)

3.6. Bench Performance & Scalability Test Framework 359



OpenDDS, Release 3.28.1

(continued from previous page)

string type; // "rtps" or "repo"
string ior; // "repo" URI (e.g. "file://repo.ior")
unsigned short domain;

};
typedef sequence<DiscoveryConfig> DiscoveryConfigSeq;

// Process

struct ProcessConfig {
ConfigSectionSeq config_sections;
DiscoveryConfigSeq discoveries;
TransportInstanceConfigSeq instances;
ParticipantConfigSeq participants;

};

// Worker

// This is the root structure of the worker configuration
// For the sake of readability, module names have been omitted
// All structures other than this one belong to the Builder module
struct WorkerConfig {

TimeStamp create_time;
TimeStamp enable_time;
TimeStamp start_time;
TimeStamp stop_time;
TimeStamp destruction_time;
PropertySeq properties;
ProcessConfig process;
ActionConfigSeq actions;
ActionReportSeq action_reports;

};

Annotated Example

{
"create_time": { "sec": -1, "nsec": 0 },

Since the timestamp is negative, this treats the time as relative and waits one second.

"enable_time": { "sec": -1, "nsec": 0 },
"start_time": { "sec": 0, "nsec": 0 },

Since the time is zero and thus neither absolute nor relative, this treats the time as indefinite and waits for keyboard
input from the user.

"stop_time": { "sec": -10, "nsec": 0 },

Again, a relative timestamp. This time, it waits for 10 seconds for the test actions to run before stopping the test.

"destruction_time": { "sec": -1, "nsec": 0 },

(continues on next page)

360 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

(continued from previous page)

"process": {

This is the primary section where all the DDS entities are described, along with configuration of OpenDDS.

"config_sections": [

The elements of this section are functionally identical to the Run-time Configuration sections of an OpenDDS .ini
file with the same name. Each config section is created programmatically within the worker process using the name
provided and made available to the OpenDDS ServiceParticipant during entity creation. The example here sets
the value of both the [common] DCPSSecurity and [common] DCPSDebugLevel keys to 0.

{ "name": "common",
"properties": [
{ "name": "DCPSDefaultDiscovery",
"value":"rtps_disc"

},
{ "name": "DCPSGlobalTransportConfig",
"value":"$file"

},
{ "name": "DCPSDebugLevel",
"value": "0"

},
{ "name": "DCPSPendingTimeout",
"value": "3"

}
]

},
{ "name": "rtps_discovery/rtps_disc",
"properties": [
{ "name": "ResendPeriod",
"value": "5"

}
]

},
{ "name": "transport/rtps_transport",
"properties": [
{ "name": "transport_type",
"value": "rtps_udp"

}
]

}
],
"participants": [

The list of participants to create.

{ "name": "participant_01",
"domain": 7,
"transport_config_name": "rtps_instance_01",

The transport config that gets bound to this participant

3.6. Bench Performance & Scalability Test Framework 361



OpenDDS, Release 3.28.1

"qos": { "entity_factory": { "autoenable_created_entities": false } },
"qos_mask": { "entity_factory": { "has_autoenable_created_entities": false } },

An example of QoS masking. Note that in this example, the boolean flag is false, so the QoS
mask is not actually applied. In this case, both lines here were added to make switching back and
forth between autoenable_created_entities easier (simply change the value of the bottom element
"has_autoenable_created_entities" to "true").

"topics": [

List of topics to register for this participant

{ "name": "topic_01",
"type_name": "Bench::Data"

Note the type name. "Bench::Data" is currently the only topic type supported by the Bench framework. That said, it
contains a variably sized array of octets, allowing a configurable range of data payload sizes (see write_action below).

"content_filtered_topics": [
{
"cft_name": "cft_1",
"cft_expression": "filter_class > %0",
"cft_parameters": ["2"]

}
]

List of content filtered topics. Note "cft_name". Its value can be used in DataReader "topic_name" to use the
content filter.

}
],
"subscribers": [

List of subscribers

{ "name": "subscriber_01",
"datareaders": [

List of DataReaders

{ "name": "datareader_01",
"topic_name": "topic_01",
"listener_type_name": "bench_drl",
"listener_status_mask": 4294967295,

Note the listener type and status mask. "bench_drl" is a listener type registered by the Bench Worker application that
does most of the heavy lifting in terms of stats calculation and reporting. The mask is a fully-enabled bitmask for all
listener events (i.e. 2^32 - 1).

"qos": { "reliability": { "kind": "RELIABLE_RELIABILITY_QOS" } },
"qos_mask": { "reliability": { "has_kind": true } },

DataReaders default to best effort QoS, so here we are setting the reader to reliable QoS and flagging the qos_mask
appropriately in order to get a reliable datareader.

362 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

"tags": [ "my_topic", "reliable_transport" ]

The config can specify a list of tags associated with each data reader. The statistics for each tag is computed in addition
to the overall statistics and can be printed out at the end of the run by the test_controller.

}
]

}
],
"publishers": [

List of publishers within this participant

{ "name": "publisher_01",
"datawriters": [

List of DataWriters within this publisher

{ "name": "datawriter_01",

Note that each DDS entity is given a process-entity-unique name, which can be used below to locate / identify this
entity.

"topic_name": "topic_01",
"listener_type_name": "bench_dwl",
"listener_status_mask": 4294967295

}
]

}
]

}
]

},
"actions": [

A list of worker ‘actions’ to start once the test ‘start’ period begins.

{
"name": "write_action_01",
"type": "write",

Current valid types are "write", "forward", and "set_cft_parameters".

"writers": [ "datawriter_01" ],

Note the datawriter name defined above is passed into the action’s writer list. This is used to locate the writer within
the process.

"params": [
{ "name": "data_buffer_bytes",

The size of the octet array within the Bench::Data message. Note, actual messages will be slightly larger than this
value.

3.6. Bench Performance & Scalability Test Framework 363



OpenDDS, Release 3.28.1

"value": { "$discriminator": "PVK_ULL", "ull_prop": 512 }
},
{ "name": "write_frequency",

The frequency with which the write action attempts to write a message. In this case, twice a second.

"value": { "$discriminator": "PVK_DOUBLE", "double_prop": 2.0 }
},

{ "name": "filter_class_start_value",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

},
{ "name": "filter_class_stop_value",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

},
{ "name": "filter_class_increment",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 0 }

}

Value range and increment for "filter_class" data variable, used when writing data. This variable is an unsigned
integer intended to be used for content filtered topics “set_cft_parameters” actions.

]
},

{ "name": "cft_action_01",
"type": "set_cft_parameters",
"params": [
{ "name": "content_filtered_topic_name",
"value": { "$discriminator": "PVK_STRING", "string_prop": "cft_1" }

},
{ "name": "max_count",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 3 }

},

Maximum count of “Set” actions to be taken.

{ "name": "param_count",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 1 }

},

Number of parameters to be set

{ "name": "set_frequency",
"value": { "$discriminator": "PVK_DOUBLE", "double_prop": 2.0 }

},

The frequency for set action, per second

{ "name": "acceptable_param_values",
"value": { "$discriminator": "PVK_STRING_SEQ_SEQ", "string_seq_seq_prop": [ ["1", "2",

→˓"3"] ] }
},

364 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

Lists of allowed values to set to, for each parameter. Worker will iterate thought the list sequentially unless
"random_order" flag (below) is specified

{ "name": "random_order",
"value": { "$discriminator": "PVK_ULL", "ull_prop": 1 }

}
]

}

]
}

3.6.6 Detailed Application Descriptions

test_controller

As mentioned above, the test_controller application is the application responsible for running test scenarios and, as
such, will probably wind up being the application most frequently run directly by testers. The test_controller needs
network visibility to at least one node_controller configured to run on the same domain. It expects, as arguments,
the path to a directory containing config files (both scenario & worker) and the name of a scenario configuration file
to run (without the .json extension). For historical reasons, the config directory is often simply called example.
The test_controller application also supports a number of optional configuration parameters, some of which are
described in the section below.

Usage

test_controller CONFIG_PATH SCENARIO_NAME [OPTIONS]

test_controller --help|-h

This is a subset of the options. Use --help option to see all the options.

CONFIG_PATH

Path to the directory of the test configurations and artifacts

SCENARIO_NAME

Name of the scenario file in the test context without the .json extension.

--domain N

The DDS Domain to use. The default is 89.

--wait-for-nodes N

The number of seconds to wait for nodes before broadcasting the scenario to them. The default is 10 seconds.

--timeout N

The number of seconds to wait for a scenario to complete. Overrides the value defined in the scenario. If N is 0,
there is no timeout.

--override-create-time N

Overwrite individual worker configs to create their DDS entities N seconds from now (absolute time reference)

--override-start-time N

Overwrite individual worker configs to start their test actions (writes & forwards) N seconds from now (absolute
time reference)

3.6. Bench Performance & Scalability Test Framework 365



OpenDDS, Release 3.28.1

--tag TAG

Specify a tag for which the performance statistics will be printed out (and saved to a results file). Multiple
instances of this option can be specified, each for a single tag.

--json-result-id ID

Specify a name to store the raw JSON report under. By default, this not enabled. These results will contain the
full raw Bench::TestController report, including all node controller and worker reports (and DDS entity
reports)

node_controller

The node controller application is best thought of as a daemon, though the application can be run both in a long-
running daemon mode and also a one-shot mode more appropriate for testing. The daemon-exit-on-error mode
additionally has the ability to exit the process every time an error is encountered, which is useful for restarting the
application when errors are detected, if run as a part of an OS system environment (systemd, supervisord, etc).

Usage

node_controller [OPTIONS] one-shot|daemon|daemon-exit-on-error

one-shot

Run a single batch of worker requests (configs > processes > reports) and report the results before exiting. Useful
for one-off and local testing.

daemon

Act as a long-running process that continually runs batches of worker requests, reporting the results. Attempts
to recover from errors.

daemon-exit-on-error

Act as a long-running process that continually runs batches of worker requests, reporting the results. Does not
attempt to recover from errors.

--domain N

The DDS Domain to use. The default is 89.

--name STRING

Human friendly name for the node. Will be used by the test controller for referring to the node. During allocation
of node controllers, the name is used to match against the “name_wildcard” fields of the node configs. Only node
controllers whose names match the “name_wildcard” of a given node config can be allocated to that node config.
Multiple nodes could have the same name.

worker

The worker application is meant to mimic the behavior of a single arbitrary OpenDDS test application. It uses the Bench
builder library along with its JSON configuration file to first configure OpenDDS (including discovery & transports)
and then create all required DDS entities using any desired DDS QoS attributes. Additionally, it allows the user to
configure several test phase timing parameters, using either absolute or relative times:

• DDS entity creation (create_time)

• DDS entity “enabling” (enable_time) (only relevant if autoenable_created_entitiesQoS setting is false)

• test actions start time (start_time)

• test actions stop time (stop_time)

366 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

• DDS entity destruction (destruction_time)

Finally, it also allows for the configuration and execution of test “actions” which take place between the “start” and
“stop” times indicated in configuration.These may make use of the created DDS entities in order to simulate application
behavior. At the time of this writing, the three actions are “write”, which will write to a datawriter using data of
a configurable size and frequency (and maximum count), “forward”, which will pass along the data read from one
datareader to a datawriter, allowing for more complex test behaviors (including round-trip latency & jitter calculations),
and "set_cft_parameters", which will change the content filtered topic parameter values dynamically. In addition
to reading a JSON configuration file, the worker is capable of writing a JSON report file that contains various test
statistics gathered from listeners attached to the created DDS entities. This report is read by the node_controller
after the worker process ends and is then sent back to the waiting test_controller.

Usage

worker [OPTIONS] CONFIG_FILE

--log LOG_FILE

The log file path. Will log to stdout if not passed.

--report REPORT_FILE

The report file path.

3.7 Release Process

The page provides the steps needed to make and publish a release of OpenDDS.

3.7.1 Notes About OpenDDS Releases

Temporary Notes

List of current problems with the release process and their workarounds. If there’s nothing to note then the list should
just consist of - N/A.

Attention:

• N/A

File Updates

This guide will document what should be updated manually. Almost all manual updates should be done before the
release and are documented in Update Files in the Repo as Needed.

All authoritative references to OpenDDS versions in the source code (like VERSION.txt or dds/Version.h) will be
automatically updated by the release script, so normally there’s no need to do it manually. Other files such as NEWS.md
and README.md shouldn’t be updated manually specifically for a release.

References to ACE/TAO versions are handled using acetao.ini, which is automatically updated by .github/
workflows/update-ace-tao.yml.

3.7. Release Process 367

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/VERSION.txt
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/dds/Version.h
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/NEWS.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/acetao.ini
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/update-ace-tao.yml
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/update-ace-tao.yml


OpenDDS, Release 3.28.1

Versioning

Micro release (a.k.a. patch release)
Releases with X.Y.Z versions. They should only contain fixes. They should avoid additional functionality and
breaking changes if possible. Some parts of the release process are different for micro releases. See Micro
Releases for more information.

Minor release
Releases with X.Y.0 versions. They should only contain fixes and additional functionality. They should avoid
breaking changes if possible.

Major release
Releases with X.0.0 versions. They are generally the only time breaking changes can be made.

Version metadata
Text that follows the version in most circumstances. Currently there’s only two uses for this:

• The default state of the repo is for the metadata to be dev (e.g. 4.0.0-dev). The release script will remove
the metadata before a release and restore it afterwards.

• A preview release/prerelease/release candidate can be indicated by pre.N where N starts at 1 (e.g. 4.0.
0-pre.2). Currently this isn’t supported by the release script, so it would have to be manually created.

Latest release
The release that has the highest version number. Some parts of the release process are only done for the latest
release.

3.7.2 Prior to the Release

Address Automated Code Analysis Results

• Address any serious compiler warnings seen on the CI

• Address any serious diagnostic messages generated by Coverity at https://scan.coverity.com/projects/opendds?
tab=overview

Update Files in the Repo as Needed

These are files or the parts of the files that the release script won’t be able to automatically update or should be checked
beforehand to make sure they are correct.

• Check Release Notes to make sure the release notes for the next release look correct. If they need changes, then
the news fragments should be changed before release.

See also:

News documents how news fragments works.

• The AUTHORS file should also be checked. This file is automatically generated from git history by the release
script during the release. It can also be generated ahead of time to get a preview:

– Fetch the latest master branch and run tools/scripts/gitrelease.pl --update-authors to see
what the file will look like after release. This doesn’t require any other arguments like the release script
normally does.

– If the file changed, but something is wrong, then it might be good to correct it before the release. For exam-
ple a contributor might have used a Git client that is inserting an name/email that might not be what they
want in the file or including a name/email might be in addition to their existing name/email combo. Cor-
rections will have to be inserted into .mailmap using the format described in the git documentation listed

368 Chapter 3. Internal Documentation

https://scan.coverity.com/projects/opendds?tab=overview
https://scan.coverity.com/projects/opendds?tab=overview
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/AUTHORS
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.mailmap


OpenDDS, Release 3.28.1

in the file. In addition to that there are general rules in the release script such as ignoring bots, preferring
objectcomputing.com email addresses to ociweb.com ones, and dealing with GitHub-specific issues.

– Run tools/scripts/gitrelease.pl --update-authors again to make sure the changes worked.

• Update README.md and Dependencies for any platform or dependency changes.

• Document changes to building OpenDDS, at least in Building and Installing, but possibly also in java/README
and java/INSTALL.

Update the Modeling SDK version numbers and release notes

Our convention recently has been to only update these if changes have been made to the Modeling SDK plug-
ins in the current release cycle. Notes are in tools/modeling/plugins/org.opendds.modeling.help/html/
gettingstarted/maintopic.html (View as HTML). Version numbers are updated by running tools/modeling/
update_version.pl.

Generate the Modeling SDK Eclipse update site

Our convention recently has been to only update these if changes have been made to the Modeling SDK plugins in the
current release cycle.

Follow all the steps in tools/modeling/features/org.opendds.modeling.site/README.txt The step dealing
with version numbers is already taken care of by the above section “Update the Modeling SDK version numbers and
release notes”. The result of this process is adding the update site contents to the repository for http://www.opendds.org
(which will be synced to the live site in the steps below).

Update the opendds.org Website

The www.opendds.org website is hosted by GitHub as special branch named gh-pages in the OpenDDS repository.
The website is updated when changes are pushed to that branch. To do this follow these steps:

• Clone the OpenDDS repository and checkout the branch named website-next-release to make changes to
website source files This branch is used instead of gh-pages to hold changes that shouldn’t be public until the
release is made. When the release script runs it has a step for merging website-next-release into gh-pages.

git clone -b gh-pages git@github.com:OpenDDS/OpenDDS.git website
cd website
git checkout -B website-next-release

• To have Jekyll generate and serve gh-pages website locally in order to validate website changes:

– You will need to have Ruby and bundler installed.

– Run the commands:

bundle install
bundle exec jekyll serve

– This will generate the website from the Jekyll source files and serve the generated website on localhost port
TCP/4000

See also:

The gh-pages README
Detailed instructions

3.7. Release Process 369

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/README.md
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/README
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/java/INSTALL
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/plugins/org.opendds.modeling.help/html/gettingstarted/maintopic.html
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/plugins/org.opendds.modeling.help/html/gettingstarted/maintopic.html
https://htmlpreview.github.io/?https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/plugins/org.opendds.modeling.help/html/gettingstarted/maintopic.html
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/update_version.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/update_version.pl
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/modeling/features/org.opendds.modeling.site/README.txt
http://www.opendds.org
https://www.ruby-lang.org/en/documentation/installation
http://bundler.io
https://github.com/OpenDDS/OpenDDS/blob/gh-pages/README.md


OpenDDS, Release 3.28.1

Testing your GitHub Pages site locally with Jekyll
Official GitHub tutorial

• Update the website source files and commit local changes to the website-next-release branch.

• Push local website-next-release branch changes to the central repository or your forked repository

• If using a forked repo, generate a pull request for the website-next-release branch to get the changes in to
the central OpenDDS/OpenDDS repository.

The release script will merge website-next-release into gh-pages on the OpenDDS/OpenDDS repository during
the release process.

Check if GHA Workflows need Updating

Note: This should only be done for the latest release.

For non-micro releases, if the release workflows haven’t been updated in a while, manually trigger them to make sure
they work. If any don’t, then make changes as necessary.

For micro releases check to see if the workflows have been updated on master and backport those changes to the release
series branch. Then manually trigger them to make sure they work.

The workflows are:

• Shapes Demo: (file), (runs),

• OMG RTPS interoperability test: (file), (runs),

These will be triggered by the release script, then must be uploaded after release.

3.7.3 Making a Release

The release script (tools/scripts/gitrelease.pl) performs or validates the release steps. All the steps can be
listed using the --list-all option. The steps that would be ran with the full set arguments can be listed with the
--list options. By default it will try to run all the steps it can or you can run an arbitrary subset of the steps using the
--steps option. Some manual steps are required. It will make modifications to the repository of the current working
directory while using a directory of your choosing for intermediate and release files.

Before Running the Release Script

• Release Script Prerequisites:

– Commands available:

* md5sum and sha256sum

* zip, unzip, and zipinfo

* Git version 2.5 or later

* Python 3 for News Generation

– Your GitHub account meets the following requirements:

* It has been added as a member of the OpenDDS organization with the appropriate permissions.

* It has permissions to update the release artifacts for the OMG RTPS Interop repo for Upload Artifacts
from Release Workflows.

370 Chapter 3. Internal Documentation

https://docs.github.com/en/pages/setting-up-a-github-pages-site-with-jekyll/testing-your-github-pages-site-locally-with-jekyll
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/ishapes.yml
https://github.com/OpenDDS/OpenDDS/actions/workflows/ishapes.yml
https://github.com/omg-dds/dds-rtps
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/.github/workflows/dds-rtps.yml
https://github.com/OpenDDS/OpenDDS/actions/workflows/dds-rtps.yml
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/scripts/gitrelease.pl
https://github.com/OpenDDS
https://github.com/omg-dds/dds-rtps


OpenDDS, Release 3.28.1

* You have uploaded your SSH public key to your GitHub account

* You have created a Personal Access Token for your GitHub account

– You are a maintainer on the OpenDDS Read the Docs project.

* Maintainers can add new maintainers here.

* You will need a API token.

– The following Perl CPAN modules are required (Perl core modules should not be listed here):

* Pithub

* Net::SFTP::Foreign

* Time::Piece

* LWP::UserAgent

* LWP::Protocol::https

To install them run:

cpan -T -i Pithub Net::SFTP::Foreign Time::Piece LWP::UserAgent␣
→˓LWP::Protocol::https

• Choose a directory for the WORKSPACE argument. It doesn’t have to exist but the release script must be able to
create it if it doesn’t. It should not contain files created by previous release (mocked or otherwise).

• You should start a new clone of the OpenDDS repository for just for this release. That clone shouldn’t be inside
the directory being passed as WORKSPACE.

git clone git@github.com:OpenDDS/OpenDDS.git

For micro releases, check out the relevant branch that the release will come from and pass --branch=BRANCH
along with the --micro argument.

• Set tokens the release script needs to interact with web services by exporting them as environment variables.
These are GITHUB_TOKEN for your GitHub Personal Access Token and READ_THE_DOCS_TOKEN for your Read
the Docs API token as shown below:

export GITHUB_TOKEN=ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00
export READ_THE_DOCS_TOKEN=ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00

Running the Release Script

The release script is located at tools/scripts/gitrelease.pl and should be ran from the root of the repo. (See
above note in mock releases for the exception) There are two required arguments, the WORKSPACE and VERSION argu-
ments:

• WORKSPACE is the directory where the script will place all intermediate files. If it doesn’t exist the script will try
to create it for you. This should be different for different releases of OpenDDS.

• VERSION is the version to release.

Run the script with just the required arguments to validate each step of the process. It will stop at the first error and
give you instructions of what to do. In most cases --remedy should be used to continue.

When the script wants to commit something, it will show you the git diff. Press q and it will ask you for confirmation
that it’s okay to commit it.

3.7. Release Process 371

https://help.github.com/articles/generating-an-ssh-key
https://help.github.com/articles/creating-an-access-token-for-command-line-use/
https://readthedocs.org/projects/opendds/
https://readthedocs.org/dashboard/opendds/users/
https://readthedocs.org/accounts/tokens/
http://www.cpan.org/modules/INSTALL.html
https://perldoc.perl.org/modules
https://metacpan.org/pod/Pithub
https://metacpan.org/pod/Net::SFTP::Foreign
https://metacpan.org/pod/Time::Piece
https://metacpan.org/pod/LWP::UserAgent
https://metacpan.org/pod/LWP::Protocol::https
https://help.github.com/articles/creating-an-access-token-for-command-line-use/
https://readthedocs.org/accounts/tokens/
https://readthedocs.org/accounts/tokens/
https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/tools/scripts/gitrelease.pl


OpenDDS, Release 3.28.1

The most important options are:

• --list, which lists the steps with their number and description

• --remedy, which tells the release script to attempt to resolve issues with the release

• --steps, which will specify the steps to run If one of the steps isn’t verifying correctly, but you already manually
fixed it, you can skip the step by passing --step ^STEP where STEP is the step you want to skip. You can also
skip whole ranges of the steps. See --help for the notation it accepts.

• --micro, which excludes the steps that probably are not desired when doing a micro release and requires
--branch.

Run perl tools/scripts/gitrelease.pl --help to see the full help.

Here is an example of what to run for a version 1.0.0 release command assuming that the release script can take care
of everything for us:

tools/scripts/gitrelease.pl ../1.0.0-release-workspace 1.0.0 --remedy

Micro Releases

The release script has a --micro option which skips steps that probably are not relevant to micro releases. You must
pass the --branch argument as you should be on the release branch for the minor release. As of writing these steps
skipped are:

• Merging website-next-release with gh-pages

Some other notes about using --micro:

• The notation of the version argument has no effect on if the script is doing a micro release.

• Steps are skipped if they are one of the ones listed above, even if that step number is the only one explicitly passed
in.

Otherwise the script should behave the same way.

Here is an example of what to run for a version 1.0.1 release assuming that the release script can take care of everything
for us:

git checkout branch-DDS-1.0
tools/scripts/gitrelease.pl ../1.0.1-release-workspace 1.0.1 --micro --branch=branch-DDS-
→˓1.0 --remedy

Doing Mock Releases with the Release Script

It is possible to do a mock release where basically everything is tested, but the script will make sure it’s not making
any real changes to the real thing. To set this up, you must do the following:

• Fork OpenDDS on GitHub.

– To avoid conflicts with regular work on a fork you might already have, it’s recommended to create a new
organization for this purpose and create a token for the repository just like for an actual release. Pass the
organization name using --github-user.

– This can be skipped if code involving GitHub doesn’t need to be tested and --skip-github is passed.

• Pass --mock. This actually isn’t absolutely necessary, but it is useful as it does some basic checks to make sure
the mock release won’t interfere with the actual releases.

372 Chapter 3. Internal Documentation



OpenDDS, Release 3.28.1

It’s possible to use and edit gitrelease.pl without having to commit changes to it for a mock release if you use two
repos. One repo, lets call it $MOCK_ROOT, is the one cloned from the mock organization mentioned in the previous
instructions and is where the release is going to happen. The other, $WORKING_ROOT, is a normal repo where you
can edit gitrelease.pl and other files and push changes to your normal GitHub fork. Running $WORKING_ROOT/
tools/scripts/gitrelease.pl from $MOCK_ROOT will work because gitrelease.pl does everything relative to
the current working directory. This also might be possible with git worktree instead of fully separate repos but this
hasn’t been tested.

After Running the Release Script

Test the release package

A simple test of Messenger will do. The git tag is already cloned for you as part of the release process.

Update News on Master

Note: This should only be done for the latest release that’s also a :ref:`micro release <release-micro-release>.

The news on the master branch has to be updated to account for the micro release. Updating the news consists of:

• Copy the micro release entry in NEWS.md.

• Copy the micro release file in docs/news.d/_releases.

• Remove the news fragments in docs/news.d for the PRs that were backported.

Upload Artifacts from Release Workflows

Note: This should only be done for the latest release.

The release script has steps that trigger release workflows on GitHub Actions and print out links to the runs.
After they have finished successfully, run the release script with the version and workspace arguments and the
--upload-artifacts option. If the workflows are still in progress it will say so and give the links again. If the
workflows were successful, it will download the artifacts, package them, and upload them to GitHub.

Remove Files Used for Release

Once everything is been finished, the repo and workspace directory used for release can usually be safely deleted.
Erring on the side of caution though, they could be kept around for at least a few days after the release to help rerun
steps if necessary or inspecting contents of the workspace directory for debugging purposes.

3.7. Release Process 373

https://github.com/OpenDDS/OpenDDS/blob/DDS-3.28.1/NEWS.md
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/news.d/_releases
https://github.com/OpenDDS/OpenDDS/tree/DDS-3.28.1/docs/news.d


OpenDDS, Release 3.28.1

374 Chapter 3. Internal Documentation



CHAPTER

FOUR

GLOSSARY

4.1 Common Terms

Adaptive Communication Environment
ACE

ACE is an open source C++ framework that is maintained alongside TAO and is extensively used by OpenDDS.
It provides a platform abstraction layer and various utilities such as reactors for event handing.

See ACE for more information.

Built-in Topics
BITs

Built-in Topics are topics that contain meta-information about local and remote DDS entites and the operational
status of OpenDDS.

See Built-in Topics for more information.

Common Data Representation
CDR
Extended Common Data Representation
XCDR

CDR is a family of binary encoding formats used by OpenDDS to serialize and deserialize samples. XCDR is
an extended form of CDR defined by the XTypes specification.

See Data Representation for more information.

Common Object Request Broker Architecture
CORBA

CORBA, put simply, is a set of specifications that allows a client to perform remote procedure calls on objects
held in a server. It is separate from DDS, but both are published by the OMG and make use of IDL and CDR.
TAO is a CORBA implementation that OpenDDS uses for InfoRepo discovery.

See https://www.corba.org/ for more information.

Condition
Conditions are a method of being notified of events from entities, such a new sample being available from a
DataReader, via a status that can be checked synchronously.

See Conditions and Listeners for more information.

Data Distribution Service
DDS

DDS is a specification for exchanging strongly-typed data across a distributed system. It is essentially synony-
mous with DCPS, but can specifically refer to the main DDS specification.

See Data Distribution Service (DDS) for Real-Time Systems for more information.

375

https://www.corba.org/


OpenDDS, Release 3.28.1

Data-Centric Publish-Subscribe
DCPS

DCPS is essentially synonymous with DDS, but can specifically refer to the API described in the main DDS
specification.

DataReader
A DataReader is an Entity that is used to read samples from a topic. DataReaders are created and managed by
Subscribers.

DataWriter
A DataWriter is an Entity that is used to write samples to a topic. DataWriters are created and managed by
Publishers.

Discovery
Discovery is the configurable method that DomainParticipants use to find one another.

See Discovery, Matching, and Association for more information.

Dispose
When an instance is disposed by a DataWriter, it means keeping the cached data related to it is no longer neces-
sary. This is done automatically if the instance is unregistered and autodispose_unregistered_instances
of Writer Data Lifecycle QoS is set to true. This can also be done manually using dispose method on
DataWriter.

Domain
Domains are sets of DomainParticipant that can interact with one another. To interact they must share the same
domain identifier and must have compatible discovery and transport.

DomainParticipant
DomainParticipant is an Entity that is used to create and manage Publishers and Subscribers.

Entity
Entity is the abstract base class for the main classes in the DDS/DCPS API, including DataReader and
DataWriter. All entities have QoS and can accept Listeners and Conditions.

Instance
In the specific context of DDS and samples, instances refer to a set of samples that share a common key value.
Many parts of the DDS API involve instances, including the dispose and unregister operations.

See Keys for more information.

Interface Definition Language
IDL

IDL, specifically OMG IDL, is a C-like language for describing data-structures and interfaces. In OpenDDS
opendds_idl and tao_idl are used to generate code from IDL.

Listener
Listeners are a method of being notified of events from entities, such a new sample being available from a
DataReader, via asynchronous callbacks.

See Conditions and Listeners for more information.

Makefile, Project, and Workspace Creator
MPC
mwc.pl
mpc.pl

A build-system that generates GNU Makefiles, Visual Studio projects, and other such files. It serves the same
role that CMake, Meson, and Automake do in other projects.

See MPC for more information.

376 Chapter 4. Glossary



OpenDDS, Release 3.28.1

Object Management Group
OMG

A standards organization which publishes DDS and the other specifications used by OpenDDS.

See https://www.omg.org/ for more information.

opendds_idl
A program that generates C++ code from IDL for use in OpenDDS.

Publisher
Publisher is an Entity that is used to create and manage DataWriters.

Quality of Service
QoS

QoS is a set of requested policies for how entities should behave.

See Quality of Service for more information.

Real-time Publish-Subscribe
RTPS

RTPS, sometimes also called DDSI-RTPS, is a specification that defines how different DDS implementations can
interact with one another.

See Real-time Publish-Subscribe (RTPS) for more information.

Sample
Samples are the messages sent from DataWriters and received by DataReaders.

Subscriber
Subscriber is an Entity that is used to create and manage DataReaders.

tao_idl
A program that is part of TAO that generates C++ code from IDL for use in TAO and OpenDDS.

The ACE ORB
TAO

TAO is a CORBA implementation that is maintained alongside ACE. OpenDDS uses it for InfoRepo discovery
and tao_idl.

See TAO for more information.

Topic
A Topic is an Entity with a name and a type that the system uses to figure out which DataReaders get a sample
from a DataWriter.

Topic type
A topic type, sometimes also called a data type, is the IDL type of a topic and also type of the samples of the
DataWriters and DataReaders that use that topic.

Transport
Transports are the configurable methods that DataWriters and DataReaders use to communicate.

Unregister
When an instance is unregistered by a DataWriter, it means the writer “no longer has ‘anything to say’ about
the instance”, as phrased by the DDS specification. This is similar, but separate from disposing an instance.
They are usually done at the same time, but this can be changed using Writer Data Lifecycle QoS and the
unregister_instance method of DataWriter to make what unregister means application-defined.

XTypes
Extensible and Dynamic Topic Types for DDS

XTypes is an OMG specification that defines how DDS systems can have topic types that can evolve over time
and be used without defining IDL.

4.1. Common Terms 377

https://www.omg.org/


OpenDDS, Release 3.28.1

See Extensible and Dynamic Topic Types for DDS (XTypes) and XTypes for more information.

4.2 Environment Variables

ACE_ROOT

The path of the ACE source tree or installation prefix being used.

DDS_ROOT

The path of the OpenDDS source tree or installation prefix being used.

TAO_ROOT

The path of the TAO source tree or installation prefix being used.

OPENDDS_CONFIG_DIR

Makes -DCPSConfigFile paths relative to the path in the environment variable.

See here for more information.

Welcome to the documentation for OpenDDS 3.28.1!

OpenDDS is an open-source C++ framework for exchanging data in distributed systems. See What is OpenDDS? for
more information.

OpenDDS 3.28.1 is available for download on GitHub.

Looking for the documentation for another version of OpenDDS? The documentation for version 3.24.0 onwards is
hosted on Read the Docs. The Developer’s Guide PDFs for versions before 3.24.0 are available on GitHub. They are
attached to their corresponding releases as OpenDDS-VERSION.pdf.

378 Chapter 4. Glossary

https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.28.1
https://readthedocs.org/projects/opendds/
https://github.com/OpenDDS/OpenDDS/releases


CHAPTER

FIVE

USING OPENDDS

Quick Start Guides
Download and compile OpenDDS and then run an example application

Introduction to DDS
A conceptual overview of the Data Distribution Service

What is OpenDDS?
OpenDDS is an open-source DDS

Building and Installing
How to build and install OpenDDS

Getting Started
A tutorial on making basic OpenDDS applications

Much more information can be found in the Developer’s Guide

379



OpenDDS, Release 3.28.1

380 Chapter 5. Using OpenDDS



CHAPTER

SIX

OTHER DOCUMENTATION

Release Notes
What are the latest changes in OpenDDS?

Internal Documentation
Documentation for OpenDDS contributors

Glossary
A dictionary of common terms

genindex

381



OpenDDS, Release 3.28.1

382 Chapter 6. Other Documentation



INDEX

Symbols
:default: (directive option)

cfg:prop (directive), 335
:required: (directive option)

cfg:prop (directive), 335
-AllowEmptyPartition

RtpsRelay command line option, 284
-ApplicationDomain

RtpsRelay command line option, 284
-BufferSize

RtpsRelay command line option, 284
-Dname

opendds_idl command line option, 230
-Gequality

opendds_idl command line option, 231
-GfaceTS

opendds_idl command line option, 231
-Gitl

opendds_idl command line option, 231
-Governance

RtpsRelay command line option, 284
-Gv8

opendds_idl command line option, 231
-Gxtypes-complete

opendds_idl command line option, 231
-HorizontalAddres

RtpsRelay command line option, 283
-Id

RtpsRelay command line option, 283
-IdentityCA

RtpsRelay command line option, 284
-IdentityCertificate

RtpsRelay command line option, 284
-IdentityKey

RtpsRelay command line option, 284
-Idir

opendds_idl command line option, 231
-InactivePeriod

RtpsRelay command line option, 284
-Lc++11

opendds_idl command line option, 231
-Lface

opendds_idl command line option, 231
-Lifespan

RtpsRelay command line option, 284
-LogActivity

RtpsRelay command line option, 284
-LogDiscovery

RtpsRelay command line option, 284
-LogHandlerStatistics

RtpsRelay command line option, 285
-LogParticipantStatistics

RtpsRelay command line option, 285
-LogRelayStatistics

RtpsRelay command line option, 284
-LogThreadStatus

RtpsRelay command line option, 285
-LogWarnings

RtpsRelay command line option, 284
-Lspcpp

opendds_idl command line option, 231
-MaxIpsPerClient

RtpsRelay command line option, 285
-MetaDiscoveryAddress

RtpsRelay command line option, 285
-MetaDiscoveryContent

RtpsRelay command line option, 285
-MetaDiscoveryContentPath

RtpsRelay command line option, 285
-MetaDiscoveryContentType

RtpsRelay command line option, 285
-Permissions

RtpsRelay command line option, 284
-PermissionsCA

RtpsRelay command line option, 284
-PublishHandlerStatistics

RtpsRelay command line option, 285
-PublishParticipantStatistics

RtpsRelay command line option, 285
-PublishRelayStatistics

RtpsRelay command line option, 285
-PublishRelayStatus

RtpsRelay command line option, 285
-PublishRelayStatusLiveliness

383



OpenDDS, Release 3.28.1

RtpsRelay command line option, 285
-RejectedAddressDuration

RtpsRelay command line option, 285
-RelayDomain

RtpsRelay command line option, 284
-RestartDetection

RtpsRelay command line option, 284
-St

opendds_idl command line option, 231
-ThreadStatusSafetyFactor

RtpsRelay command line option, 285
-UserData

RtpsRelay command line option, 284
-UtilizationLimit

RtpsRelay command line option, 285
-V

opendds_idl command line option, 230
-VerticalAddress

RtpsRelay command line option, 283
-Wb,export_include

opendds_idl command line option, 230
-Wb,export_macro

opendds_idl command line option, 230
-Wb,java

opendds_idl command line option, 231
-Wb,pch_include

opendds_idl command line option, 230
-Wb,tao_include_prefix

opendds_idl command line option, 231
--default-autoid

opendds_idl command line option, 232
--default-enum-extensibility-zero

opendds_idl command line option, 232
--default-extensibility

opendds_idl command line option, 232
--default-try-construct

opendds_idl command line option, 232
--domain

node_controller command line option, 366
test_controller command line option, 365

--help
opendds_idl command line option, 230

--idl-version
opendds_idl command line option, 230

--json-result-id
test_controller command line option, 366

--list-idl-versions
opendds_idl command line option, 230

--log
worker command line option, 367

--name
node_controller command line option, 366

--no-dcps-data-type-warnings
opendds_idl command line option, 231

--old-typeobject-encoding
opendds_idl command line option, 232

--old-typeobject-member-order
opendds_idl command line option, 232

--override-create-time
test_controller command line option, 365

--override-start-time
test_controller command line option, 365

--report
worker command line option, 367

--syntax-only
opendds_idl command line option, 230

--tag
test_controller command line option, 365

--timeout
test_controller command line option, 365

--unknown-annotations
opendds_idl command line option, 231

--version
opendds_idl command line option, 230

--wait-for-nodes
test_controller command line option, 365

--[no-]default-nested
opendds_idl command line option, 232

-h
opendds_idl command line option, 230

-o
opendds_idl command line option, 231

-v
opendds_idl command line option, 230

A
ACE, 375
ACE::ACE (CMake target), 60
ACE::ace_gperf (CMake target), 60
ACE::XML_Utils (CMake target), 60
ACE_ROOT, 67, 87, 350
acetaorel (role), 330
active_conn_timeout_period (config property)

transport (tcp config section), 209
Adaptive Communication Environment, 375
advertised_address (config property)

transport (rtps_udp config section), 217
ALWAYS_GENERATE_LIB_EXPORT_HEADER

opendds_target_sources, 61
ARG

opendds_cmake_function, 333
async_send (config property)

transport (multicast config section), 215
AuthResendPeriod (config property)

rtps_discovery (config section), 187
AUTO_LINK

opendds_target_sources, 62

384 Index



OpenDDS, Release 3.28.1

B
BITs, 375
Built-in Topics, 375

C
CDR, 375
cfg:prop (directive), 334

:default: (directive option), 335
:required: (directive option), 335

cfg:prop (role), 335
cfg:sec (directive), 334
cfg:sec (role), 334
cfg:val (directive), 335
cfg:val (role), 335
ChangePasswordPeriod (config property)

ice (config section), 223
ChecklistPeriod (config property)

ice (config section), 222
CheckSourceIp (config property)

rtps_discovery (config section), 189
cmake:func (directive), 332
cmake:func (role), 333
cmake:func:arg (directive), 333
cmake:prop (directive), 333
cmake:prop (role), 334
cmake:tgt (directive), 334
cmake:tgt (role), 334
cmake:var (directive), 333
cmake:var (role), 333
common (config section), 164

DCPSBidirGIOP (config property), 164
DCPSBit (config property), 164
DCPSBitLookupDurationMsec (config property),

164
DCPSBitTransportIPAddress (config property),

165
DCPSBitTransportPort (config property), 165
DCPSChunkAssociationMultiplier (config

property), 165
DCPSChunks (config property), 165
DCPSDebugLevel (config property), 166
DCPSDefaultAddress (config property), 166
DCPSDefaultDiscovery (config property), 166
DCPSGlobalTransportConfig (config property),

167
DCPSInfoRepo (config property), 167
DCPSLivelinessFactor (config property), 167
DCPSLogLevel (config property), 167
DCPSMonitor (config property), 168
DCPSPendingTimeout (config property), 168
DCPSPersistentDataDir (config property), 168
DCPSPublisherContentFilter (config property),

169
DCPSSecurity (config property), 169

DCPSSecurityDebug (config property), 169
DCPSSecurityDebugLevel (config property), 169
DCPSSecurityFakeEncryption (config property),

169
DCPSThreadStatusInterval (config property),

170
DCPSTransportDebugLevel (config property), 170
DCPSTypeObjectEncoding (config property), 170
ORBLogFile (config property), 170
ORBVerboseLogging (config property), 171
pool_granularity (config property), 171
pool_size (config property), 171
Scheduler (config property), 171
scheduler_slice (config property), 172

Common Data Representation, 375
Common Object Request Broker Architecture,

375
Condition, 375
config (config property)

endpoint (config section), 201
config (config section), 206

passive_connect_duration (config property),
206

swap_bytes (config property), 206
transports (config property), 206

CONFIG_PATH
test_controller command line option, 365

conn_retry_attempts (config property)
transport (tcp config section), 209

conn_retry_backoff_multiplier (config property)
transport (tcp config section), 210

conn_retry_initial_delay (config property)
transport (tcp config section), 209

ConnectivityCheckTTL (config property)
ice (config section), 222

CORBA, 375
Customization (config property)

DomainRange (config section), 224
transport_template (config section), 225

Customization (config section), 225
InteropMulticastOverride (config property),

226
multicast_group_address (config property), 225

D
D0 (config property)

rtps_discovery (config section), 182
D1 (config property)

rtps_discovery (config section), 182
daemon

node_controller command line option, 366
daemon-exit-on-error

node_controller command line option, 366
Data Distribution Service, 375

Index 385



OpenDDS, Release 3.28.1

Data-Centric Publish-Subscribe, 376
datalink_control_chunks (config property)

transport (config section), 208
datalink_control_size (config property)

transport (shmem config section), 221
datalink_release_delay (config property)

transport (config section), 208
DataReader, 376
datareaderqos (config property)

endpoint (config section), 200
datareaderqos (config section), 195

deadline.period.nanosec (config property), 195
deadline.period.sec (config property), 195
destination_order.kind (config property), 196
durability.kind (config property), 195
history.depth (config property), 196
history.kind (config property), 196
latency_budget.duration.nanosec (config

property), 195
latency_budget.duration.sec (config prop-

erty), 195
liveliness.kind (config property), 195
liveliness.lease_duration.nanosec (config

property), 196
liveliness.lease_duration.sec (config prop-

erty), 195
reader_data_lifecycle.autopurge_dispose_samples_delay.nanosec

(config property), 198
reader_data_lifecycle.autopurge_dispose_samples_delay.sec

(config property), 198
reader_data_lifecycle.autopurge_nowriter_samples_delay.nanosec

(config property), 198
reader_data_lifecycle.autopurge_nowriter_samples_delay.sec

(config property), 197
reliability.kind (config property), 196
reliability.max_blocking_time.nanosec

(config property), 196
reliability.max_blocking_time.sec (config

property), 196
resource_limits.max_instances (config prop-

erty), 197
resource_limits.max_samples (config prop-

erty), 197
resource_limits.max_samples_per_instance

(config property), 197
time_based_filter.minimum_separation.nanosec

(config property), 197
time_based_filter.minimum_separation.sec

(config property), 197
DataRtpsRelayAddress (config property)

transport (rtps_udp config section), 219
DataStunServerAddress (config property)

transport (rtps_udp config section), 220
DataWriter, 376

datawriterqos (config property)
endpoint (config section), 200

datawriterqos (config section), 191
deadline.period.nanosec (config property), 192
deadline.period.sec (config property), 192
destination_order.kind (config property), 193
durability.kind (config property), 191
history.depth (config property), 193
history.kind (config property), 193
latency_budget.duration.nanosec (config

property), 192
latency_budget.duration.sec (config prop-

erty), 192
lifespan.duration.nanosec (config property),

194
lifespan.duration.sec (config property), 194
liveliness.kind (config property), 192
liveliness.lease_duration.nanosec (config

property), 192
liveliness.lease_duration.sec (config prop-

erty), 192
ownership.kind (config property), 194
ownership_strength.value (config property),

194
reliability.kind (config property), 193
reliability.max_blocking_time.nanosec

(config property), 193
reliability.max_blocking_time.sec (config

property), 193
resource_limits.max_instances (config prop-

erty), 194
resource_limits.max_samples (config prop-

erty), 193
resource_limits.max_samples_per_instance

(config property), 194
transport_priority.value (config property),

194
DCPS, 376
DCPSBidirGIOP (config property)

common (config section), 164
DCPSBit (config property)

common (config section), 164
DCPSBitLookupDurationMsec (config property)

common (config section), 164
DCPSBitTransportIPAddress (config property)

common (config section), 165
DCPSBitTransportPort (config property)

common (config section), 165
DCPSChunkAssociationMultiplier (config property)

common (config section), 165
DCPSChunks (config property)

common (config section), 165
DCPSDebugLevel (config property)

common (config section), 166

386 Index



OpenDDS, Release 3.28.1

DCPSDefaultAddress (config property)
common (config section), 166

DCPSDefaultDiscovery (config property)
common (config section), 166

DCPSGlobalTransportConfig (config property)
common (config section), 167

DCPSInfoRepo (config property)
common (config section), 167

DCPSLivelinessFactor (config property)
common (config section), 167

DCPSLogLevel (config property)
common (config section), 167

DCPSMonitor (config property)
common (config section), 168

DCPSPendingTimeout (config property)
common (config section), 168

DCPSPersistentDataDir (config property)
common (config section), 168

DCPSPublisherContentFilter (config property)
common (config section), 169

DCPSSecurity (config property)
common (config section), 169

DCPSSecurityDebug (config property)
common (config section), 169

DCPSSecurityDebugLevel (config property)
common (config section), 169

DCPSSecurityFakeEncryption (config property)
common (config section), 169

DCPSThreadStatusInterval (config property)
common (config section), 170

DCPSTransportDebugLevel (config property)
common (config section), 170

DCPSTypeObjectEncoding (config property)
common (config section), 170

DDS, 375
DDS_ROOT, 13, 44, 350, 354
deadline.period.nanosec (config property)

datareaderqos (config section), 195
datawriterqos (config section), 192

deadline.period.sec (config property)
datareaderqos (config section), 195
datawriterqos (config section), 192

default_to_ipv6 (config property)
transport (multicast config section), 212

DefaultTransportConfig (config property)
domain (config section), 174

DeferredTriggeredCheckTTL (config property)
ice (config section), 223

DEST
opendds_install_interface_files, 65

destination_order.kind (config property)
datareaderqos (config section), 196
datawriterqos (config section), 193

DG (config property)

rtps_discovery (config section), 181
DIR

opendds_export_header, 64
Discovery, 376
DiscoveryConfig (config property)

domain (config section), 174
DiscoveryTemplate (config property)

DomainRange (config section), 224
Dispose, 376
Domain, 376
domain (config property)

endpoint (config section), 199
domain (config section), 174

DefaultTransportConfig (config property), 174
DiscoveryConfig (config property), 174
DomainId (config property), 174
DomainRepoKey (config property), 174

DomainId (config property)
domain (config section), 174

DomainParticipant, 376
DomainRange (config section), 224

Customization (config property), 224
DiscoveryTemplate (config property), 224

DomainRepoKey (config property)
domain (config section), 174

durability.kind (config property)
datareaderqos (config section), 195
datawriterqos (config section), 191

DX (config property)
rtps_discovery (config section), 182

E
enable_nagle_algorithm (config property)

transport (tcp config section), 210
endpoint (config section), 199

config (config property), 201
datareaderqos (config property), 200
datawriterqos (config property), 200
domain (config property), 199
entity (config property), 200
participant (config property), 199
publisherqos (config property), 200
subscriberqos (config property), 201
topic (config property), 200
type (config property), 200

Entity, 376
entity (config property)

endpoint (config section), 200
environment variable

ACE_ROOT, 67, 87, 350, 378
DDS_ROOT, 13, 44, 350, 354, 378
OPENDDS_CONFIG_DIR, 163, 378
TAO_ROOT, 67, 87, 378

EXPORT_HEADER_DIR

Index 387



OpenDDS, Release 3.28.1

opendds_target_sources, 61
Extended Common Data Representation, 375
Extensible and Dynamic Topic Types for DDS,

377
EXTRA_GENERATED_FILES

opendds_install_interface_files, 65

G
GENERATE_SERVER_SKELETONS

opendds_target_sources, 62
ghfile (role), 329
ghissue (role), 329
ghpr (role), 330
ghrelease (role), 330
group_address (config property)

transport (multicast config section), 213
GuidInterface (config property)

rtps_discovery (config section), 185

H
heartbeat_period (config property)

transport (rtps_udp config section), 218
history.depth (config property)

datareaderqos (config section), 196
datawriterqos (config section), 193

history.kind (config property)
datareaderqos (config section), 196
datawriterqos (config section), 193

host_name (config property)
transport (shmem config section), 222

I
ice (config section), 222

ChangePasswordPeriod (config property), 223
ChecklistPeriod (config property), 222
ConnectivityCheckTTL (config property), 222
DeferredTriggeredCheckTTL (config property),

223
IndicationPeriod (config property), 223
NominatedTTL (config property), 223
ServerReflexiveAddressPeriod (config prop-

erty), 223
ServerReflexiveIndicationCount (config

property), 223
Ta (config property), 222

IDL, 376
INCLUDE_BASE

opendds_install_interface_files, 65
opendds_target_sources, 62

IndicationPeriod (config property)
ice (config section), 223

Instance, 376
instantiation_rule (config property)

transport_template (config section), 224

Interface Definition Language, 376
InteropMulticastOverride (config property)

Customization (config section), 226
rtps_discovery (config section), 185

ipv6_advertised_address (config property)
transport (rtps_udp config section), 218

ipv6_local_address (config property)
transport (rtps_udp config section), 217

ipv6_multicast_group_address (config property)
transport (rtps_udp config section), 217

L
latency_budget.duration.nanosec (config prop-

erty)
datareaderqos (config section), 195
datawriterqos (config section), 192

latency_budget.duration.sec (config property)
datareaderqos (config section), 195
datawriterqos (config section), 192

LeaseDuration (config property)
rtps_discovery (config section), 181

LeaseExtension (config property)
rtps_discovery (config section), 181

lifespan.duration.nanosec (config property)
datawriterqos (config section), 194

lifespan.duration.sec (config property)
datawriterqos (config section), 194

Listener, 376
liveliness.kind (config property)

datareaderqos (config section), 195
datawriterqos (config section), 192

liveliness.lease_duration.nanosec (config prop-
erty)

datareaderqos (config section), 196
datawriterqos (config section), 192

liveliness.lease_duration.sec (config property)
datareaderqos (config section), 195
datawriterqos (config section), 192

local_address (config property)
transport (multicast config section), 213
transport (rtps_udp config section), 217
transport (tcp config section), 210
transport (udp config section), 212

M
Makefile, Project, and Workspace Creator, 376
max_message_size (config property)

transport (rtps_udp config section), 219
max_output_pause_period (config property)

transport (tcp config section), 211
max_packet_size (config property)

transport (config section), 207
max_samples_per_packet (config property)

transport (config section), 207

388 Index



OpenDDS, Release 3.28.1

MaxAuthTime (config property)
rtps_discovery (config section), 187

MaxParticipantsInAuthentication (config prop-
erty)

rtps_discovery (config section), 188
MaxSpdpSequenceMsgResetChecks (config property)

rtps_discovery (config section), 184
MinResendDelay (config property)

rtps_discovery (config section), 180
MPC, 376
mpc.pl, 376
multicast_group_address (config property)

Customization (config section), 225
transport (rtps_udp config section), 217

multicast_interface (config property)
transport (rtps_udp config section), 217

MulticastInterface (config property)
rtps_discovery (config section), 185

mwc.pl, 376

N
nak_delay_intervals (config property)

transport (multicast config section), 213
nak_depth (config property)

transport (multicast config section), 213
transport (rtps_udp config section), 218

nak_interval (config property)
transport (multicast config section), 213

nak_max (config property)
transport (multicast config section), 213

nak_response_delay (config property)
transport (rtps_udp config section), 218

nak_timeout (config property)
transport (multicast config section), 214

name (config property)
topic (config section), 191

node_controller command line option
--domain, 366
--name, 366
daemon, 366
daemon-exit-on-error, 366
one-shot, 366

NominatedTTL (config property)
ice (config section), 223

O
Object Management Group, 377
OMG, 377
omgissue (role), 330
omgspec (role), 331
one-shot

node_controller command line option, 366
OpenDDS::Dcps (CMake target), 59
OpenDDS::dcpsinfo_dump (CMake target), 60

OpenDDS::DCPSInfoRepo (CMake target), 60
OpenDDS::InfoRepoDiscovery (CMake target), 59
OpenDDS::inspect (CMake target), 60
OpenDDS::Multicast (CMake target), 59
OpenDDS::opendds_idl (CMake target), 60
OpenDDS::repoctl (CMake target), 61
OpenDDS::Rtps (CMake target), 59
OpenDDS::Rtps_Udp (CMake target), 59
OpenDDS::RtpsRelay (CMake target), 60
OpenDDS::RtpsRelayLib (CMake target), 59
OpenDDS::Security (CMake target), 59
OpenDDS::Shmem (CMake target), 59
OpenDDS::Tcp (CMake target), 59
OpenDDS::Udp (CMake target), 59
OPENDDS_ACE, 67
OPENDDS_ACE_TAO_GIT, 94
OPENDDS_ACE_TAO_GIT_REPO, 95
OPENDDS_ACE_TAO_GIT_TAG, 95
OPENDDS_ACE_TAO_HOST_TOOLS, 67
OPENDDS_ACE_TAO_KIND, 94
OPENDDS_ACE_TAO_SRC, 94
OPENDDS_ACE_VERSION, 67
OPENDDS_ALL_GENERATED_INTERFACE_FILES

opendds_target_sources, 63
OPENDDS_ALL_IDL_INTERFACE_FILES

opendds_target_sources, 63
OPENDDS_ALL_INTERFACE_FILES

opendds_target_sources, 64
OPENDDS_ALWAYS_GENERATE_LIB_EXPORT_HEADER, 66
OPENDDS_AUTO_LINK_DCPS, 66
OPENDDS_BOOTTIME_TIMERS, 95
OPENDDS_BUILD_EXAMPLES, 95
OPENDDS_BUILD_TESTS, 95
OPENDDS_BUILT_IN_TOPICS, 68
opendds_cmake_function

ARG, 333
target, 332

OPENDDS_CMAKE_VERBOSE, 65
OPENDDS_COMPILE_WARNINGS, 95
OPENDDS_CONFIG_DIR, 163
OPENDDS_CONTENT_FILTERED_TOPIC, 69
OPENDDS_CONTENT_SUBSCRIPTION, 68
OPENDDS_CXX11, 68
OPENDDS_CXX_STD, 68
OPENDDS_DEBUG, 68
OPENDDS_DEFAULT_NESTED, 65
OPENDDS_DEFAULT_SCOPE, 66
opendds_export_header, 64

DIR, 64
USE_EXPORT_VAR, 64

OPENDDS_FILENAME_ONLY_INCLUDES, 65
OPENDDS_GENERATED_DIRECTORY

opendds_target_sources, 63
OPENDDS_GENERATED_HEADER_FILES

Index 389



OpenDDS, Release 3.28.1

opendds_target_sources, 63
OPENDDS_GENERATED_IDL_INTERFACE_FILES

opendds_target_sources, 63
opendds_get_library_dependencies, 64
OPENDDS_GTEST, 67
OPENDDS_HOST_TOOLS, 67
opendds_idl, 377
opendds_idl command line option

-Dname, 230
-Gequality, 231
-GfaceTS, 231
-Gitl, 231
-Gv8, 231
-Gxtypes-complete, 231
-Idir, 231
-Lc++11, 231
-Lface, 231
-Lspcpp, 231
-St, 231
-V, 230
-Wb,export_include, 230
-Wb,export_macro, 230
-Wb,java, 231
-Wb,pch_include, 230
-Wb,tao_include_prefix, 231
--default-autoid, 232
--default-enum-extensibility-zero, 232
--default-extensibility, 232
--default-try-construct, 232
--help, 230
--idl-version, 230
--list-idl-versions, 230
--no-dcps-data-type-warnings, 231
--old-typeobject-encoding, 232
--old-typeobject-member-order, 232
--syntax-only, 230
--unknown-annotations, 231
--version, 230
--[no-]default-nested, 232
-h, 230
-o, 231
-v, 230

OPENDDS_IDL_OPTIONS
opendds_target_sources, 61

OPENDDS_INLINE, 68
opendds_install_interface_files, 64

DEST, 65
EXTRA_GENERATED_FILES, 65
INCLUDE_BASE, 65

OPENDDS_JAVA, 67
OPENDDS_JUST_BUILD_HOST_TOOLS, 94
OPENDDS_LANGUAGE_MAPPINGS

opendds_target_sources, 62
OPENDDS_MPC, 95

OPENDDS_MPC_GIT, 95
OPENDDS_MPC_GIT_REPO, 95
OPENDDS_MPC_GIT_TAG, 95
OPENDDS_MULTI_TOPIC, 69
OPENDDS_OBJECT_MODEL_PROFILE, 68
OPENDDS_OPENSSL, 67
OPENDDS_OPTIMIZE, 68
OPENDDS_OWNERSHIP_KIND_EXCLUSIVE, 68
OPENDDS_OWNERSHIP_PROFILE, 68
OPENDDS_PASSED_IDL_INTERFACE_FILES

opendds_target_sources, 63
OPENDDS_PERSISTENCE_PROFILE, 68
OPENDDS_QT, 67
OPENDDS_QUERY_CONDITION, 69
OPENDDS_RAPIDJSON, 67
OPENDDS_SAFETY_PROFILE, 69
OPENDDS_SECURITY, 69
OPENDDS_STATIC, 68
OPENDDS_SUPPRESS_ANYS, 66
OPENDDS_TAO, 67
OPENDDS_TAO_IIOP, 68
OPENDDS_TAO_OPTIMIZE_COLLOCATED_INVOCATIONS,

68
OPENDDS_TAO_VERSION, 67
opendds_target_sources, 61

ALWAYS_GENERATE_LIB_EXPORT_HEADER, 61
AUTO_LINK, 62
EXPORT_HEADER_DIR, 61
GENERATE_SERVER_SKELETONS, 62
INCLUDE_BASE, 62
OPENDDS_ALL_GENERATED_INTERFACE_FILES, 63
OPENDDS_ALL_IDL_INTERFACE_FILES, 63
OPENDDS_ALL_INTERFACE_FILES, 64
OPENDDS_GENERATED_DIRECTORY, 63
OPENDDS_GENERATED_HEADER_FILES, 63
OPENDDS_GENERATED_IDL_INTERFACE_FILES, 63
OPENDDS_IDL_OPTIONS, 61
OPENDDS_LANGUAGE_MAPPINGS, 62
OPENDDS_PASSED_IDL_INTERFACE_FILES, 63
SKIP_OPENDDS_IDL, 62
SKIP_TAO_IDL, 62
SUPPRESS_ANYS, 61
TAO_IDL_OPTIONS, 61
USE_EXPORT, 62
USE_VERSIONED_NAMESPACE, 62

OPENDDS_USE_CORRECT_INCLUDE_SCOPE, 66
OPENDDS_VERSIONED_NAMESPACE, 68
OPENDDS_WCHAR, 68
OPENDDS_XERCES3, 67
optimum_packet_size (config property)

transport (config section), 208
ORBLogFile (config property)

common (config section), 170
ORBVerboseLogging (config property)

390 Index



OpenDDS, Release 3.28.1

common (config section), 171
ownership.kind (config property)

datawriterqos (config section), 194
ownership_strength.value (config property)

datawriterqos (config section), 194

P
participant (config property)

endpoint (config section), 199
partition.name (config property)

publisherqos (config section), 199
subscriberqos (config section), 199

passive_connect_duration (config property)
config (config section), 206

passive_reconnect_duration (config property)
transport (tcp config section), 211

PB (config property)
rtps_discovery (config section), 181

PeriodicDirectedSpdp (config property)
rtps_discovery (config section), 184

PG (config property)
rtps_discovery (config section), 181

pool_granularity (config property)
common (config section), 171

pool_size (config property)
common (config section), 171
transport (shmem config section), 221

port_offset (config property)
transport (multicast config section), 214

presentation.access_scope (config property)
publisherqos (config section), 198
subscriberqos (config section), 199

presentation.coherent_access (config property)
publisherqos (config section), 198
subscriberqos (config section), 199

presentation.ordered_access (config property)
publisherqos (config section), 198
subscriberqos (config section), 199

pub_address (config property)
transport (tcp config section), 211

Publisher, 377
publisherqos (config property)

endpoint (config section), 200
publisherqos (config section), 198

partition.name (config property), 199
presentation.access_scope (config property),

198
presentation.coherent_access (config prop-

erty), 198
presentation.ordered_access (config prop-

erty), 198
Python Enhancement Proposals

PEP 8, 326

Q
QoS, 377
Quality of Service, 377
QuickResendRatio (config property)

rtps_discovery (config section), 180

R
rcv_buffer_size (config property)

transport (multicast config section), 214
transport (rtps_udp config section), 219
transport (udp config section), 212

reader_data_lifecycle.autopurge_dispose_samples_delay.nanosec
(config property)

datareaderqos (config section), 198
reader_data_lifecycle.autopurge_dispose_samples_delay.sec

(config property)
datareaderqos (config section), 198

reader_data_lifecycle.autopurge_nowriter_samples_delay.nanosec
(config property)

datareaderqos (config section), 198
reader_data_lifecycle.autopurge_nowriter_samples_delay.sec

(config property)
datareaderqos (config section), 197

Real-time Publish-Subscribe, 377
receive_preallocated_data_blocks (config prop-

erty)
transport (config section), 209

receive_preallocated_message_blocks (config
property)

transport (config section), 208
RecvBufferSize (config property)

rtps_discovery (config section), 188
reliability.kind (config property)

datareaderqos (config section), 196
datawriterqos (config section), 193

reliability.max_blocking_time.nanosec (config
property)

datareaderqos (config section), 196
datawriterqos (config section), 193

reliability.max_blocking_time.sec (config prop-
erty)

datareaderqos (config section), 196
datawriterqos (config section), 193

reliable (config property)
transport (multicast config section), 214

repository (config section), 178
RepositoryIor (config property), 178
RepositoryKey (config property), 179

RepositoryIor (config property)
repository (config section), 178

RepositoryKey (config property)
repository (config section), 179

ResendPeriod (config property)
rtps_discovery (config section), 180

Index 391



OpenDDS, Release 3.28.1

resource_limits.max_instances (config property)
datareaderqos (config section), 197
datawriterqos (config section), 194

resource_limits.max_samples (config property)
datareaderqos (config section), 197
datawriterqos (config section), 193

resource_limits.max_samples_per_instance
(config property)

datareaderqos (config section), 197
datawriterqos (config section), 194

ResponsiveMode (config property)
transport (rtps_udp config section), 218

RFC
RFC 1149, 334, 340
RFC 2560, 281
RFC 5280, 281
RFC 5389, 286
RFC 8445, 286

RTPS, 377
rtps_discovery (config section), 180

AuthResendPeriod (config property), 187
CheckSourceIp (config property), 189
D0 (config property), 182
D1 (config property), 182
DG (config property), 181
DX (config property), 182
GuidInterface (config property), 185
InteropMulticastOverride (config property),

185
LeaseDuration (config property), 181
LeaseExtension (config property), 181
MaxAuthTime (config property), 187
MaxParticipantsInAuthentication (config

property), 188
MaxSpdpSequenceMsgResetChecks (config prop-

erty), 184
MinResendDelay (config property), 180
MulticastInterface (config property), 185
PB (config property), 181
PeriodicDirectedSpdp (config property), 184
PG (config property), 181
QuickResendRatio (config property), 180
RecvBufferSize (config property), 188
ResendPeriod (config property), 180
RtpsRelayOnly (config property), 186
SecureParticipantUserData (config property),

187
SedpAdvertisedLocalAddress (config property),

183
SedpHeartbeatPeriod (config property), 184
SedpLocalAddress (config property), 183
SedpMaxMessageSize (config property), 182
SedpMulticast (config property), 183
SedpNakResponseDelay (config property), 184

SedpPassiveConnectDuration (config property),
188

SedpReceivePreallocatedDataBlocks (config
property), 189

SedpReceivePreallocatedMessageBlocks
(config property), 189

SedpResponsiveMode (config property), 188
SedpRtpsRelayAddress (config property), 186
SedpSendDelay (config property), 183
SedpStunServerAddress (config property), 186
SendBufferSize (config property), 188
SpdpLocalAddress (config property), 183
SpdpRequestRandomPort (config property), 182
SpdpRtpsRelayAddress (config property), 185
SpdpRtpsRelaySendPeriod (config property), 185
SpdpSendAddrs (config property), 184
SpdpStunServerAddress (config property), 186
SpdpUserTag (config property), 189
TTL (config property), 185
TypeLookupServiceReplyTimeout (config prop-

erty), 187
UndirectedSpdp (config property), 184
UseIce (config property), 186
UseRtpsRelay (config property), 186
UseXTypes (config property), 187

RtpsRelay command line option
-AllowEmptyPartition, 284
-ApplicationDomain, 284
-BufferSize, 284
-Governance, 284
-HorizontalAddres, 283
-Id, 283
-IdentityCA, 284
-IdentityCertificate, 284
-IdentityKey, 284
-InactivePeriod, 284
-Lifespan, 284
-LogActivity, 284
-LogDiscovery, 284
-LogHandlerStatistics, 285
-LogParticipantStatistics, 285
-LogRelayStatistics, 284
-LogThreadStatus, 285
-LogWarnings, 284
-MaxIpsPerClient, 285
-MetaDiscoveryAddress, 285
-MetaDiscoveryContent, 285
-MetaDiscoveryContentPath, 285
-MetaDiscoveryContentType, 285
-Permissions, 284
-PermissionsCA, 284
-PublishHandlerStatistics, 285
-PublishParticipantStatistics, 285
-PublishRelayStatistics, 285

392 Index



OpenDDS, Release 3.28.1

-PublishRelayStatus, 285
-PublishRelayStatusLiveliness, 285
-RejectedAddressDuration, 285
-RelayDomain, 284
-RestartDetection, 284
-ThreadStatusSafetyFactor, 285
-UserData, 284
-UtilizationLimit, 285
-VerticalAddress, 283

RtpsRelayOnly (config property)
rtps_discovery (config section), 186
transport (rtps_udp config section), 219

S
Sample, 377
SCENARIO_NAME

test_controller command line option, 365
Scheduler (config property)

common (config section), 171
scheduler_slice (config property)

common (config section), 172
SecureParticipantUserData (config property)

rtps_discovery (config section), 187
SedpAdvertisedLocalAddress (config property)

rtps_discovery (config section), 183
SedpHeartbeatPeriod (config property)

rtps_discovery (config section), 184
SedpLocalAddress (config property)

rtps_discovery (config section), 183
SedpMaxMessageSize (config property)

rtps_discovery (config section), 182
SedpMulticast (config property)

rtps_discovery (config section), 183
SedpNakResponseDelay (config property)

rtps_discovery (config section), 184
SedpPassiveConnectDuration (config property)

rtps_discovery (config section), 188
SedpReceivePreallocatedDataBlocks (config prop-

erty)
rtps_discovery (config section), 189

SedpReceivePreallocatedMessageBlocks (config
property)

rtps_discovery (config section), 189
SedpResponsiveMode (config property)

rtps_discovery (config section), 188
SedpRtpsRelayAddress (config property)

rtps_discovery (config section), 186
SedpSendDelay (config property)

rtps_discovery (config section), 183
SedpStunServerAddress (config property)

rtps_discovery (config section), 186
send_buffer_size (config property)

transport (rtps_udp config section), 219
transport (udp config section), 212

send_delay (config property)
transport (rtps_udp config section), 218

SendBufferSize (config property)
rtps_discovery (config section), 188

ServerReflexiveAddressPeriod (config property)
ice (config section), 223

ServerReflexiveIndicationCount (config property)
ice (config section), 223

SKIP_OPENDDS_IDL
opendds_target_sources, 62

SKIP_TAO_IDL
opendds_target_sources, 62

SpdpLocalAddress (config property)
rtps_discovery (config section), 183

SpdpRequestRandomPort (config property)
rtps_discovery (config section), 182

SpdpRtpsRelayAddress (config property)
rtps_discovery (config section), 185

SpdpRtpsRelaySendPeriod (config property)
rtps_discovery (config section), 185

SpdpSendAddrs (config property)
rtps_discovery (config section), 184

SpdpStunServerAddress (config property)
rtps_discovery (config section), 186

SpdpUserTag (config property)
rtps_discovery (config section), 189

Subscriber, 377
subscriberqos (config property)

endpoint (config section), 201
subscriberqos (config section), 199

partition.name (config property), 199
presentation.access_scope (config property),

199
presentation.coherent_access (config prop-

erty), 199
presentation.ordered_access (config prop-

erty), 199
SUPPRESS_ANYS

opendds_target_sources, 61
swap_bytes (config property)

config (config section), 206
syn_backoff (config property)

transport (multicast config section), 214
syn_interval (config property)

transport (multicast config section), 215
syn_timeout (config property)

transport (multicast config section), 215

T
Ta (config property)

ice (config section), 222
TAO, 377
TAO::AnyTypeCode (CMake target), 60
TAO::BiDirGIOP (CMake target), 60

Index 393



OpenDDS, Release 3.28.1

TAO::CodecFactory (CMake target), 60
TAO::IDL_FE (CMake target), 60
TAO::ImR_Client (CMake target), 60
TAO::IORManip (CMake target), 60
TAO::IORTable (CMake target), 60
TAO::PI (CMake target), 60
TAO::PortableServer (CMake target), 60
TAO::Svc_Utils (CMake target), 60
TAO::TAO (CMake target), 60
TAO::tao_idl (CMake target), 60
TAO::Valuetype (CMake target), 60
tao_idl, 377
TAO_IDL_OPTIONS

opendds_target_sources, 61
TAO_ROOT, 67, 87
target

opendds_cmake_function, 332
test_controller command line option

--domain, 365
--json-result-id, 366
--override-create-time, 365
--override-start-time, 365
--tag, 365
--timeout, 365
--wait-for-nodes, 365
CONFIG_PATH, 365
SCENARIO_NAME, 365

The ACE ORB, 377
thread_per_connection (config property)

transport (config section), 208
time_based_filter.minimum_separation.nanosec

(config property)
datareaderqos (config section), 197

time_based_filter.minimum_separation.sec
(config property)

datareaderqos (config section), 197
Topic, 377
topic (config property)

endpoint (config section), 200
topic (config section), 191

name (config property), 191
type_name (config property), 191

Topic type, 377
Transport, 377
transport (config section), 207

datalink_control_chunks (config property), 208
datalink_release_delay (config property), 208
max_packet_size (config property), 207
max_samples_per_packet (config property), 207
optimum_packet_size (config property), 208
receive_preallocated_data_blocks (config

property), 209
receive_preallocated_message_blocks (con-

fig property), 208

thread_per_connection (config property), 208
transport_type (config property), 207

transport (multicast config section), 212
async_send (config property), 215
default_to_ipv6 (config property), 212
group_address (config property), 213
local_address (config property), 213
nak_delay_intervals (config property), 213
nak_depth (config property), 213
nak_interval (config property), 213
nak_max (config property), 213
nak_timeout (config property), 214
port_offset (config property), 214
rcv_buffer_size (config property), 214
reliable (config property), 214
syn_backoff (config property), 214
syn_interval (config property), 215
syn_timeout (config property), 215
ttl (config property), 215

transport (rtps_udp config section), 216
advertised_address (config property), 217
DataRtpsRelayAddress (config property), 219
DataStunServerAddress (config property), 220
heartbeat_period (config property), 218
ipv6_advertised_address (config property), 218
ipv6_local_address (config property), 217
ipv6_multicast_group_address (config prop-

erty), 217
local_address (config property), 217
max_message_size (config property), 219
multicast_group_address (config property), 217
multicast_interface (config property), 217
nak_depth (config property), 218
nak_response_delay (config property), 218
rcv_buffer_size (config property), 219
ResponsiveMode (config property), 218
RtpsRelayOnly (config property), 219
send_buffer_size (config property), 219
send_delay (config property), 218
ttl (config property), 219
use_multicast (config property), 216
UseIce (config property), 220
UseRtpsRelay (config property), 220

transport (shmem config section), 221
datalink_control_size (config property), 221
host_name (config property), 222
pool_size (config property), 221

transport (tcp config section), 209
active_conn_timeout_period (config property),

209
conn_retry_attempts (config property), 209
conn_retry_backoff_multiplier (config prop-

erty), 210

394 Index



OpenDDS, Release 3.28.1

conn_retry_initial_delay (config property),
209

enable_nagle_algorithm (config property), 210
local_address (config property), 210
max_output_pause_period (config property), 211
passive_reconnect_duration (config property),

211
pub_address (config property), 211

transport (udp config section), 212
local_address (config property), 212
rcv_buffer_size (config property), 212
send_buffer_size (config property), 212

transport_priority.value (config property)
datawriterqos (config section), 194

transport_template (config section), 224
Customization (config property), 225
instantiation_rule (config property), 224

transport_type (config property)
transport (config section), 207

transports (config property)
config (config section), 206

TTL (config property)
rtps_discovery (config section), 185

ttl (config property)
transport (multicast config section), 215
transport (rtps_udp config section), 219

type (config property)
endpoint (config section), 200

type_name (config property)
topic (config section), 191

TypeLookupServiceReplyTimeout (config property)
rtps_discovery (config section), 187

U
UndirectedSpdp (config property)

rtps_discovery (config section), 184
Unregister, 377
USE_EXPORT

opendds_target_sources, 62
USE_EXPORT_VAR

opendds_export_header, 64
use_multicast (config property)

transport (rtps_udp config section), 216
USE_VERSIONED_NAMESPACE

opendds_target_sources, 62
UseIce (config property)

rtps_discovery (config section), 186
transport (rtps_udp config section), 220

UseRtpsRelay (config property)
rtps_discovery (config section), 186
transport (rtps_udp config section), 220

UseXTypes (config property)
rtps_discovery (config section), 187

W
worker command line option

--log, 367
--report, 367

X
XCDR, 375
XTypes, 377

Index 395


	Release Notes
	v3.28.1
	Additions
	Platform Support and Dependencies
	Removals
	Fixes
	Documentation

	v3.28.0
	Additions
	Platform Support and Dependencies
	Fixes
	Documentation

	v3.27.0
	Additions
	Platform Support and Dependencies
	Fixes
	Notes

	v3.26.1
	Fixes

	v3.26.0
	Additions
	Deprecations
	Fixes
	Documentation
	Notes

	v3.25.0
	Additions
	Security
	Fixes
	Documentation
	Notes

	v3.24.2
	Security
	Fixes
	Notes

	v3.24.1
	Fixes
	Documentation

	v3.24.0
	Additions
	Fixes
	Notes

	Older Releases

	Developer’s Guide
	About This Guide
	Conventions
	DDS_ROOT
	Examples

	Quick Start Guides
	Windows
	Build Directions
	Run the Messenger Example
	Next Steps

	Linux/macOS
	Build Directions
	Run the Messenger Example
	Next Steps

	Raspberry Pi
	Build Directions
	Copying OpenDDS to the Pi
	Run the Messenger Example
	Next Steps
	Building Third-Party Libraries
	Setup
	OpenSSL
	Xerces-C++
	Using these with OpenDDS


	Docker
	Prerequisites
	Compile the Messenger Example
	Run the Messenger Example with RTPS
	Run the Messenger Example with InfoRepo
	Next Steps


	Introduction to DDS
	Basic Concepts
	Domain
	Entity
	Domain Participant
	Topic
	Samples, Instances, and Types
	DataWriter
	Publisher
	Subscriber
	DataReader

	Discovery, Matching, and Association
	Quality of Service Policies
	Conceptual Data Flow
	Built-in Topics (BITs)
	Listeners
	Conditions

	Shapes Demo
	Environment Prerequisites
	Running the Shapes Demo
	Example Scenarios
	Multiple Instances
	Reliability
	Durability
	Partition
	Ownership
	Time-Based Filter
	Content-Filtered Topics

	Conclusion
	Next Steps

	Introduction to OpenDDS
	What is OpenDDS?
	Licensing Terms
	Specifications
	Data Distribution Service (DDS) for Real-Time Systems
	Real-time Publish-Subscribe (RTPS)
	DDS Security
	Extensible and Dynamic Topic Types for DDS (XTypes)
	IDL
	IDL to C++03 Language Mapping
	IDL to C++11 Language Mapping
	IDL to Java Language Mapping

	Compliance
	DDS Compliance
	DDSI-RTPS Compliance
	OpenDDS RTPS Implementation Notes

	IDL Compliance

	Extensions to the DDS Specification
	OpenDDS Implementation and Architecture
	Source Code Organization
	Design Philosophy
	Plugins
	Transports
	TCP Transport
	RTPS/UDP Transport
	UDP Transport
	Multicast Transport
	Shared Memory Transport
	Custom Transports

	Discovery
	InfoRepo Discovery
	RTPS Discovery
	Static Discovery

	Threading
	Configuration


	Building and Installing
	Dependencies
	Required to Build the Core OpenDDS Libraries
	Perl
	MPC
	ACE/TAO
	ACE
	TAO


	Optional Dependencies
	CMake
	GoogleTest
	Java
	Qt
	Wireshark
	RapidJSON
	Xerces
	OpenSSL
	Python


	Using OpenDDS in a CMake Project
	Requirements
	Using the OpenDDS CMake Package
	Examples
	Developer’s Guide Messenger Example
	Example Using Installed OpenDDS (Unix only)
	Other Examples

	find_package
	Components

	Adding IDL Sources with opendds_target_sources
	Linking OpenDDS Libraries
	install(IMPORTED_RUNTIME_ARTIFACTS)
	Installing Generated Interface Files
	Manually Creating config.cmake

	Reference
	Targets
	Libraries
	Executables

	Functions
	Variables
	Package Options
	Config Variables
	Dependencies
	Features



	Android
	Variables
	Requirements
	Building on Windows
	Building OpenDDS for Android
	Using the NDK Directly
	Using a Standalone Toolchain
	Configure Script Macros
	android_ndk
	android_sdk
	android_abi
	android_api
	android_target_api

	Host Tools
	Optional Dependencies
	Java
	Android SDK
	OpenSSL
	Xerces
	Cross-compiling on Windows
	GNU libiconv
	Xerces


	Cross-Compiling IDL Libraries
	Java IDL Libraries

	Using OpenDDS in a Android App
	Adding the OpenDDS Native Libraries to the App
	Adding OpenDDS Java Libraries to the App
	Network Permissions and Availability
	Network Availability

	Configuration Files
	Multithreading
	Android Activity Lifecycle


	iOS
	Variables
	Requirements
	Building on macOS
	Host Tools
	OpenDDS’s Optional Dependencies
	OpenSSL
	Xerces


	Cross-Compiling IDL Libraries
	Using OpenDDS in an iOS App

	Supported Platforms
	Configuring and Building
	Java
	Security
	Optional Features
	Building With a Feature Enabled or Disabled
	Disabling the Building of Built-in Topic Support
	Disabling the Building of Compliance Profile Features

	Content-Subscription Profile
	Persistence Profile
	Ownership Profile
	Object Model Profile
	Cross Compiling
	Raspberry Pi
	Android
	Apple iOS


	Installation
	Using an Installed OpenDDS

	Tests
	Building Applications that use OpenDDS
	MPC: The Makefile, Project, and Workspace Creator
	CMake
	Custom Build systems

	Building OpenDDS Using CMake
	Configuring and Building
	Variables
	ACE/TAO
	Build-Exclusive CMake Variables

	Speeding up the build
	Cross Compiling
	Android


	Installation
	Using a CMake-built OpenDDS
	Running Tests
	Known Limitations


	Getting Started
	Using DCPS
	Defining Data Types with IDL
	Identifying Topic Types
	Keys
	Union Topic Types
	Topic Types vs. Nested Types

	Processing the IDL
	A Simple Message Publisher
	Initializing the Participant
	Registering the Data Type and Creating a Topic
	Creating a Publisher
	Creating a DataWriter and Waiting for the Subscriber
	Sample Publication

	Setting up the Subscriber
	Initializing the Participant
	Registering the Data Type and Creating a Topic
	Creating the subscriber
	Creating a DataReader and Listener

	The Data Reader Listener Implementation
	Cleaning up in OpenDDS Clients
	Running the Example
	Running Our Example with RTPS

	Data Handling Optimizations
	Registering and Using Instances in the Publisher
	Reading Multiple Samples
	Zero-Copy Read


	Quality of Service
	Changing QoS Policies
	Default QoS Policy Values
	Policies
	Liveliness QoS
	Reliability QoS
	History QoS
	Durability QoS
	Durability Service QoS
	Resource Limits QoS
	Partition QoS
	Deadline QoS
	Lifespan QoS
	User Data QoS
	Topic Data QoS
	Group Data QoS
	Transport Priority QoS
	Latency Budget QoS
	Entity Factory QoS
	Presentation QoS
	Destination Order QoS
	Writer Data Lifecycle QoS
	Reader Data Lifecycle QoS
	Time Based Filter QoS
	Ownership QoS
	Ownership Strength QoS
	Property QoS
	Data Representation QoS
	Type Consistency Enforcement QoS

	Policy Example

	Conditions and Listeners
	Introduction
	Communication Status Types
	Topic Status Types
	Inconsistent Topic Status

	Subscriber Status Types
	Data On Readers Status

	Data Reader Status Types
	Sample Rejected Status
	Liveliness Changed Status
	Requested Deadline Missed Status
	Requested Incompatible QoS Status
	Data Available Status
	Sample Lost Status
	Subscription Matched Status

	Data Writer Status Types
	Liveliness Lost Status
	Offered Deadline Missed Status
	Offered Incompatible QoS Status
	Publication Matched Status
	Budget Exceeded Status


	Listeners
	Topic Listener
	Data Writer Listener
	Publisher Listener
	Data Reader Listener
	Subscriber Listener
	Domain Participant Listener

	Conditions
	Status Condition
	Status Condition Example

	Additional Condition Types
	Read Conditions
	Query Conditions
	Guard Conditions



	Content-Subscription Profile
	Introduction
	Content-Filtered Topic
	Filter Expressions
	Expression Parameters
	Filtering and Dispose/Unregister Samples
	Content-Filtered Topic Example

	Query Condition
	Query Expressions
	Query Condition Example

	Multi Topic
	Topic Expressions
	Usage Notes
	Join Keys and DCPS Data Keys
	How Resulting Samples are Constructed
	Use with Subscriber Listeners

	Multi Topic Example
	IDL and Topic Expression
	Creating the Multi Topic Data Reader
	Reading Data with the Multi Topic Data Reader



	Built-in Topics
	Introduction
	Built-in Topics for DCPSInfoRepo Configuration
	DCPSParticipant Topic
	DCPSTopic Topic
	DCPSPublication Topic
	DCPSSubscription Topic
	Built-in Topic Subscription Example
	OpenDDS-specific Built-in Topics
	OpenDDSParticipantLocation Topic
	OpenDDSConnectionRecord Topic
	OpenDDSInternalThread Topic


	Run-time Configuration
	Configuration Approach
	Configuration with Environment Variables
	Configuration with Command-line Arguments
	Configuration with a File
	Configuration with API
	ConfigStore API
	Specific APIs


	Common Configuration Properties
	Discovery Configuration
	Domain Configuration
	Configuring for InfoRepo Discovery
	Configuring for Multiple DCPSInfoRepo Instances

	Configuring for RTPS Discovery
	Additional DDSI-RTPS Discovery Features

	Configuring for Static Discovery

	Transport Configuration
	Overview
	Transport Concepts
	How OpenDDS Selects a Transport

	Configuration File Examples
	Single Transport Configuration
	Using Mixed Transports
	Using Multiple Configurations

	Transport Registry Example
	Transport Configuration Properties
	Transport Instance Properties
	TCP Transport Configuration Properties
	TCP Reconnection Properties

	UDP Transport Configuration Properties
	Multicast Transport Configuration Properties
	RTPS UDP Transport Configuration Properties
	Additional RTPS UDP Features

	Shared Memory Transport Configuration Properties


	ICE Configuration
	Discovery and Transport Configuration Templates
	Configuring Discovery for a Set of Similar Domains
	Configuring a Set of Similar Transports
	Adding Customizations
	Example Configuration File

	Logging
	DCPS Layer Debug Logging
	Transport Layer Debug Logging
	Security Debug Logging


	opendds_idl
	opendds_idl Command Line Options
	Using the IDL-to-C++11 Mapping

	The DCPS Information Repository
	DCPS Information Repository Options
	Repository Federation
	Federation Management
	Federation Example
	Configuring the Federation Example
	Running the Federation Example



	Java Bindings
	Introduction
	IDL and Code Generation
	Setting up an OpenDDS Java Project
	A Simple Message Publisher
	Initializing the Participant
	Registering the Data Type and Creating a Topic
	Creating a Publisher
	Creating a DataWriter and Registering an Instance

	Setting up the Subscriber
	Creating a Subscriber
	Creating a DataReader and Listener

	The DataReader Listener Implementation
	Cleaning up OpenDDS Java Clients
	Configuring the Example
	Running the Example
	Java Message Service (JMS) Support

	Modeling SDK
	Overview
	Model Capture
	Code Generation
	Programming

	Installation and Getting Started
	Prerequisites
	Installation
	Getting Started

	Developing Applications
	Modeling Support Library
	The Application Class
	The Service Class

	Generated Code
	The DCPS Model Class
	The Traits Class
	The Service Typedef
	Data Library Generated Code
	QoS Policy Library Generated Code

	Application Code Requirements
	Required headers
	Exception Handling
	Instantiation
	Publisher Code
	Subscriber Code
	MPC Projects
	Dependencies Between Models



	Alternate Interfaces to Data
	Recorder and Replayer
	API Structure
	Usage Model
	QoS Processing
	Durability details

	Recorder With XTypes Dynamic Language Binding

	Observer
	Attaching Observers to Entities
	Writing Observer-Derived Classes
	The Observer::Sample structure


	Safety Profile
	Overview
	Safety Profile Subset of OpenDDS
	Safety Profile Configurations of ACE
	Run-time Configurable Options
	Running ACE and OpenDDS Tests
	Using the Memory Pool in Applications

	DDS Security
	Building OpenDDS with Security Enabled
	Architecture of the DDS Security Specification
	Terms and Background Info
	Required DDS Security Artifacts
	Per-Domain Artifacts
	Per-Participant Artifacts

	Required OpenDDS Configuration
	DDS Security Configuration via Property Qos Policy
	Example Code

	Identity Certificates and Certificate Authorities
	Identity, Permissions, and Subject Names
	Examples in the OpenDDS Source Code Repository
	Using OpenSSL Utilities for OpenDDS
	Creating Self-Signed Certificate Authorities
	Creating Signed Certificates with an Existing CA
	Signing Documents with SMIME


	Common XML Elements
	Domain Id Set

	Domain Governance Document
	Global Governance Model
	Key Governance Elements
	Boolean
	Protection Kind
	Basic Protection Kind

	Domain Rule Configuration Options
	domains
	allow_unauthenticated_participants
	enable_join_access_control
	discovery_protection_kind
	liveliness_protection_kind
	rtps_protection_kind

	Topic Rule Configuration Options
	topic_expression
	enable_discovery_protection
	enable_read_access_control
	enable_write_access_control
	metadata_protection_kind
	data_protection_kind

	Governance XML Example

	Participant Permissions Document
	Key Permissions Elements
	subject_name
	validity
	allow_rule and deny_rule
	domains
	publish, subscribe, and relay Rules (PSR rules)
	topics
	partitions
	data_tags
	validity
	default_rule


	Permissions XML Example

	DDS Security Implementation Status

	Internet-Enabled RTPS
	Overview
	The RtpsRelay
	Using the RtpsRelay
	Usage
	Deployment Considerations

	Interactive Connectivity Establishment (ICE) for RTPS
	Security Considerations
	Use DDS Security
	Understand the Weaknesses of (Secure) RTPS Discovery
	Run Participants in a Secure Network


	XTypes
	Overview
	Features
	Extensibility
	Assignability
	Interoperability with non-XTypes Implementations
	Dynamic Language Binding

	Examples and Explanation
	Mutable Extensibility
	Assignability
	Member IDs
	Appendable Extensibility
	Final Extensibility
	Try Construct

	Data Representation
	Type Consistency Enforcement
	IDL Annotations
	Indicating Which Types Can Be Topic Types
	@topic
	@nested
	@default_nested

	Specifying allowed Data Representations
	@OpenDDS::data_representation(XML)
	@OpenDDS::data_representation(XCDR1)
	@OpenDDS::data_representation(XCDR2)
	@OpenDDS::data_representation(UNALIGNED_CDR)
	Standard @data_representation

	Determining Extensibility
	@mutable
	@appendable
	@final

	Customizing XTypes per-member
	@try_construct(USE_DEFAULT)
	@try_construct(TRIM)
	@try_construct(DISCARD)

	Member ID assignment
	@id(value)
	@autoid(value)
	@hashid(value)

	Determining the Key Fields of a Type
	@key

	Customizing the values of enumerators
	@value(v)


	Dynamic Language Binding
	Representing Types with TypeObject and DynamicType
	Enabling Use of CompleteTypeObjects

	Interpreting Data Samples with DynamicData
	Reading Basic Types
	Reading Collections of Basic Types
	Reading Members of More Complex Types

	Populating Data Samples With DynamicData
	DynamicDataWriters and DynamicDataReaders
	Obtaining DynamicType and Registering TypeSupport
	Creating and Using a DynamicDataWriter or DynamicDataReader
	Limitations of the Dynamic Language Binding


	Unimplemented Features
	XCDR1 Support
	Type System
	Annotations

	Differences from the specification

	FAQ
	General
	What’s a PRF?
	Is there a mailing list or forum or usenet group for discussion of OpenDDS?
	Which platforms does OpenDDS support?
	Is OpenDDS interoperable with other DDS implementations?
	Does OpenDDS use CORBA?
	Summarize the network connections established by OpenDDS in a two participant scenario.

	Obtaining and building OpenDDS
	How do I obtain, configure, and build OpenDDS?
	What could be causing std lib related build failures on Linux?

	Configuring OpenDDS
	Does OpenDDS support broadcast or multicast? If so, how do you set it up?
	Why did a subscriber did not receive all samples sent by the publisher?
	Why can’t my publisher establish a connection with a remote subscriber?

	Built-In Topics (BITs)
	What is the status of BIT support in OpenDDS?
	How do I turn off BIT support at build-time?
	How do I turn off BIT support at run-time?

	Using IDL
	How do I use sequences of built-in types in IDL?

	Using the OpenDDS Modeling SDK
	How do I obtain the OpenDDS Modeling SDK?
	Why can’t I see the element I added to my figure?
	How to I open a library (for example a DataLib) on the main diagram?

	Using the DDS DCPS API
	How should I override a specific QoS policy and leave others defaulted?
	What are the *_QOS_DEFAULT macros?
	Why do I get samples with invalid data in them?
	What could account for increasing memory usage in subscribing processes?


	Annex
	Fnmatch Expressions


	Internal Documentation
	OpenDDS Development Guidelines
	Repository
	Testing
	Dependencies
	Text File Formatting
	Lint Script
	Documentation
	C++ Standard
	C++ Coding Style
	Example
	Punctuation
	Whitespace
	Language Usage
	Pointers and References
	Naming
	Comments
	Documenting Code for Doxygen
	Preprocessor
	Includes
	Order
	Path
	Example


	Initialization
	Time
	Logging
	ACE Logging
	Usage in OpenDDS
	Logging Conditions and Priority
	Message Content
	Examples



	Perl Coding Style
	Python Coding Style
	CMake Coding Style

	Documentation Guidelines
	Building
	Requirements
	HTML
	Dash
	PDF
	Strict Checks
	Building Manually

	RST/Sphinx Usage
	Special Links
	Custom Domains
	CMake Domain
	Config Domain
	Example



	News
	News Fragments
	Directives
	news-prs
	news-start-section and news-end-section
	news-rank


	Generating the News


	Unit Tests
	The Goals of Unit Testing
	Unit Test Organization
	Unit Test Scope
	Isolating Dependencies
	Writing a New Unit Test
	Using GTest
	Code Coverage
	Final Word

	GitHub Actions
	Overview
	Legend for GitHub Actions Build Names
	Operating System
	Build Configuration
	Build Type
	Build Options
	Feature Mask

	build_and_test.yml Workflow
	Triggering the Build And Test Workflow
	Job Types
	.lst Files
	Workflow Checks
	Blocked Tests
	Only Failing on CI
	Failing Both CI and scoreboard

	Test Results
	Artifacts
	Using Artifacts to Replicate Builds
	Using Artifacts to View More Test Information

	Caching


	Running Tests
	Main Test Suite
	Building
	Running
	For Unixes (Linux, macOS, BSDs, etc)
	For Windows

	Manual Configuration


	Bench Performance & Scalability Test Framework
	Motivation
	Overview
	Worker
	Node Controller
	Test Controller

	Building Bench
	Required Features
	Required Targets

	Running Bench
	Environment Variables
	Linux/Unix
	Windows

	Running a Bench CI Test
	Running Scenarios Manually

	Configuration Files
	Scenario Configuration Files
	IDL Definition
	Annotated Example

	Worker Configuration Files
	QoS Masking
	Annotated Example


	Detailed Application Descriptions
	test_controller
	Usage

	node_controller
	Usage

	worker
	Usage



	Release Process
	Notes About OpenDDS Releases
	Temporary Notes
	File Updates
	Versioning

	Prior to the Release
	Address Automated Code Analysis Results
	Update Files in the Repo as Needed
	Update the Modeling SDK version numbers and release notes
	Generate the Modeling SDK Eclipse update site
	Update the opendds.org Website
	Check if GHA Workflows need Updating

	Making a Release
	Before Running the Release Script
	Running the Release Script
	Micro Releases
	Doing Mock Releases with the Release Script

	After Running the Release Script
	Test the release package
	Update News on Master
	Upload Artifacts from Release Workflows
	Remove Files Used for Release




	Glossary
	Common Terms
	Environment Variables

	Using OpenDDS
	Other Documentation
	Index

